1
|
Rizzo G, Martino D, Avanzino L, Avenanti A, Vicario CM. Social cognition in hyperkinetic movement disorders: a systematic review. Soc Neurosci 2023; 18:331-354. [PMID: 37580305 DOI: 10.1080/17470919.2023.2248687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Numerous lines of research indicate that our social brain involves a network of cortical and subcortical brain regions that are responsible for sensing and controlling body movements. However, it remains unclear whether movement disorders have a systematic impact on social cognition. To address this question, we conducted a systematic review examining the influence of hyperkinetic movement disorders (including Huntington disease, Tourette syndrome, dystonia, and essential tremor) on social cognition. Following the PRISMA guidelines and registering the protocol in the PROSPERO database (CRD42022327459), we analyzed 50 published studies focusing on theory of mind (ToM), social perception, and empathy. The results from these studies provide evidence of impairments in ToM and social perception in all hyperkinetic movement disorders, particularly during the recognition of negative emotions. Additionally, individuals with Huntington's Disease and Tourette syndrome exhibit empathy disorders. These findings support the functional role of subcortical structures (such as the basal ganglia and cerebellum), which are primarily responsible for movement disorders, in deficits related to social cognition.
Collapse
Affiliation(s)
- Gaetano Rizzo
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| | - Davide Martino
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Carmelo Mario Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| |
Collapse
|
2
|
Kamrani-Sharif R, Hayes AW, Gholami M, Salehirad M, Allahverdikhani M, Motaghinejad M, Emanuele E. Oxytocin as neuro-hormone and neuro-regulator exert neuroprotective properties: A mechanistic graphical review. Neuropeptides 2023; 101:102352. [PMID: 37354708 DOI: 10.1016/j.npep.2023.102352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 03/28/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Neurodegeneration is progressive cell loss in specific neuronal populations, often resulting in clinical consequences with significant medical, societal, and economic implications. Because of its antioxidant, anti-inflammatory, and anti-apoptotic properties, oxytocin has been proposed as a potential neuroprotective and neurobehavioral therapeutic agent, including modulating mood disturbances and cognitive enchantment. METHODS Literature searches were conducted using the following databases Web of Science, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, and Cochrane from January 2000 to February 2023 for articles dealing with oxytocin neuroprotective properties in preventing or treating neurodegenerative disorders and diseases with a focus on oxidative stress, inflammation, and apoptosis/cell death. RESULTS The neuroprotective effects of oxytocin appears to be mediated by its anti-inflammatory properties, inhibition of neuro inflammation, activation of several antioxidant enzymes, inhibition of oxidative stress and free radical formation, activation of free radical scavengers, prevent of mitochondrial dysfunction, and inhibition of apoptosis. CONCLUSION Oxytocin acts as a neuroprotective agent by preventing neuro-apoptosis, neuro-inflammation, and neuronal oxidative stress, and by restoring mitochondrial function.
Collapse
Affiliation(s)
- Roya Kamrani-Sharif
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Salehirad
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Allahverdikhani
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
3
|
Jin Y, Song D, Yan Y, Quan Z, Qing H. The Role of Oxytocin in Early-Life-Stress-Related Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:10430. [PMID: 37445607 DOI: 10.3390/ijms241310430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Early-life stress during critical periods of brain development can have long-term effects on physical and mental health. Oxytocin is a critical social regulator and anti-inflammatory hormone that modulates stress-related functions and social behaviors and alleviates diseases. Oxytocin-related neural systems show high plasticity in early postpartum and adolescent periods. Early-life stress can influence the oxytocin system long term by altering the expression and signaling of oxytocin receptors. Deficits in social behavior, emotional control, and stress responses may result, thus increasing the risk of anxiety, depression, and other stress-related neuropsychiatric diseases. Oxytocin is regarded as an important target for the treatment of stress-related neuropsychiatric disorders. Here, we describe the history of oxytocin and its role in neural circuits and related behaviors. We then review abnormalities in the oxytocin system in early-life stress and the functions of oxytocin in treating stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yue Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Culicetto L, Ferraioli F, Lucifora C, Falzone A, Martino G, Craparo G, Avenanti A, Vicario CM. Disgust as a transdiagnostic index of mental illness: A narrative review of clinical populations. Bull Menninger Clin 2023; 87:53-91. [PMID: 37871195 DOI: 10.1521/bumc.2023.87.suppa.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Disgust is a basic emotion of rejection, providing an ancestral defensive mechanism against illness. Based on research that documents altered experiences of disgust across several psychopathological conditions, we conducted a narrative review to address the hypothesis that altered disgust may serve as a transdiagnostic index of mental illness. Our synthesis of the literature from past decades suggests that, compared to healthy populations, patients with mental disorders exhibit abnormal processing of disgust in at least one of the analyzed dimensions. We also outline evidence of alterations in brain areas relevant to disgust processing, such as the insula and the interconnected limbic network. Overall, we provide preliminary support for the hypothesis that altered disgust processing may serve as a transdiagnostic index of mental illness.
Collapse
Affiliation(s)
- Laura Culicetto
- Department of Cognitive Science, University of Messina, Messina, Italy
| | | | - Chiara Lucifora
- Institute of Cognitive Science and Technology, ISTC-CNR, Rome, Italy
| | | | - Gabriella Martino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Craparo
- Faculty of Human and Social Sciences, UKE-Kore University of Enna, Cittadella Universitaria, Enna, Italy
| | - Alessio Avenanti
- Neuropsychology and Cognitive Neurosciences Research Center, Universidad Católica del Maule, Talca, Chile, and the Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari," Alma Mater Studiorum-University of Bologna, Cesena Campus, Cesena, Italy
| | | |
Collapse
|
5
|
Coccia G, La Greca F, Di Luca M, Scheggia D. Dissecting social decision-making: A spotlight on oxytocinergic transmission. Front Mol Neurosci 2022; 15:1061934. [PMID: 36618824 PMCID: PMC9813388 DOI: 10.3389/fnmol.2022.1061934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Social decision-making requires the ability to balance both the interests of the self and the interests of others to survive in social environments. Empathy is essential to the regulation of this type of interaction, and it often sustains relevant prosocial behaviors such as altruism and helping behavior. In the last decade, our capacity to assess affective and empathy-like behaviors in rodents has expanded our understanding of the neurobiological substrates that underly social decision-making processes such as prosocial behaviors. Within this context, oxytocinergic transmission is profoundly implicated in modulating some of the major components of social decision-making. Thus, this review will present evidence of the association between oxytocin and empathy-like and prosocial behaviors in nonhuman animals. Then, we will dissect the involvement of oxytocinergic transmission-across different brain regions and pathways-in some of the key elements of social decision-making such as emotional discrimination, social recognition, emotional contagion, social dominance, and social memory. Evidence of the modulatory role of oxytocin on social decision-making has raised considerable interest in its clinical relevance, therefore we will also discuss the controversial findings on intranasal oxytocin administration.
Collapse
Affiliation(s)
| | | | | | - Diego Scheggia
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Bergh S, Cheong RY, Petersén Å, Gabery S. Oxytocin in Huntington’s disease and the spectrum of amyotrophic lateral sclerosis-frontotemporal dementia. Front Mol Neurosci 2022; 15:984317. [PMID: 36187357 PMCID: PMC9515306 DOI: 10.3389/fnmol.2022.984317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disorders (NDDs) such as Huntington’s disease (HD) and the spectrum of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by progressive loss of selectively vulnerable populations of neurons. Although often associated with motor impairments, these NDDs share several commonalities in early symptoms and signs that extend beyond motor dysfunction. These include impairments in social cognition and psychiatric symptoms. Oxytocin (OXT) is a neuropeptide known to play a pivotal role in the regulation of social cognition as well as in emotional behaviors such as anxiety and depression. Here, we present an overview of key results implicating OXT in the pathology of HD, ALS and FTD and seek to identify commonalities across these NDDs. OXT is produced in the hypothalamus, a region in the brain that during the past decade has been shown to be affected in HD, ALS, and FTD. Several studies using human post-mortem neuropathological analyses, measurements of cerebrospinal fluid, experimental treatments with OXT as well as genetic animal models have collectively implicated an important role of central OXT in the development of altered social cognition and psychiatric features across these diseases. Understanding central OXT signaling may unveil the underlying mechanisms of early signs of the social cognitive impairment and the psychiatric features in NDDs. It is therefore possible that OXT might have potential therapeutic value for early disease intervention and better symptomatic treatment in NDDs.
Collapse
|
7
|
Hellem MNN, Cheong RY, Tonetto S, Vinther-Jensen T, Hendel RK, Larsen IU, Nielsen TT, Hjermind LE, Vogel A, Budtz-Jørgensen E, Petersén Å, Nielsen JE. Decreased CSF oxytocin relates to measures of social cognitive impairment in Huntington's disease patients. Parkinsonism Relat Disord 2022; 99:23-29. [PMID: 35580426 DOI: 10.1016/j.parkreldis.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/21/2022] [Accepted: 05/08/2022] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Huntington's disease (HD) is an inherited neurodegenerative disease with motor, cognitive and psychiatric symptoms. Non-motor symptoms like depression and altered social cognition are proposed to be caused by dysfunction of the hypothalamus. We measured the hypothalamic neuropeptide oxytocin in plasma and cerebrospinal fluid (CSF) in a cohort of HD gene expansion carriers (HDGECs), compared the levels to healthy HD family controls and correlated oxytocin levels to disease progression and social cognition. METHODS We recruited 113 HDGECs and 33 controls. Psychiatric and cognitive symptoms were evaluated, and social cognition was assessed with the Emotion Hexagon test, Reading the Mind in the Eyes and The Awareness of Social Inference Test. The levels of oxytocin in CSF and blood were analyzed by radioimmunoassay. RESULTS We found the level of oxytocin in CSF to be significantly lower by 33.5% in HDGECs compared to controls (p = 0.016). When dividing the HDGECs into groups with or without cognitive impairment, we found the oxytocin level to be significantly lower by 30.3% in the HDGECs with cognitive symptoms (p = 0.046). We found a statistically significant correlation between the level of oxytocin and scores on social cognition (Reading the Mind in the Eyes p = 0.0019; Emotion Hexagon test: p = 0.0062; The Awareness of Social Inference Test: p = 0.002). CONCLUSIONS This is the first study to measure oxytocin in the CSF of HDGECs. We find that HDGECs have a significantly lower level of oxytocin compared to controls, and that the level of oxytocin may represent an objective and comparable measure that could be used as a state biomarker for impairment of social cognition. We suggest treatment trials to evaluate a potential effect of oxytocin on social cognition in HD.
Collapse
Affiliation(s)
- Marie N N Hellem
- The Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej, Section 8008, 2100, Copenhagen, Denmark.
| | - Rachel Y Cheong
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Simone Tonetto
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Tua Vinther-Jensen
- The Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej, Section 8008, 2100, Copenhagen, Denmark; Department of Neurology, Bispebjerg-Frederiksberg Hospital, Bispebjerg Bakke 23, 2400, Copenhagen, NV, Denmark
| | - Rebecca K Hendel
- The Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej, Section 8008, 2100, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2, 1014, Copenhagen, Denmark
| | - Ida U Larsen
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, Bispebjerg Bakke 23, 2400, Copenhagen, NV, Denmark
| | - Troels T Nielsen
- The Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej, Section 8008, 2100, Copenhagen, Denmark
| | - Lena E Hjermind
- The Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej, Section 8008, 2100, Copenhagen, Denmark
| | - Asmus Vogel
- The Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej, Section 8008, 2100, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2, 1014, Copenhagen, Denmark
| | - Esben Budtz-Jørgensen
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Øster Farimagsgade 5, 1014, Copenhagen, Denmark
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Jørgen E Nielsen
- The Neurogenetics Clinic and Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej, Section 8008, 2100, Copenhagen, Denmark
| |
Collapse
|
8
|
Piguet O, Ahmed RM, Kumfor F. The Role of Oxytocin in Social Circuits and Social Behavior in Dementia. Methods Mol Biol 2022; 2384:67-80. [PMID: 34550569 DOI: 10.1007/978-1-0716-1759-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Administration of intranasal oxytocin has been found to improve social cognition in a number of brain conditions, including autism spectrum disorder and schizophrenia. Whether this approach is relevant in dementias is currently unknown, particularly in frontotemporal dementia, a younger-onset dementia characterized clinically by marked changes in social cognition and behavior and focal atrophy of the frontal and temporal lobes. This chapter provides an overview of the deficits in social cognition in frontotemporal dementia and reviews the emerging evidence of intranasal oxytocin administration as a potential treatment option for these deficits. Future research directions will also be discussed.
Collapse
Affiliation(s)
- Olivier Piguet
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.
| | - Rebekah M Ahmed
- Central Sydney Medical School and Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Fiona Kumfor
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Mehdi SF, Pusapati S, Khenhrani RR, Farooqi MS, Sarwar S, Alnasarat A, Mathur N, Metz CN, LeRoith D, Tracey KJ, Yang H, Brownstein MJ, Roth J. Oxytocin and Related Peptide Hormones: Candidate Anti-Inflammatory Therapy in Early Stages of Sepsis. Front Immunol 2022; 13:864007. [PMID: 35572539 PMCID: PMC9102389 DOI: 10.3389/fimmu.2022.864007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Sepsis is a potentially life-threatening systemic inflammatory syndrome characterized by dysregulated host immunological responses to infection. Uncontrolled immune cell activation and exponential elevation in circulating cytokines can lead to sepsis, septic shock, multiple organ dysfunction syndrome, and death. Sepsis is associated with high re-hospitalization and recovery may be incomplete, with long term sequelae including post-sepsis syndrome. Consequently, sepsis continues to be a leading cause of morbidity and mortality across the world. In our recent review of human chorionic gonadotropin (hCG), we noted that its major properties including promotion of fertility, parturition, and lactation were described over a century ago. By contrast, the anti-inflammatory properties of this hormone have been recognized only more recently. Vasopressin, a hormone best known for its anti-diuretic effect, also has anti-inflammatory actions. Surprisingly, vasopressin's close cousin, oxytocin, has broader and more potent anti-inflammatory effects than vasopressin and a larger number of pre-clinical studies supporting its potential role in limiting sepsis-associated organ damage. This review explores possible links between oxytocin and related octapeptide hormones and sepsis-related modulation of pro-inflammatory and anti-inflammatory activities.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Raja Ram Khenhrani
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Muhammad Saad Farooqi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Sobia Sarwar
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Ahmad Alnasarat
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Nimisha Mathur
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Christine Noel Metz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
- *Correspondence: Jesse Roth,
| |
Collapse
|
10
|
Problems with Social Cognition and Decision-Making in Huntington's Disease: Why Is it Important? Brain Sci 2021; 11:brainsci11070838. [PMID: 34202701 PMCID: PMC8301991 DOI: 10.3390/brainsci11070838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 01/21/2023] Open
Abstract
Huntington’s disease starts slowly and progresses over a 15–20 year period. Motor changes begin subtly, often going unnoticed by patients although they are typically visible to those close to them. At this point, it is the early non-motor problems of HD that arguably cause the most functional impairment. Approximately 65% of gene carriers will experience a reduction in their occupational level, and just under half will feel unable to manage their finances independently before a clinical diagnosis is made. Understanding what drives this impairment in activities of daily living is the key to helping people with HD to live more independently for longer, especially in early disease. Early cognitive decline is likely to play a contributory factor although few studies have looked directly at this relationship. Recently, it has been shown that along with the well documented dysexecutive syndrome seen in HD, changes in social cognition and decision-making are more common than previously thought. Furthermore, some of the early neuropathological and neurochemical changes seen in HD disrupt networks known to be involved in social functioning. In this review, we explore how HD changes the way individuals interact in a social world. Specifically, we summarise the literature on both classical and social decision-making (value-based decision-making in a social context) along with studies of theory of mind, empathy, alexithymia, and emotion recognition in HD. The literature specific to HD is discussed and supported by evidence from similar neurodegenerative disorders and healthy individuals to propose future directions and potential therapeutic avenues to be explored.
Collapse
|
11
|
Fisher ER, Rocha NP, Morales-Scheihing DA, Venna VR, Furr-Stimming EE, Teixeira AL, Rossetti MA. The Relationship Between Plasma Oxytocin and Executive Functioning in Huntington's Disease: A Pilot Study. J Huntingtons Dis 2021; 10:349-354. [PMID: 34092650 DOI: 10.3233/jhd-210467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The role of oxytocin (OT) in social cognition of patients with Huntington's disease (HD) has been studied, but its impact on executive functioning has not been explored yet. Healthy controls, premanifest HD, and manifest HD participants underwent executive functioning assessment and OT plasma measurement. There were no significant group differences in plasma OT levels. Higher OT levels were associated with better executive functioning in premanifest HD participants. Our findings revealed an association between OT levels and depressive symptoms in premanifest and manifest HD participants. The potential role of OT in HD deserves further investigation.
Collapse
Affiliation(s)
- Emily R Fisher
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Natalia P Rocha
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA.,Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Diego A Morales-Scheihing
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Venugopal Reddy Venna
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Erin E Furr-Stimming
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Maria A Rossetti
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
12
|
Huang L, Fang L, Liu Q, Torshizi AD, Wang K. Integrated analysis on transcriptome and behaviors defines HTT repeat-dependent network modules in Huntington's disease. Genes Dis 2021; 9:479-493. [PMID: 35224162 PMCID: PMC8843892 DOI: 10.1016/j.gendis.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in the huntingtin (HTT) gene. Knock-in mice carrying a CAG repeat-expanded Htt will develop HD phenotypes. Previous studies suggested dysregulated molecular networks in a CAG length genotype- and the age-dependent manner in brain tissues from knock-in mice carrying expanded Htt CAG repeats. Furthermore, a large-scale phenome analysis defined a behavioral signature for HD genotype in knock-in mice carrying expanded Htt CAG repeats. However, an integrated analysis correlating phenotype features with genotypes (CAG repeat expansions) was not conducted previously. In this study, we revealed the landscape of the behavioral features and gene expression correlations based on 445 mRNA samples and 445 microRNA samples, together with behavioral features (396 PhenoCube behaviors and 111 NeuroCube behaviors) in Htt CAG-knock-in mice. We identified 37 behavioral features that were significantly associated with CAG repeat length including the number of steps and hind limb stand duration. The behavioral features were associated with several gene coexpression groups involved in neuronal dysfunctions, which were also supported by the single-cell RNA sequencing data in the striatum and the spatial gene expression in the brain. We also identified 15 chemicals with significant responses for genes with enriched behavioral features, most of them are agonist or antagonist for dopamine receptors and serotonin receptors used for neurology/psychiatry. Our study provides further evidence that abnormal neuronal signal transduction in the striatum plays an important role in causing HD-related phenotypic behaviors and provided rich information for the further pharmacotherapeutic intervention possibility for HD.
Collapse
Affiliation(s)
- Lulin Huang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Corresponding author. The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China.
| | - Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Qian Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Corresponding author.
| |
Collapse
|
13
|
Jiang X, Ma X, Geng Y, Zhao Z, Zhou F, Zhao W, Yao S, Yang S, Zhao Z, Becker B, Kendrick KM. Intrinsic, dynamic and effective connectivity among large-scale brain networks modulated by oxytocin. Neuroimage 2020; 227:117668. [PMID: 33359350 DOI: 10.1016/j.neuroimage.2020.117668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/06/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The neuropeptide oxytocin is a key modulator of social-emotional behavior and its intranasal administration can influence the functional connectivity of brain networks involved in the control of attention, emotion and reward reported in humans. However, no studies have systematically investigated the effects of oxytocin on dynamic or directional aspects of functional connectivity. The present study employed a novel computational framework to investigate these latter aspects in 15 oxytocin-sensitive regions using data from randomized placebo-controlled between-subject resting state functional MRI studies incorporating 200 healthy subjects. In order to characterize the temporal dynamics, the 'temporal state' was defined as a temporal segment of the whole functional MRI signal which exhibited a similar functional interaction pattern among brain regions of interest. Results showed that while no significant effects of oxytocin were found on brain temporal state related characteristics (including temporal state switching frequency, probability of transitions between neighboring states, and averaged dwell time on each state) oxytocin extensively (n = 54 links) modulated effective connectivity among the 15 regions. The effects of oxytocin were primarily characterized by increased effective connectivity both between and within emotion, reward, salience, attention and social cognition processing networks and their interactions with the default mode network. Top-down control over emotional processing regions such as the amygdala was particularly affected. Oxytocin also increased effective homotopic interhemispheric connectivity in almost all these regions. Additionally, the effects of oxytocin on effective connectivity were sex-dependent, being more extensive in males. Overall, these findings suggest that modulatory effects of oxytocin on both within- and between-network interactions may underlie its functional influence on social-emotional behaviors, although in a sex-dependent manner. These findings may be of particular relevance to potential therapeutic use of oxytocin in psychiatric disorders associated with social dysfunction, such as autism spectrum disorder and schizophrenia, where directionality of treatment effects on causal interactions between networks may be of key importance .
Collapse
Affiliation(s)
- Xi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaole Ma
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yayuan Geng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiying Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Shimin Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhongbo Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
14
|
Khodagholi F, Maleki A, Motamedi F, Mousavi MA, Rafiei S, Moslemi M. Oxytocin Prevents the Development of 3-NP-Induced Anxiety and Depression in Male and Female Rats: Possible Interaction of OXTR and mGluR2. Cell Mol Neurobiol 2020; 42:1105-1123. [PMID: 33201416 DOI: 10.1007/s10571-020-01003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/07/2020] [Indexed: 01/01/2023]
Abstract
Huntington disease (HD) is a progressive neurological disorder with dominant motor symptoms. It also has psychiatric manifestations, like anxiety and depression, that can emerge themselves before motor symptoms and impose a major burden on patients. Oxytocin (OXT) is a newly emerged treatment for disorders like autism and schizophrenia and recently is using to alleviate depression and anxiety. In the current study, we investigated the behavioral and molecular effects of OXT on the development of anxiety and depression in 3-nitropropionic acid (3-NP)-induced model of HD. Anxiety- and depression-like behaviors as well as the levels of oxytocin receptor (OXTR), metabotropic glutamate receptor (mGluR) 2, mGluR5, and glutathione (GSH) were measured in striatum, hippocampus, prefrontal cortex, and amygdala. Also, we questioned if sex had any modulatory effect. We found that 3-NP increased anxiety and depression compared to controls. It also reduced the levels of OXTR and mGluR2, increased mGluR5, and reduced GSH in studied brain regions. Pretreatment with OXT before the injection of 3-NP ameliorated anxiety and depression. Additionally, it protected the brain from developing low levels of OXTR, mGluR2, and GSH and high levels of mGluR5 in studied regions. The protective effects of OXT were similar between male and female animals. These data suggest that OXTR, mGluR2, mGluR5, and GSH may contribute to psychiatric manifestations of HD. In addition, pretreatment with OXT could prevent the mood changes in male and female rats.
Collapse
Affiliation(s)
- Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Maleki
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrbanoo Rafiei
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Moslemi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Cheong RY, Tonetto S, von Hörsten S, Petersén Å. Imbalance of the oxytocin-vasopressin system contributes to the neuropsychiatric phenotype in the BACHD mouse model of Huntington disease. Psychoneuroendocrinology 2020; 119:104773. [PMID: 32590293 DOI: 10.1016/j.psyneuen.2020.104773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/30/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Neuropsychiatric disturbances with altered social cognition, depression and anxiety are among the most debilitating early features in the fatal neurodegenerative disorder Huntington disease (HD) which is caused by an expanded CAG repeat in the huntingtin gene. The underlying neurobiological mechanisms are not known. Neuropathological analyses of postmortem human HD hypothalamic tissue have demonstrated loss of the neuropeptides oxytocin and vasopressin. The dynamic interplay between these neuropeptides is crucial for modulating emotional and social behavior but its role in HD is unclear. In the present study, we have investigated the effect of expressing the mutant huntingtin gene on the development of behavioral changes using the transgenic BACHD mouse model at different ages. We show for the first time that BACHD mice exhibit deficits in social behavior with parallel aberrations in the balance of the oxytocin-vasopressin system. Importantly, our data also show that restoration of the interplay within the system with an acute dose of intranasal oxytocin immediately prior to behavioral testing can rescue the depressive-like phenotype but not anxiety-like behavior in this transgenic model. These findings demonstrate that imbalances in the oxytocin-vasopressin interplay contribute to the neuropsychiatric component of HD and suggest that interventions aimed at restoring the blunted levels of oxytocin may confer therapeutic benefits for this disease.
Collapse
Affiliation(s)
- Rachel Y Cheong
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.
| | - Simone Tonetto
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Stephan von Hörsten
- Department of Experimental Therapy and Preclinical Center, Friedrich-Alexander-University, 91054 Erlangen, Germany
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| |
Collapse
|
16
|
Cheong RY, Gabery S, Petersén Å. The Role of Hypothalamic Pathology for Non-Motor Features of Huntington's Disease. J Huntingtons Dis 2020; 8:375-391. [PMID: 31594240 PMCID: PMC6839491 DOI: 10.3233/jhd-190372] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Huntington’s disease (HD) is a fatal genetic neurodegenerative disorder. It has mainly been considered a movement disorder with cognitive symptoms and these features have been associated with pathology of the striatum and cerebral cortex. Importantly, individuals with the mutant huntingtin gene suffer from a spectrum of non-motor features often decades before the motor disorder manifests. These symptoms and signs include a range of psychiatric symptoms, sleep problems and metabolic changes with weight loss particularly in later stages. A higher body mass index at diagnosis is associated with slower disease progression. The common psychiatric symptom of apathy progresses with the disease. The fact that non-motor features are present early in the disease and that they show an association to disease progression suggest that unravelling the underlying neurobiological mechanisms may uncover novel targets for early disease intervention and better symptomatic treatment. The hypothalamus and the limbic system are important brain regions that regulate emotion, social cognition, sleep and metabolism. A number of studies using neuroimaging, postmortem human tissue and genetic manipulation in animal models of the disease has collectively shown that the hypothalamus and the limbic system are affected in HD. These findings include the loss of neuropeptide-expressing neurons such as orexin (hypocretin), oxytocin, vasopressin, somatostatin and VIP, and increased levels of SIRT1 in distinct nuclei of the hypothalamus. This review provides a summary of the results obtained so far and highlights the potential importance of these changes for the understanding of non-motor features in HD.
Collapse
Affiliation(s)
- Rachel Y Cheong
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sanaz Gabery
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Bartlett DM, Govus A, Rankin T, Lampit A, Feindel K, Poudel G, Teo WP, Lo J, Georgiou-Karistianis N, Ziman MR, Cruickshank TM. The effects of multidisciplinary rehabilitation on neuroimaging, biological, cognitive and motor outcomes in individuals with premanifest Huntington's disease. J Neurol Sci 2020; 416:117022. [PMID: 32688143 DOI: 10.1016/j.jns.2020.117022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a chronic, progressive neurodegenerative condition for which there are currently no proven disease-modifying therapies. Lifestyle factors have been shown to impact on the age of disease onset and progression of disease features. We therefore investigated the effects of a nine-month multidisciplinary rehabilitation intervention on neuroimaging, biological and clinical disease outcomes in individuals with premanifest HD. METHODS 31 individuals with premanifest HD participated in the study. Eighteen participants underwent a nine-month multidisciplinary rehabilitation intervention comprising aerobic and resistance exercise, computerised cognitive training, dual-task training and sleep hygiene and nutritional guidance. The remaining 13 participants were allocated to a standard care control group. Neuroimaging, biological, cognitive, motor and cardiorespiratory fitness data was collected. RESULTS Participants displayed good adherence (87%) and compliance (85%) to the intervention. Maintenance of the shape of the right putamen was observed in the intervention group when compared to the control group. The intervention group displayed significant improvements in verbal learning and memory, attention, cognitive flexibility and processing speed following the intervention when compared to the control group. Performance on the mini-social cognition and emotional assessment (mini-SEA) was maintained in the intervention group, but decreased in the control group. No changes were observed in serum neurofilament light protein levels, postural stability outcomes or cardiorespiratory fitness. CONCLUSION This study adds to the accumulating body of literature to suggest that multidisciplinary rehabilitation is of clinical benefit for individuals with HD. Large randomised controlled trials are necessary to determine the extent to which benefits occur across the spectrum of the disease.
Collapse
Affiliation(s)
- Danielle M Bartlett
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Andrew Govus
- School of Allied Health, Human Services & Sport, Department of Dietetics, Nutrition and Sport, La Trobe University, Melbourne, Victoria, Australia
| | - Timothy Rankin
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; Centre for Sleep Science, School of Human Sciences, Faculty of Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Amit Lampit
- Department of Psychiatry, University of Melbourne, Victoria, Australia; Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Kirk Feindel
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Australia
| | - Govinda Poudel
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Wei-Peng Teo
- National Institute of Education, Nanyang Technological University, Singapore
| | - Johnny Lo
- School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences, The Turner Institute of Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Mel R Ziman
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; School of Biomedical Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Travis M Cruickshank
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia.
| |
Collapse
|
18
|
Schneider I, Schmitgen MM, Boll S, Roth C, Nees F, Usai K, Herpertz SC, Wolf RC. Oxytocin modulates intrinsic neural activity in patients with chronic low back pain. Eur J Pain 2020; 24:945-955. [PMID: 32061140 DOI: 10.1002/ejp.1543] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Modulation of pain perception by oxytocin (OXT) has attracted increased scientific and clinical interest. Neural mechanisms underlying these effects are poorly understood. In this study, we aimed to investigate the effects of intranasally applied OXT on intrinsic neural activity in patients with chronic low back pain (cLBP). METHODS Twenty-four male patients with cLBP and 23 healthy males were examined using resting-state functional magnetic resonance imaging. Participants were scanned twice and received either intranasally applied OXT (24 international units) or placebo 40 min before scanning. The fractional amplitude of low-frequency fluctuations (fALFF) was computed to investigate regionally specific effects of OXT on intrinsic neural activity. In addition a multivariate statistical data analysis strategy was employed to explore OXT-effects on functional network strength. RESULTS Differential effects of OXT were observed in cLBP and healthy controls. FALFF decreased in left nucleus accumbens and right thalamus in cLBP and increased in right thalamus in healthy controls after OXT application compared to placebo. OXT also induced activity changes in bilateral thalamus, left caudate nucleus and right amygdala in cLBP. OXT was associated with increased medial frontal, parietal and occipital functional network strength, though this effect was not group-specific. Regression analyses revealed significant associations between left nucleus accumbens, left caudate nucleus and right amygdala with pain-specific psychometric scores in cLBP. CONCLUSIONS These data suggest OXT-related modulation of regional activity and neural network strength in patients with cLBP and healthy controls. In patients, distinct regions of the pain matrix may be responsive to modulation by OXT. SIGNIFICANCE Our data suggest significant oxytocin-related modulation of intrinsic regional activity and neural network strength in patients with chronic low back pain and healthy controls. In patients, distinct regions of the pain matrix may be responsive to modulation by oxytocin. Therapeutic effects of oxytocin for improved pain treatment need to be further investigated.
Collapse
Affiliation(s)
- Isabella Schneider
- Department of General Psychiatry, Center of Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Mike M Schmitgen
- Department of General Psychiatry, Center of Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Sabrina Boll
- Department of General Psychiatry, Center of Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Corinna Roth
- Department of General Psychiatry, Center of Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Frauke Nees
- Department of Psychosomatic Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Heidelberg, Germany
| | - Katrin Usai
- Department of Psychosomatic Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Heidelberg, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Center of Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry, Center of Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
19
|
Moslemi M, Khodagholi F, Asadi S, Rafiei S, Motamedi F. Oxytocin protects against 3-NP induced learning and memory impairment in rats: Sex differences in behavioral and molecular responses to the context of prenatal stress. Behav Brain Res 2020; 379:112354. [PMID: 31733312 DOI: 10.1016/j.bbr.2019.112354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
Learning and memory impairment manifests years before the onset of motor impairments in Huntington's disease (HD). Oxytocin (OXT), as a neurohypophyseal neuropeptide has a key role in both learning and memory. Hence, we investigated possible protective effect of OXT on instrumental fear conditioning memory impairment by 3-Nitropropionic acid (3-NP) induced HD, considering sex and prenatal stress effects. Pregnant Wistar rats were exposed to restraint stress for 45 min three times a day, from the gestational day 8 to parturition. 3-NP was injected intraperitoneally (20 mg/kg) for 5-7 days after OXT (10 μg/μl. icv) injection in the male and female offspring rats respectively. One day after the last 3-NP injection, the rotarod and passive avoidance task were conducted. As the key molecular determinants in metabolism and memory processes, we measured the activity of acetylcholinesterase (AChE) and the amount of receptor interacting protein3 (RIP3) in the hippocampus, prefrontal cortex, striatum and amygdala using spectrophotometry and western blotting respectively. Besides, the activity of glutamate dehydrogenase was measured (GDH) as a chain between metabolism and memory formation. The results indicated that OXT improved learning and memory impairment caused by 3-NP or prenatal stress in both sexes. It was along with a significant decrease in the level of RIP3, AChE and GDH activities. However, in the presence of prenatal stress, the OXT could improve 3-NP induced learning and memory impairments just in female rats. So it could be suggested as an effective neurotherapeutic agent in diseases such as HD, but its sex and context dependency should be considered carefully.
Collapse
Affiliation(s)
- Mehdi Moslemi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sareh Asadi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrbanoo Rafiei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Erdozain AM, Peñagarikano O. Oxytocin as Treatment for Social Cognition, Not There Yet. Front Psychiatry 2019; 10:930. [PMID: 31998152 PMCID: PMC6962227 DOI: 10.3389/fpsyt.2019.00930] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
In a short time, oxytocin has progressed from being a regular hormone involved in parturition and breastfeeding to be possibly the neuromodulator that has gathered the most attention. Attributed many positive roles in the modulation of different aspects of social behavior, such as bonding, empathy, cooperation, trust, and generosity, as well as roles as a natural anxiolytic and antidepressant, the expectations on oxytocin becoming a treatment for a number of disorders with associated social deficits have dramatically raised over the last years. However, despite the field has been investigating oxytocin's role in social behavior for over twenty years, there are still many unknowns on oxytocin's mechanisms of action and efficiency and the increasing number of clinical trials administering oxytocin to different clinical groups seem to disagree in its properties and report in most cases conflicting results. This has led to some disappointment among researchers and clinicians as oxytocin might not be the miraculous molecule that works in a "one size fits all" fashion initially considered. Conversely, this down-side of oxytocin might merely reflect the complexity of its neurotransmission system. The current reality is that, although oxytocin seems to have potential therapeutic value, there are key questions that remain unanswered as to decide the optimal target groups and treatment course. Here, we present an overview on critical points regarding the oxytocin system in health and disease that need to be better understood to establish its therapeutic properties and to decide who could benefit the most from its treatment.
Collapse
Affiliation(s)
- Amaia M Erdozain
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red en Salud Mental CIBERSAM, Leioa, Spain
| | - Olga Peñagarikano
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red en Salud Mental CIBERSAM, Leioa, Spain
| |
Collapse
|
21
|
Unti E, Mazzucchi S, Frosini D, Pagni C, Tognoni G, Palego L, Betti L, Miraglia F, Giannaccini G, Ceravolo R. Social Cognition and Oxytocin in Huntington's Disease: New Insights. Brain Sci 2018; 8:brainsci8090161. [PMID: 30149684 PMCID: PMC6162368 DOI: 10.3390/brainsci8090161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022] Open
Abstract
This study is aimed at relating social cognition in Huntington's Disease (HD) to plasma levels of the social hormone oxytocin (OT). Indeed, HD patients commonly display reduced social skills and OT is involved in bonding behavior and improved recognition of facial emotions. Twelve mild-symptomatic HD patients (stage II Shoulson & Fahn) and 11 gender/age matched controls (healthy controls, HC), without concurrent psychiatric disorders, were investigated at baseline (T₀) for OT plasma levels and social cognition through an extensive battery of neuropsychological tests. Social cognition was also re-examined after two years (T1) in 8 of the 12 patients. Results showed a trend for reduced T₀-OT levels in HD vs. HC, mean ± stardard deviation: 6.5 ± 2.4 vs. 9.9 ± 7.2 pg/mL, without reaching statistical significance. At T₀, patients showed significantly lower performances than controls at the "Faux-Pas" and "Strange Stories" tests (p < 0.05; p < 0.01); a reduced perception of visual emotions (p < 0.01) and verbal stimuli (p < 0.01) was also reported, involving anger, fear, and sadness (p < 0.05; p < 0.01). Additionally, in the HD population, OT concentrations positively correlated with T1-performances at Neutral\Faux-Pas test (p < 0.05), whereas the cognitive Montreal Cognitive Assessment (MoCA) and Mini Mental State Examination (MMSE) scores positively correlated with psychosocial perception at the "Strange Stories" and Karolinska Directed Emotional Faces (KDEF) tests (p < 0.05). This study, despite its limitations, supports correlations between OT and HD social cognition, suggesting a possible therapeutic use of this hormone. More subjects and additional body tissues/fluids, such as cerebrospinal fluid, should be investigated to confirm this hypothesis.
Collapse
Affiliation(s)
- Elisa Unti
- Neurology Unit, Apuane Hospital, 54100 Massa-Carrara, Italy.
| | - Sonia Mazzucchi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Daniela Frosini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Cristina Pagni
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Gloria Tognoni
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Lionella Palego
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Laura Betti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | | | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|