1
|
Premachandran H, Wilkin J, Arruda-Carvalho M. Minimizing Variability in Developmental Fear Studies in Mice: Toward Improved Replicability in the Field. Curr Protoc 2024; 4:e1040. [PMID: 38713136 DOI: 10.1002/cpz1.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In rodents, the first weeks of postnatal life feature remarkable changes in fear memory acquisition, retention, extinction, and discrimination. Early development is also marked by profound changes in brain circuits underlying fear memory processing, with heightened sensitivity to environmental influences and stress, providing a powerful model to study the intersection between brain structure, function, and the impacts of stress. Nevertheless, difficulties related to breeding and housing young rodents, preweaning manipulations, and potential increased variability within that population pose considerable challenges to developmental fear research. Here we discuss several factors that may promote variability in studies examining fear conditioning in young rodents and provide recommendations to increase replicability. We focus primarily on experimental conditions, design, and analysis of rodent fear data, with an emphasis on mouse studies. The convergence of anatomical, synaptic, physiological, and behavioral changes during early life may increase variability, but careful practice and transparency in reporting may improve rigor and consensus in the field. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Hanista Premachandran
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Jennifer Wilkin
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Wall EK, Teo JN, Roth A, Chan ME, Brandt J, Hibri M, Richardson R, Baker KD. Effects of social buffering on fear extinction in adolescent rats. Behav Res Ther 2024; 173:104457. [PMID: 38134498 DOI: 10.1016/j.brat.2023.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Across social species, the presence of another individual can reduce stress reactions to adverse stimuli, a phenomenon known as social buffering. The present study investigated whether social buffering influences the expression and extinction of learned fear in adolescence, a developmental period of diminished fear inhibition and increased social interaction. Quality of maternal care and degree of social investigation were examined as factors that may influence social buffering. In adolescence, male rats were fear conditioned and then given extinction training either in the presence of a same-age rat or alone. Animals were then tested alone for extinction retention. In two experiments, the presence of a conspecific robustly reduced conditioned fear responses during extinction training. Interestingly, a persistent social buffering effect was observed when the extinction and conditioning contexts had prominent differences in features (Experiment 1), but not when these contexts were relatively similar (Experiment 2). Neither quality of maternal care nor degree of social investigation predicted the effects of social buffering. These findings suggest that social buffering robustly dampens fear responses during adolescence when a peer is present and this suppression can persist, in some instances, even when the peer is absent.
Collapse
Affiliation(s)
- Emily K Wall
- School of Psychology, UNSW Sydney, NSW, 2052, Australia
| | - Jia Ni Teo
- School of Psychology, UNSW Sydney, NSW, 2052, Australia
| | | | - Mei E Chan
- School of Psychology, UNSW Sydney, NSW, 2052, Australia
| | | | - Maya Hibri
- School of Psychology, UNSW Sydney, NSW, 2052, Australia
| | | | | |
Collapse
|
3
|
Zimmermann KS, Richardson R, Baker KD. Developmental changes in functional connectivity between the prefrontal cortex and amygdala following fear extinction. Neurobiol Learn Mem 2023; 205:107847. [PMID: 37865263 DOI: 10.1016/j.nlm.2023.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The amygdala and prefrontal cortex (PFC) undergo dramatic changes in structure, function, and regional connectivity in early life, ultimately stabilizing in early adulthood. Pathways between these two structures underlie many forms of emotional learning, including the extinction of conditioned fear. Here we sought to characterize changes in extinction-related medial PFC (mPFC) → amygdala functional connectivity across development that might explain adolescent impairments in extinction. The retrograde tracer Fluorogold was infused into the amygdala of postnatal day (P)22-23 (juvenile), P31-32 (adolescent), or ≥ P69 (adult) rats, which were then exposed to fear conditioning and extinction training. Brains were collected following extinction or context exposure and processed for expression of pMAPK (as a marker of learning-dependent plasticity) in prelimbic (PL) and infralimbic (IL) amygdala-projecting neurons. Consistent with previous findings, amygdala-projecting mPFC neurons were located primarily in layers (L)II/III and V of the mPFC. We noted that mPFC LII/III projected predominantly to the ipsilateral basolateral amygdala, whereas LV projected bilaterally and targeted multiple amygdalar nuclei. Extinction was not associated with changes in extinction-related plasticity in the PL-amygdala pathways in any age group. No changes were seen in LII/III of the IL, but extinction-related plasticity in LV amygdala-projecting IL neurons decreased linearly across development. These findings suggest that extinction-related functional connectivity between the IL and the amygdala undergoes fundamental changes across development that may contribute to alterations in fear suppression across development.
Collapse
Affiliation(s)
- K S Zimmermann
- School of Psychology, UNSW Sydney, New South Wales 2052, Australia
| | - R Richardson
- School of Psychology, UNSW Sydney, New South Wales 2052, Australia
| | - K D Baker
- School of Psychology, UNSW Sydney, New South Wales 2052, Australia.
| |
Collapse
|
4
|
Meyer HC, Lee FS. Intermixed safety cues facilitate extinction retention in adult and adolescent mice. Physiol Behav 2023; 271:114336. [PMID: 37619817 PMCID: PMC10592038 DOI: 10.1016/j.physbeh.2023.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Extinction learning is tremendously adaptive as it allows an animal to adjust their behavior in a changing environment. Yet, extinction is not without limitations and fear often reemerges over time (i.e. spontaneous recovery). Relative to adults, adolescent rodents and humans are particularly prone to spontaneous recovery following extinction. In this study, we aimed to address whether combining methods of fear regulation (extinction and conditioned inhibition) can facilitate extinction retention. Early adolescent (29 days old, n = 81) and adult (70 days old, n = 80) mice underwent extinction with or without a safety cue present. Safety cue presentations were systematically varied to overlap with or alternate with fear cue presentations. We found that initial safety learning was faster in adolescent mice. In addition, intermixing safety cues into extinction reduced spontaneous recovery during a test two weeks later. The decrease in spontaneous recovery relative to a standard extinction protocol was greater in adolescents than adults. Together, our findings provide initial evidence that safety learning may be inherently stronger during adolescence. These results inform the parameters by which conditioned safety and extinction learning may be merged to augment the inhibition of fear. While methods to enhance fear regulation are valuable for any age, the potential to do so during adolescence is particularly striking.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
5
|
The lifetime impact of stress on fear regulation and cortical function. Neuropharmacology 2023; 224:109367. [PMID: 36464208 DOI: 10.1016/j.neuropharm.2022.109367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
A variety of stressful experiences can influence the ability to form and subsequently inhibit fear memory. While nonsocial stress can impact fear learning and memory throughout the lifespan, psychosocial stressors that involve negative social experiences or changes to the social environment have a disproportionately high impact during adolescence. Here, we review converging lines of evidence that suggest that development of prefrontal cortical circuitry necessary for both social experiences and fear learning is altered by stress exposure in a way that impacts both social and fear behaviors throughout the lifespan. Further, we suggest that psychosocial stress, through its impact on the prefrontal cortex, may be especially detrimental during early developmental periods characterized by higher sociability. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
|
6
|
Duran JM, Sierra RO, Corredor K, Cardenas FP. Cathodal transcranial direct current stimulation on the prefrontal cortex applied after reactivation attenuates fear memories and prevent reinstatement after extinction. J Psychiatr Res 2021; 145:213-221. [PMID: 34929471 DOI: 10.1016/j.jpsychires.2021.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND In the last decade, pharmacological strategies targeting reconsolidation after memory retrieval have shown promising efforts to attenuate persistent memories and overcome fear recovery. However, most reconsolidation inhibiting agents have not been approved for human testing. While non-invasive neuromodulation can be considered an alternative approach to pharmacological treatments, there is a lack of evidence about the efficacy of these technologies when modifying memory traces via reactivation/reconsolidation mechanism. OBJECTIVE In this study, we evaluate the effect of cathodal (c-tDCS) and anodal (a-DCS) transcranial direct current stimulation applied after memory reactivation and extinction in rats. METHODS Male Wistar rats were randomly assigned into three groups: one sham group, one anodal tDCS group, and one cathodal tDCS group (500 μA, 20 min). Reconsolidation and extinction of fear memories were evaluated using a contextual fear conditioning. RESULTS Our results showed that c-tDCS and a-tDCS after memory reactivation can attenuate mild fear memories. However, only c-tDCS stimulation prevented both fear expression under strong fear learning and fear recovery after a reinstatement protocol without modification of learning rate or extinction retrieval. Nevertheless, the remote memories were resistant to modification through this type of neuromodulation. Our results are discussed considering the interaction between intrinsic excitability promoted by learning and memory retrieval and the electric field applied during tDCS. CONCLUSION These results point out some of the boundary conditions influencing the efficacy of tDCS in fear attenuation and open new ways for the development of noninvasive interventions aimed to control fear-related disorders via reconsolidation.
Collapse
Affiliation(s)
- Johanna M Duran
- Laboratory of Neuroscience and Behavior, Department of Psychology, Universidad de Los Andes, Colombia.
| | | | - Karen Corredor
- Laboratory of Neuroscience and Behavior, Department of Psychology, Universidad de Los Andes, Colombia
| | - Fernando P Cardenas
- Laboratory of Neuroscience and Behavior, Department of Psychology, Universidad de Los Andes, Colombia.
| |
Collapse
|
7
|
Bisby MA, Stylianakis AA, Baker KD, Richardson R. Fear extinction learning and retention during adolescence in rats and mice: A systematic review. Neurosci Biobehav Rev 2021; 131:1264-1274. [PMID: 34740753 DOI: 10.1016/j.neubiorev.2021.10.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Despite exposure-based treatments being recommended for anxiety disorders, these treatments are ineffective for over half of all adolescents who receive them. The limited efficacy of exposure during adolescence may be driven by a deficit in extinction. Although indications of diminished extinction learning during adolescence were first reported over 10 years ago, these findings have yet to be reviewed and compared. This review (k = 34) found a stark inter-species difference in extinction performance: studies of adolescent mice reported deficits in extinction learning and retention of both cued and context fear. In contrast, studies of adolescent rats only reported poor extinction retention specific to cued fear. Adolescent mice and rats appeared to have only one behavioral outcome in common, being poor extinction retention of cued fear. These findings suggest that different behavioral phenotypes are present across rodent species in adolescence and highlight that preclinical work in rats and mice is not interchangeable. Further investigation of these differences offers the opportunity to better understand the etiology, maintenance, and treatment of fear-based disorders.
Collapse
Affiliation(s)
- Madelyne A Bisby
- School of Psychology, UNSW Sydney, Sydney, 2052, NSW, Australia; eCentreClinic, School of Psychological Sciences, Faculty of Medicine and Health, Macquarie University, Sydney, 2109, NSW, Australia.
| | | | - Kathryn D Baker
- School of Psychology, UNSW Sydney, Sydney, 2052, NSW, Australia
| | - Rick Richardson
- School of Psychology, UNSW Sydney, Sydney, 2052, NSW, Australia
| |
Collapse
|
8
|
Lay BPP, Pitaru AA, Boulianne N, Esber GR, Iordanova MD. Different methods of fear reduction are supported by distinct cortical substrates. eLife 2020; 9:e55294. [PMID: 32589138 PMCID: PMC7343386 DOI: 10.7554/elife.55294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding how learned fear can be reduced is at the heart of treatments for anxiety disorders. Tremendous progress has been made in this regard through extinction training in which the aversive outcome is omitted. However, current progress almost entirely rests on this single paradigm, resulting in a very specialized knowledgebase at the behavioural and neural level of analysis. Here, we used a dual-paradigm approach to show that different methods that lead to reduction in learned fear in rats are dissociated in the cortex. We report that the infralimbic cortex has a very specific role in fear reduction that depends on the omission of aversive events but not on overexpectation. The orbitofrontal cortex, a structure generally overlooked in fear, is critical for downregulating fear when novel predictions about upcoming aversive events are generated, such as when fear is inflated or overexpected, but less so when an expected aversive event is omitted.
Collapse
Affiliation(s)
- Belinda PP Lay
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia UniversityMontrealCanada
| | - Audrey A Pitaru
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia UniversityMontrealCanada
| | - Nathan Boulianne
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia UniversityMontrealCanada
| | - Guillem R Esber
- Department of Psychology, Brooklyn College of the City University of New YorkBrooklynUnited States
| | - Mihaela D Iordanova
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia UniversityMontrealCanada
| |
Collapse
|
9
|
Chen MH, Cheng CM, Gueorguieva R, Lin WC, Li CT, Hong CJ, Tu PC, Bai YM, Tsai SJ, Krystal JH, Su TP. Maintenance of antidepressant and antisuicidal effects by D-cycloserine among patients with treatment-resistant depression who responded to low-dose ketamine infusion: a double-blind randomized placebo-control study. Neuropsychopharmacology 2019; 44:2112-2118. [PMID: 31421635 PMCID: PMC6898334 DOI: 10.1038/s41386-019-0480-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022]
Abstract
Increasing evidence supports a rapid antidepressant and antisuicidal effect of a single subanesthetic dose of ketamine infusion for treatment-resistant depression (TRD). Maintaining the initial clinical response after ketamine infusion in TRD is a crucial next-step challenge. D-cycloserine (DCS), a partial agonist of the glycine co-agonist of the N-methyl-D-aspartate (NMDA) glutamate receptor, is potentially effective as a depression augmentation treatment. However, whether DCS maintains the antidepressant and antisuicidal effects of ketamine infusion remains unknown. In all, 32 patients with TRD (17 with major depression and 15 with bipolar depression) who responded to ketamine infusion with an average 17-item Hamilton Depression Rating Scale (HAMD) score of 9.47 ± 4.11 at baseline were randomly divided to 6-week DCS treatment (250 mg for 2 days, 500 mg for 2 days, 750 mg for 3 days, and 1000 mg for 5 weeks) and placebo groups. Depression symptoms were rated at timepoints of dose titration and weekly. During the 6-week treatment, the total scores of HAMD did not differ between the DCS and placebo groups. The results remained consistent when stratified by disorder. A mixed model analysis indicated that the DCS group exhibited lower scores of HAMD item 3 (suicide) compared with the placebo group throughout the follow-up period (p = 0.01). A superior maintenance of the antisuicidal effect of ketamine was observed in the DCS group than in the placebo group. DCS may be therapeutically beneficial for patients with TRD who responded to ketamine infusion but have a residual suicidal risk.
Collapse
Affiliation(s)
- Mu-Hong Chen
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Ming Cheng
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Yuanshan branch, Taipei Veterans General Hospital, Yilan, Taiwan
| | - Ralitza Gueorguieva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Wei-Chen Lin
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Ta Li
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Jee Hong
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chi Tu
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ya-Mei Bai
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Yale-New Haven Hospital, New Haven, CT, USA.
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA.
| | - Tung-Ping Su
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan.
| |
Collapse
|