1
|
Hu J, Fu J, Cai Y, Chen S, Qu M, Zhang L, Fan W, Wang Z, Zeng Q, Zou J. Bioinformatics and systems biology approach to identify the pathogenetic link of neurological pain and major depressive disorder. Exp Biol Med (Maywood) 2024; 249:10129. [PMID: 38993198 PMCID: PMC11236560 DOI: 10.3389/ebm.2024.10129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Neurological pain (NP) is always accompanied by symptoms of depression, which seriously affects physical and mental health. In this study, we identified the common hub genes (Co-hub genes) and related immune cells of NP and major depressive disorder (MDD) to determine whether they have common pathological and molecular mechanisms. NP and MDD expression data was downloaded from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (Co-DEGs) for NP and MDD were extracted and the hub genes and hub nodes were mined. Co-DEGs, hub genes, and hub nodes were analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Finally, the hub nodes, and genes were analyzed to obtain Co-hub genes. We plotted Receiver operating characteristic (ROC) curves to evaluate the diagnostic impact of the Co-hub genes on MDD and NP. We also identified the immune-infiltrating cell component by ssGSEA and analyzed the relationship. For the GO and KEGG enrichment analyses, 93 Co-DEGs were associated with biological processes (BP), such as fibrinolysis, cell composition (CC), such as tertiary granules, and pathways, such as complement, and coagulation cascades. A differential gene expression analysis revealed significant differences between the Co-hub genes ANGPT2, MMP9, PLAU, and TIMP2. There was some accuracy in the diagnosis of NP based on the expression of ANGPT2 and MMP9. Analysis of differences in the immune cell components indicated an abundance of activated dendritic cells, effector memory CD8+ T cells, memory B cells, and regulatory T cells in both groups, which were statistically significant. In summary, we identified 6 Co-hub genes and 4 immune cell types related to NP and MDD. Further studies are needed to determine the role of these genes and immune cells as potential diagnostic markers or therapeutic targets in NP and MDD.
Collapse
Affiliation(s)
- Jinjing Hu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Jia Fu
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yuxin Cai
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Shuping Chen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Mengjian Qu
- Department of Rehabilitation, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Rehabilitation Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Lisha Zhang
- Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou, China
| | - Weichao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ziyi Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
- Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Kameda M, Kajimoto Y, Wanibuchi M. New therapeutic hypothesis for infantile extrinsic hydrocephalus. Front Neurol 2023; 14:1215560. [PMID: 37794877 PMCID: PMC10546040 DOI: 10.3389/fneur.2023.1215560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Affiliation(s)
- Masahiro Kameda
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | | | | |
Collapse
|
3
|
Rothschadl MJ, Sathyanesan M, Newton SS. Synergism of Carbamoylated Erythropoietin and Insulin-like Growth Factor-1 in Immediate Early Gene Expression. Life (Basel) 2023; 13:1826. [PMID: 37763230 PMCID: PMC10532867 DOI: 10.3390/life13091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Trophic factors are secreted proteins that can modulate neuronal integrity, structure, and function. Previous preclinical studies have shown synergistic effects on decreasing apoptosis and improving behavioral performance after stroke when combining two such trophic factors, erythropoietin (EPO) and insulin-like growth factor-1 (IGF-1). However, EPO can elevate the hematocrit level, which can be life-threatening for non-anemic individuals. A chemically engineered derivative of EPO, carbamoylated EPO (CEPO), does not impact hematological parameters but retains neurotrophic effects similar to EPO. To obtain insight into CEPO and IGF-1 combination signaling, we examined immediate early gene (IEG) expression after treatment with CEPO, IGF-1, or CEPO + IGF-1 in rat pheochromocytoma (PC-12) cells and found that combining CEPO and IGF-1 produced a synergistic increase in IEG expression. An in vivo increase in the protein expression of Npas4 and Nptx2 was also observed in the rat hippocampus. We also examined which kinase signaling pathways might be mediating these effects and found that while AKT inhibition did not alter the pattern of IEG expression, both ERK and JAK2 inhibition significantly decreased IEG expression. These results begin to define the molecular effects of combining CEPO and IGF-1 and indicate the potential for these trophic factors to produce positive, synergistic effects.
Collapse
Affiliation(s)
| | | | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (M.J.R.); (M.S.)
| |
Collapse
|
4
|
Singh M, Zhao Y, Gastaldi VD, Wojcik SM, Curto Y, Kawaguchi R, Merino RM, Garcia-Agudo LF, Taschenberger H, Brose N, Geschwind D, Nave KA, Ehrenreich H. Erythropoietin re-wires cognition-associated transcriptional networks. Nat Commun 2023; 14:4777. [PMID: 37604818 PMCID: PMC10442354 DOI: 10.1038/s41467-023-40332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023] Open
Abstract
Recombinant human erythropoietin (rhEPO) has potent procognitive effects, likely hematopoiesis-independent, but underlying mechanisms and physiological role of brain-expressed EPO remained obscure. Here, we provide transcriptional hippocampal profiling of male mice treated with rhEPO. Based on ~108,000 single nuclei, we unmask multiple pyramidal lineages with their comprehensive molecular signatures. By temporal profiling and gene regulatory analysis, we build developmental trajectory of CA1 pyramidal neurons derived from multiple predecessor lineages and elucidate gene regulatory networks underlying their fate determination. With EPO as 'tool', we discover populations of newly differentiating pyramidal neurons, overpopulating to ~200% upon rhEPO with upregulation of genes crucial for neurodifferentiation, dendrite growth, synaptogenesis, memory formation, and cognition. Using a Cre-based approach to visually distinguish pre-existing from newly formed pyramidal neurons for patch-clamp recordings, we learn that rhEPO treatment differentially affects excitatory and inhibitory inputs. Our findings provide mechanistic insight into how EPO modulates neuronal functions and networks.
Collapse
Affiliation(s)
- Manvendra Singh
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
| | - Ying Zhao
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Vinicius Daguano Gastaldi
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Yasmina Curto
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ricardo M Merino
- Max Planck Institute for Dynamics and Self-Organization and Campus Institute for Dynamics of Biological Networks, Georg-August-University, Göttingen, Germany
| | | | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
| |
Collapse
|
5
|
Sadanandan J, Sathyanesan M, Liu Y, Tiwari NK, Newton SS. Carbamoylated Erythropoietin-Induced Cerebral Blood Perfusion and Vascular Gene Regulation. Int J Mol Sci 2023; 24:11507. [PMID: 37511274 PMCID: PMC10380798 DOI: 10.3390/ijms241411507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebral hypoperfusion is associated with enhanced cognitive decline and increased risk of neuropsychiatric disorders. Erythropoietin (EPO) is a neurotrophic factor known to improve cognitive function in preclinical and clinical studies of neurodegenerative and psychiatric disorders. However, the clinical application of EPO is limited due to its erythropoietic activity that can adversely elevate hematocrit in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered non-erythropoietic derivative of EPO, does not alter hematocrit and maintains neurotrophic and behavioral effects comparable to EPO. Our study aimed to investigate the role of CEPO in cerebral hemodynamics. Magnetic resonance imaging (MRI) analysis indicated increased blood perfusion in the hippocampal and striatal region without altering tight junction integrity. In vitro and in vivo analyses indicated that hippocampal neurotransmission was unaltered and increased cerebral perfusion was likely due to EDRF, CGRP, and NOS-mediated vasodilation. In vitro analysis using human umbilical vein endothelial cells (HUVEC) and hippocampal vascular gene expression analysis showed CEPO to be a non-angiogenic agent which regulates the MEOX2 gene expression. The results from our study demonstrate a novel role of CEPO in modulating cerebral vasodilation and blood perfusion.
Collapse
Affiliation(s)
- Jayanarayanan Sadanandan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Yutong Liu
- Radiology Research Division, Department of Radiology, Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
6
|
Chen D, Li J, Liu H, Liu X, Zhang C, Luo H, Wei Y, Xi Y, Liang H, Zhang Q. Genome-Wide Epistasis Study of Cerebrospinal Fluid Hyperphosphorylated Tau in ADNI Cohort. Genes (Basel) 2023; 14:1322. [PMID: 37510227 PMCID: PMC10379656 DOI: 10.3390/genes14071322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is the main cause of dementia worldwide, and the genetic mechanism of which is not yet fully understood. Much evidence has accumulated over the past decade to suggest that after the first large-scale genome-wide association studies (GWAS) were conducted, the problem of "missing heritability" in AD is still a great challenge. Epistasis has been considered as one of the main causes of "missing heritability" in AD, which has been largely ignored in human genetics. The focus of current genome-wide epistasis studies is usually on single nucleotide polymorphisms (SNPs) that have significant individual effects, and the amount of heritability explained by which was very low. Moreover, AD is characterized by progressive cognitive decline and neuronal damage, and some studies have suggested that hyperphosphorylated tau (P-tau) mediates neuronal death by inducing necroptosis and inflammation in AD. Therefore, this study focused on identifying epistasis between two-marker interactions at marginal main effects across the whole genome using cerebrospinal fluid (CSF) P-tau as quantitative trait (QT). We sought to detect interactions between SNPs in a multi-GPU based linear regression method by using age, gender, and clinical diagnostic status (cds) as covariates. We then used the STRING online tool to perform the PPI network and identify two-marker epistasis at the level of gene-gene interaction. A total of 758 SNP pairs were found to be statistically significant. Particularly, between the marginal main effect SNP pairs, highly significant SNP-SNP interactions were identified, which explained a relatively high variance at the P-tau level. In addition, 331 AD-related genes were identified, 10 gene-gene interaction pairs were replicated in the PPI network. The identified gene-gene interactions and genes showed associations with AD in terms of neuroinflammation and neurodegeneration, neuronal cells activation and brain development, thereby leading to cognitive decline in AD, which is indirectly associated with the P-tau pathological feature of AD and in turn supports the results of this study. Thus, the results of our study might be beneficial for explaining part of the "missing heritability" of AD.
Collapse
Affiliation(s)
- Dandan Chen
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jin Li
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Hongwei Liu
- School of Computer Science, Northeast Electric Power University, Jilin 132012, China
| | - Xiaolong Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chenghao Zhang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Haoran Luo
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yiming Wei
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yang Xi
- School of Computer Science, Northeast Electric Power University, Jilin 132012, China
| | - Hong Liang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qiushi Zhang
- School of Computer Science, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
7
|
Xu Y, Geng Y, Wang H, Zhang H, Qi J, Li F, Hu X, Chen Y, Si H, Li Y, Wang X, Xu H, Kong J, Cai Y, Wu A, Ni W, Xiao J, Zhou K. Cyclic helix B peptide alleviates proinflammatory cell death and improves functional recovery after traumatic spinal cord injury. Redox Biol 2023; 64:102767. [PMID: 37290302 DOI: 10.1016/j.redox.2023.102767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Necroptosis and pyroptosis, two types of proinflammatory programmed cell death, were recently found to play important roles in spinal cord injury (SCI). Moreover, cyclic helix B peptide (CHBP) was designed to maintain erythropoietin (EPO) activity and protect tissue against the adverse effects of EPO. However, the protective mechanism of CHBP following SCI is still unknown. This research explored the necroptosis- and pyroptosis-related mechanism underlying the neuroprotective effect of CHBP after SCI. METHODS Gene Expression Omnibus (GEO) datasets and RNA sequencing were used to identify the molecular mechanisms of CHBP for SCI. A mouse model of contusion SCI was constructed, and HE staining, Nissl staining, Masson staining, footprint analysis and the Basso Mouse Scale (BMS) were applied for histological and behavioural analyses. qPCR, Western blot analysis, immunoprecipitation and immunofluorescence were utilized to analyse the levels of necroptosis, pyroptosis, autophagy and molecules associated with the AMPK signalling pathway. RESULTS The results revealed that CHBP significantly improved functional restoration, elevated autophagy, suppressed pyroptosis, and mitigated necroptosis after SCI. 3-Methyladenine (3-MA), an autophagy inhibitor, attenuated these beneficial effects of CHBP. Furthermore, CHBP-triggered elevation of autophagy was mediated by the dephosphorylation and nuclear translocation of TFEB, and this effect was due to stimulation of the AMPK-FOXO3a-SPK2-CARM1 and AMPK-mTOR signalling pathways. CONCLUSION CHBP acts as a powerful regulator of autophagy that improves functional recovery by alleviating proinflammatory cell death after SCI and thus might be a prospective therapeutic agent for clinical application.
Collapse
Affiliation(s)
- Yu Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China; Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Hui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College (Yi jishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Haipeng Si
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jianzhong Kong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yuepiao Cai
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| |
Collapse
|
8
|
Newton SS, Sathyanesan M. Erythropoietin and Non-Erythropoietic Derivatives in Cognition. Front Pharmacol 2021; 12:728725. [PMID: 34552490 PMCID: PMC8450392 DOI: 10.3389/fphar.2021.728725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Cognitive deficits are widespread in psychiatric disorders, including major depression and schizophrenia. These deficits are known to contribute significantly to the accompanying functional impairment. Progress in the development of targeted treatments of cognitive deficits has been limited and there exists a major unmet need to develop more efficacious treatments. Erythropoietin (Epo) has shown promising procognitive effects in psychiatric disorders, providing support for a neurotrophic drug development approach. Several preclinical studies with non-erythropoietic derivatives have demonstrated that the modulation of behavior is independent of erythropoiesis. In this review, we examine the molecular, cellular and cognitive actions of Epo and non-erythropoietic molecular derivatives by focusing on their neurotrophic, synaptic, myelin plasticity, anti-inflammatory and neurogenic mechanisms in the brain. We also discuss the role of receptor signaling in Epo and non-erythropoietic EPO-mimetic molecules in their procognitive effects.
Collapse
Affiliation(s)
- Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.,Sioux Falls VA Healthcare System, Sioux Falls, SD, United States
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.,Sioux Falls VA Healthcare System, Sioux Falls, SD, United States
| |
Collapse
|
9
|
Vittori DC, Chamorro ME, Hernández YV, Maltaneri RE, Nesse AB. Erythropoietin and derivatives: Potential beneficial effects on the brain. J Neurochem 2021; 158:1032-1057. [PMID: 34278579 DOI: 10.1111/jnc.15475] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
Erythropoietin (Epo), the main erythropoiesis-stimulating factor widely prescribed to overcome anemia, is also known nowadays for its cytoprotective action on non-hematopoietic tissues. In this context, Epo showed not only its ability to cross the blood-brain barrier, but also its expression in the brain of mammals. In clinical trials, recombinant Epo treatment has been shown to stimulate neurogenesis; improve cognition; and activate antiapoptotic, antioxidant, and anti-inflammatory signaling pathways. These mechanisms, proposed to characterize a neuroprotective property, opened new perspectives on the Epo pharmacological potencies. However, many questions arise about a possible physiological role of Epo in the central nervous system (CNS) and the factors or environmental conditions that induce its expression. Although Epo may be considered a strong candidate to be used against neuronal damage, long-term treatments, particularly when high Epo doses are needed, may induce thromboembolic complications associated with increases in hematocrit and blood viscosity. To avoid these adverse effects, different Epo analogs without erythropoietic activity but maintaining neuroprotection ability are currently being investigated. Carbamylated erythropoietin, as well as alternative molecules like Epo fusion proteins and partial peptides of Epo, seems to match this profile. This review will focus on the discussion of experimental evidence reported in recent years linking erythropoietin and CNS function through investigations aimed at finding benefits in the treatment of neurodegenerative diseases. In addition, it will review the proposed mechanisms for novel derivatives which may clarify and, eventually, improve the neuroprotective action of Epo.
Collapse
Affiliation(s)
- Daniela C Vittori
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - María E Chamorro
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Yender V Hernández
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Romina E Maltaneri
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Alcira B Nesse
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Intraperitoneal Carbamylated erythropoietin improves memory and hippocampal apoptosis in beta amyloid rat model of Alzheimer’s disease through stimulating autophagy and inhibiting necroptosis. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Silva I, Alípio C, Pinto R, Mateus V. Potential anti-inflammatory effect of erythropoietin in non-clinical studies in vivo: A systematic review. Biomed Pharmacother 2021; 139:111558. [PMID: 33894624 DOI: 10.1016/j.biopha.2021.111558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) is a hypoxia-induced hormone produced in adult kidneys with erythropoietic and non-erythropoietic effects. In vivo studies represent an important role to comprehend the efficacy and safety in the early phase of repurposing drugs. The aim is to evaluate the potential anti-inflammatory effect of EPO observed in animal models of disease. Following PRISMA statements, electronic database Medline via PubMed platform was used to search articles with the research expression ((erythropoietin [MeSH Terms]) AND (inflammation [MeSH Terms]) AND (disease models, animal [MeSH Terms])). The inclusion criteria were original articles, studies where EPO was administered, studies where inflammation was studied and/or evaluated, non-clinical studies in vivo with rodents, and articles published in English. Thirty-six articles met the criteria for qualitative analysis. Exogenous EPO was used in models of sepsis, traumatic brain injury, and autoimmune neuritis, with an average of 3000 IU/Kg for single and multiple doses, using mice and rats. Biomarkers such as immune-related effectors, cytokines, reactive oxygen species, prostaglandins, and other biomarkers were assessed. EPO has been recognized as a multifunctional cytokine with anti-inflammatory properties, showing its significant effect both in acute and chronic models of inflammation. Further non-clinical studies are suggested for the enlightenment of anti-inflammatory mechanisms of EPO in lower doses, allowing us to understand the translational data for humans.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Carolina Alípio
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; JCS, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
12
|
Tiwari NK, Sathyanesan M, Kumar V, Newton SS. A Comparative Analysis of Erythropoietin and Carbamoylated Erythropoietin Proteome Profiles. Life (Basel) 2021; 11:life11040359. [PMID: 33921564 PMCID: PMC8073529 DOI: 10.3390/life11040359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 01/24/2023] Open
Abstract
In recent years, erythropoietin (EPO) has emerged as a useful neuroprotective and neurotrophic molecule that produces antidepressant and cognitive-enhancing effects in psychiatric disorders. However, EPO robustly induces erythropoiesis and elevates red blood cell counts. Chronic administration is therefore likely to increase blood viscosity and produce adverse effects in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered modification of EPO, is non-erythropoietic but retains the neurotrophic and neurotrophic activity of EPO. Blood profile analysis after EPO and CEPO administration showed that CEPO has no effect on red blood cell or platelet counts. We conducted an unbiased, quantitative, mass spectrometry-based proteomics study to comparatively investigate EPO and CEPO-induced protein profiles in neuronal phenotype PC12 cells. Bioinformatics enrichment analysis of the protein expression profiles revealed the upregulation of protein functions related to memory formation such as synaptic plasticity, long term potentiation (LTP), neurotransmitter transport, synaptic vesicle priming, and dendritic spine development. The regulated proteins, with roles in LTP and synaptic plasticity, include calcium/calmodulin-dependent protein kinase type 1 (Camk1), Synaptosomal-Associated Protein, 25 kDa (SNAP-25), Sectretogranin-1 (Chgb), Cortactin (Cttn), Elongation initiation factor 3a (Eif3a) and 60S acidic ribosomal protein P2 (Rplp2). We examined the expression of a subset of regulated proteins, Cortactin, Grb2 and Pleiotrophin, by immunofluorescence analysis in the rat brain. Grb2 was increased in the dentate gyrus by EPO and CEPO. Cortactin was induced by CEPO in the molecular layer, and pleiotrophin was increased in the vasculature by EPO. The results of our study shed light on potential mechanisms whereby EPO and CEPO produce cognitive-enhancing effects in clinical and preclinical studies.
Collapse
Affiliation(s)
- Neeraj K. Tiwari
- Pediatrics and Rare Disease Group, Sanford Research, Sioux Falls, SD 57104, USA;
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
- Correspondence: ; Tel.: +1-605-658-6313
| |
Collapse
|
13
|
Wang H, Zhou WX, Huang JF, Zheng XQ, Tian HJ, Wang B, Fu WL, Wu AM. Endocrine Therapy for the Functional Recovery of Spinal Cord Injury. Front Neurosci 2020; 14:590570. [PMID: 33390881 PMCID: PMC7773784 DOI: 10.3389/fnins.2020.590570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a major cause of physical disability and leads to patient dissatisfaction with their quality of life. Patients with SCI usually exhibit severe clinical symptoms, including sensory and motor dysfunction below the injured levels, paraplegia, quadriplegia and urinary retention, which can exacerbate the substantial medical and social burdens. The major pathological change observed in SCI is inflammatory reaction, which induces demyelination, axonal degeneration, and the apoptosis and necrosis of neurons. Traditional medical treatments are mainly focused on the recovery of motor function and prevention of complications. To date, numerous studies have been conducted to explore the cellular and molecular mechanism of SCI and have proposed lots of effective treatments, but the clinical applications are still limited due to the complex pathogenesis and poor prognosis after SCI. Endocrine hormones are kinds of molecules that are synthesized by specialized endocrine organs and can participate in the regulation of multiple physiological activities, and their protective effects on several disorders have been widely discussed. In addition, many studies have identified that endocrine hormones can promote nerve regeneration and functional recovery in individuals with central nervous system diseases. Therefore, studies investigating the clinical applications of endocrine hormones as treatments for SCI are necessary. In this review, we described the neuroprotective roles of several endocrine hormones in SCI; endocrine hormone administration reduces cell death and promotes functional repair after SCI. We also proposed novel therapies for SCI.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wen-Xian Zhou
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jin-Feng Huang
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xuan-Qi Zheng
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hai-Jun Tian
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei-Li Fu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Ai-Min Wu
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Pekas NJ, Petersen JL, Sathyanesan M, Newton SS. Design and Development of a Behaviorally Active Recombinant Neurotrophic Factor. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5393-5403. [PMID: 33304094 PMCID: PMC7723032 DOI: 10.2147/dddt.s274308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Introduction Carbamoylated erythropoietin (CEPO) is a chemically engineered, nonhematopoietic derivative of erythropoietin (EPO) that retains its antidepressant and pro-cognitive effects, which are attributed to the increased expression of neurotrophic factors like brain derived neurotrophic factor (BDNF), in the central nervous system. However, the chemical modification process which produces CEPO from erythropoietin (EPO) requires pure EPO as raw material, is challenging to scale-up and can also cause batch-to-batch variability. To address these key limitations while retaining its behavioral effects, we designed, expressed and analyzed a triple, glutamine, substitution recombinant mimetic of CEPO, named QPO. Methods and Materials We employ a combination of computational structural biology, molecular, cellular and behavioral assays to design, produce, purify and test QPO. Results QPO was shown to be a nonhematopoietic polypeptide with significant antidepressant-like and pro-cognitive behavioral effects in rodent assays while significantly upregulating BDNF expression in-vitro and in-vivo. The in-silico binding affinity analysis of QPO bound to the EPOR/EPOR homodimer receptor shows significantly decreased binding to Active Site 2, but not Active Site 1, of EPOR. Discussion The results of the behavioral and gene expression analysis imply that QPO is a successful CEPO mimetic protein and potentially acts via a similar neurotrophic mechanism, making it a drug development target for psychiatric disorders. The decreased binding to Active Site 2 could imply that this active site is not involved in neuroactive signaling and could allow the development of a functional innate repair receptor (IRR) model. Substituting the three glutamine substitution residues with arginine (RPO) resulted in the loss of behavioral activity, indicating the importance of glutamine residues at those positions.
Collapse
Affiliation(s)
- Nicholas J Pekas
- Department of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermilion, SD, USA
| | - Jason L Petersen
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA.,Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Monica Sathyanesan
- Department of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermilion, SD, USA.,Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| | - Samuel S Newton
- Department of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermilion, SD, USA.,Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| |
Collapse
|
15
|
Effect of carbamylated erythropoietin Fc fusion protein (CEPO-Fc) on learning and memory impairment and hippocampal apoptosis induced by intracerebroventricular administration of streptozotocin in rats. Behav Brain Res 2020; 384:112554. [PMID: 32057828 DOI: 10.1016/j.bbr.2020.112554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Intracerebroventricular (icv) administration of streptozotocin (STZ) has been used as a metabolic model of sporadic Alzheimer's disease (AD). Erythropoietin (EPO) possesses neuroprotective and memory-improving effects, which might be advantageous in treating different characteristics of AD. Nevertheless, the hematopoietic effect of EPO has hindered its application as a neuroprotective agent. Previous studies have shown that a new Epo derivative called carbamylated Erythropoietin-Fc (CEPO-Fc), yield noticeable neuroprotective effects without affecting hematopoiesis. In this study, the neuroprotective effects of CEPO-Fc on icv-STZ induced memory impairment and hippocampal apoptosis were examined. Adult male Wistar rats weighing 250-300 g were used. STZ was administered on days 1 and 3 (3 mg/kg in divided doses/icv), and CEPO-Fc was administered at the dose of 5000 IU/ip/daily during days 4-14. The animals were trained in Morris water maze during days 15-17, and the memory retention test was performed on the 18th day. Following behavioral studies, the animals were sacrificed and their hippocampi isolated to determine the amounts of cleaved caspase-3 (the landmark of apoptosis). The results showed that CEPO-Fc treatment at the dose of 5000 IU/kg/ip was able to prevent the learning and memory deficit induced by icv-STZ. Western blot analysis revealed that STZ prompted the cleavage of caspase-3 in the hippocampus while pretreatment with CEPO-Fc significantly reduced the cleavage of this protein. Collectively, our findings suggest that CEPO-Fc could restore STZ-induced learning and memory impairment as well as apoptosis in the hippocampal region in a rat model of sporadic AD induced by icv-STZ.
Collapse
|
16
|
Liu JN, Chang SL, Xu PW, Tan MH, Zhao B, Wang XD, Zhao QS. Structural Changes and Antibacterial Activity of Epsilon-poly-l-lysine in Response to pH and Phase Transition and Their Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1101-1109. [PMID: 31904947 DOI: 10.1021/acs.jafc.9b07524] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
ε-Poly-l-lysine (ε-PL) consists of 25-35 lysine residues which are linked by an isopeptide bond formed by dehydration condensation of α-carboxyl and ε-amino groups and has good antibacterial activity and broad-spectrum inhibition range. However, there is no clear conclusion about the structure and antibacterial mechanism of ε-PL in aqueous solution. Herein, a high purity of ε-PL was prepared using Amberlite IRC-50 ion-exchange resin. Membrane filtration and dynamic light scattering were used to study the variations of ε-PL aggregation in aqueous solution with pH value. The conformational changes and antibacterial activities of ε-PL and carbamoylated ε-PL in different water environments were studied with circular dichroism (CD) and inhibition zone. The structural changes during the spray-drying process were determined by Fourier transform infrared spectroscopy. The results indicated that the side chain amino charge played a decisive role in the ε-PL conformation and aggregation. ε-PL exhibited the properties of a β-sheet during spray drying from acidic liquids to solids. The cation enhanced the antibacterial activity of ε-PL but did not play a key role. Instead, the backbone of ε-PL might determine the mechanism of ε-PL antibacterial.
Collapse
Affiliation(s)
- Jia-Ning Liu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R.China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Sen-Lin Chang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R.China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Peng-Wei Xu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R.China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ming-Hui Tan
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R.China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R.China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xiao-Dong Wang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R.China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Qing-Sheng Zhao
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R.China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
17
|
Sampath D, McWhirt J, Sathyanesan M, Newton SS. Carbamoylated erythropoietin produces antidepressant-like effects in male and female mice. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109754. [PMID: 31454554 PMCID: PMC6816335 DOI: 10.1016/j.pnpbp.2019.109754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
UNLABELLED Major depressive disorder and related illnesses are globally prevalent, with a significant risk for suicidality if untreated. Antidepressant drugs that are currently prescribed do not benefit 30% of treated individuals. Furthermore, there is a delay of 3 or more weeks before a reduction in symptoms. Results from preclinical studies have indicated an important role for trophic factors in regulating behavior. Erythropoietin (Epo), which is widely prescribed for anemia, has been shown to produce robust neurotrophic actions in the CNS. Although Epo's antidepressant activity has been successfully demonstrated in multiple clinical trials, the inherent ability to elevate RBC counts and other hematological parameters preclude its development as a mainstream CNS drug. A chemically engineered derivative, carbamoylated Epo (Cepo) has no hematological activity, but retains the neurotrophic actions of Epo. Cepo is therefore an attractive candidate to be tested as an antidepressant. OBJECTIVE To evaluate the antidepressant properties of Cepo in established antidepressant-responsive rodent behavioral assays. METHODS Adult male and female BALB/c mice were used for this study. Cepo (30 μgrams/ kg BWT) or vehicle (PBS) was administered intraperitoneally for 4 days before the test of novelty induced hypophagia and subsequently at five hours before testing in forced swim test (FST), tail suspension test (TST) and open field test (OFT). To obtain mechanistic insight we examined the phosphorylation of the transcription factor cAMP response element binding protein (CREB). RESULTS Administration of Cepo at 30 μgrams/ kg BWT, for 4 days produced significant reduction in latency to consume a palatable drink in a novel environment in male and female mice. Male BALB/c mice had a significant reduction in immobility in both tail suspension and forced swim tests, and female mice exhibited lower immobility in the forced swim test.
Collapse
Affiliation(s)
- Dayalan Sampath
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States of America; Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, United States of America.
| | - Joshua McWhirt
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States of America.
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States of America; Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, United States of America.
| | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States of America; Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, United States of America.
| |
Collapse
|