1
|
Guardiola-Ripoll M, Almodóvar-Payá C, Lubeiro A, Sotero A, Salvador R, Fuentes-Claramonte P, Salgado-Pineda P, Papiol S, Ortiz-Gil J, Gomar JJ, Guerrero-Pedraza A, Sarró S, Maristany T, Molina V, Pomarol-Clotet E, Fatjó-Vilas M. A functional neuroimaging association study on the interplay between two schizophrenia genome-wide associated genes (CACNA1C and ZNF804A). Eur Arch Psychiatry Clin Neurosci 2022; 272:1229-1239. [PMID: 35796825 DOI: 10.1007/s00406-022-01447-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/07/2022] [Indexed: 12/23/2022]
Abstract
The CACNA1C and the ZNF804A genes are among the most relevant schizophrenia GWAS findings. Recent evidence shows that the interaction of these genes with the schizophrenia diagnosis modulates brain functional response to a verbal fluency task. To better understand how these genes might influence the risk for schizophrenia, we aimed to study the interplay between CACNA1C and ZNF804A on working memory brain functional correlates. The analyses included functional and behavioural N-back task data (obtained from an fMRI protocol) and CACNA1C-rs1006737 and ZNF804A-rs1344706 genotypes for 78 healthy subjects and 78 patients with schizophrenia (matched for age, sex and premorbid IQ). We tested the effects of the epistasis between these genes as well as of the three-way interaction (CACNA1C × ZNAF804A × diagnosis) on working memory-associated activity (N-back: 2-back vs 1-back). We detected a significant CACNA1C × ZNAF804A interaction on working memory functional response in regions comprising the ventral caudate medially and within the left hemisphere, the superior and inferior orbitofrontal gyrus, the superior temporal pole and the ventral-anterior insula. The individuals with the GWAS-identified risk genotypes (CACNA1C-AA/AG and ZNF804A-AA) displayed a reduced working memory modulation response. This genotypic combination was also associated with opposite brain activity patterns between patients and controls. While further research will help to comprehend the neurobiological mechanisms of this interaction, our data highlight the role of the epistasis between CACNA1C and ZNF804A in the functional mechanisms underlying the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
| | - Alejandro Sotero
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Sergi Papiol
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Jordi Ortiz-Gil
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
- Hospital General de Granollers, Barcelona, Spain
| | - Jesús J Gomar
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- The Litwin-Zucker Alzheimer's Research Center, Manhasset, NY, USA
| | | | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Teresa Maristany
- Diagnostic Imaging Department, Hospital Sant Joan de Déu Research Foundation, Barcelona, Spain
| | - Vicente Molina
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
- Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Psychiatry Service, University Hospital of Valladolid, Valladolid, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain.
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain.
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Argote M, Sescousse G, Brunelin J, Fakra E, Nourredine M, Rolland B. Association between formal thought disorder and cannabis use: a systematic review and meta-analysis. SCHIZOPHRENIA 2022; 8:78. [PMID: 36175509 PMCID: PMC9523063 DOI: 10.1038/s41537-022-00286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/10/2022] [Indexed: 10/26/2022]
Abstract
AbstractFormal thought disorder (FTD) is a multidimensional syndrome mainly occurring along the psychosis continuum. Cannabis use is known to increase symptoms of psychosis, particularly positive symptoms. However, the impact of cannabis use on FTD in individuals presenting symptoms along the psychosis continuum remains unclear. To address this knowledge gap, we conducted a meta-analysis examining the association between cannabis use and FTD in those individuals. We hypothesized that cannabis would worsen FTD. We conducted a systematic search of the PubMed, ScienceDirect, PsycINFO, Web of Science, Embase and Google Scholar databases up to July 2022. The results were collated through a random-effects model using the statistical software R. Reference lists of included studies were searched for additional relevant publications. Nineteen studies were included, totalling 1840 cannabis users and 3351 non-cannabis users. The severity of FTD was found to be higher in cannabis users (SMD = 0.21, 95%CI [0.12–0.29], p = 0.00009). Subgroup analyses revealed that FTD severity was increased among cannabis users, regardless of the disorder severity: healthy individuals (SMD = 0.19, 95%CI [0.05–0.33], p = 0.02); patients with first-episode psychosis (SMD = 0.21, 95%CI [0.01–0.41], p = 0.04); patients with schizophrenia (SMD = 0.25, 95%CI [0.11–0.38], p = 0.005). Between-group differences were not significant. In line with its already known effect on positive symptoms in psychosis, cannabis use appears to be associated with increased FTD severity all along the psychosis continuum. Future research should consider potential confounding variables such as other substance use disorders and explore how FTD dimensions are impacted by cannabis use.
Collapse
|
3
|
Chmielowiec J, Chmielowiec K, Masiak J, Śmiarowska M, Strońska-Pluta A, Dziedziejko V, Grzywacz A. Association between Polymorphism rs1799732 of DRD2 Dopamine Receptor Gene and Personality Traits among Cannabis Dependency. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10915. [PMID: 36078646 PMCID: PMC9518330 DOI: 10.3390/ijerph191710915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Compared to other addictive substances, patients with cannabis addiction are significantly outnumbered by those who report dependence on other, more addictive substances. Unfortunately, most cannabis addiction goes untreated, and among those who choose treatment, the requirements are much higher for adolescents and young adults. THE AIM OF THE STUDY To examine the relationship of cannabinoid dependency in the genetic context-the association between the rs1799732 polymorphism of the DRD2 gene and psychological traits and anxiety. METHODS The study group consisted of 515 male volunteers. Of these, 214 patients were diagnosed with cannabis addiction and 301 were non-addicted. Patients were diagnosed with NEO Five-Factor Personality Inventory (NEO-FFI), and State-Trait Anxiety Inventory (STAI) questionnaires. The interactions between personality traits and polymorphisms in the DRD2 rs1799732 gene were investigated in a group of cannabis-addicted patients and non-addicted controls using the real-time PCR method. RESULTS Compared to the control group, the case group obtained significantly higher scores on the STAI State, STAI Trait, Neuroticism and Openness scales, as well as lower scores on the Extraversion, Agreeableness, and Conscientiousness scales. There was no statistically significant difference between addicts and the control group in the frequency of genotypes, but there was a statistically significant difference between addicts and the control group in the frequency of the DRD2 allele rs179973. The multivariate ANOVA analysis showed a statistically significant influence of the DRD2 rs1799732 genotype on the NEO-FFI agreeableness scale and a statistically significant effect of addiction to cannabinoids or its absence on the NEO-FFI agreeableness scale score. CONCLUSIONS Studying homogeneous subgroups-as in our study-seems reasonable, particularly when combined with genetic determinants and psychological traits. In multigenic and multifactorial entities, such a strategy has a future.
Collapse
Affiliation(s)
- Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Gora, 28 Zyty St., 65-046 Zielona Gora, Poland
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Gora, 28 Zyty St., 65-046 Zielona Gora, Poland
| | - Jolanta Masiak
- Second Department of Psychiatry and Psychiatric Rehabilitation, Medical University of Lublin, 1 Głuska St., 20-059 Lublin, Poland
| | - Małgorzata Śmiarowska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland
| |
Collapse
|
4
|
Nenadić I, Meller T, Schmitt S, Stein F, Brosch K, Mosebach J, Ettinger U, Grant P, Meinert S, Opel N, Lemke H, Fingas S, Förster K, Hahn T, Jansen A, Andlauer TFM, Forstner AJ, Heilmann-Heimbach S, Hall ASM, Awasthi S, Ripke S, Witt SH, Rietschel M, Müller-Myhsok B, Nöthen MM, Dannlowski U, Krug A, Streit F, Kircher T. Polygenic risk for schizophrenia and schizotypal traits in non-clinical subjects. Psychol Med 2022; 52:1069-1079. [PMID: 32758327 DOI: 10.1017/s0033291720002822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Schizotypy is a putative risk phenotype for psychosis liability, but the overlap of its genetic architecture with schizophrenia is poorly understood. METHODS We tested the hypothesis that dimensions of schizotypy (assessed with the SPQ-B) are associated with a polygenic risk score (PRS) for schizophrenia in a sample of 623 psychiatrically healthy, non-clinical subjects from the FOR2107 multi-centre study and a second sample of 1133 blood donors. RESULTS We did not find correlations of schizophrenia PRS with either overall SPQ or specific dimension scores, nor with adjusted schizotypy scores derived from the SPQ (addressing inter-scale variance). Also, PRS for affective disorders (bipolar disorder and major depression) were not significantly associated with schizotypy. CONCLUSIONS This important negative finding demonstrates that despite the hypothesised continuum of schizotypy and schizophrenia, schizotypy might share less genetic risk with schizophrenia than previously assumed (and possibly less compared to psychotic-like experiences).
Collapse
Affiliation(s)
- Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Johannes Mosebach
- Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Ulrich Ettinger
- Department of Psychology, Rheinische Friedrich-Wilhelms-Universität Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, Germany
| | - Phillip Grant
- Psychology School, Fresenius University of Applied Sciences, Marienburgstr. 6, 60528 Frankfurt, Germany
- Faculty of Life Science Engineering, Technische Hochschule Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Susanne Meinert
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Hannah Lemke
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Stella Fingas
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Katharina Förster
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Tim Hahn
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Till F M Andlauer
- Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Centre for Human Genetics, Philipps-Universität Marburg, Baldingerstraße, 35033 Marburg, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alisha S M Hall
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA 02142, USA
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Bertram Müller-Myhsok
- Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| |
Collapse
|
5
|
Varela RB, Cararo JH, Tye SJ, Carvalho AF, Valvassori SS, Fries GR, Quevedo J. Contributions of epigenetic inheritance to the predisposition of major psychiatric disorders: theoretical framework, evidence, and implications. Neurosci Biobehav Rev 2022; 135:104579. [DOI: 10.1016/j.neubiorev.2022.104579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
|
6
|
Ilan Y. Digital Medical Cannabis as Market Differentiator: Second-Generation Artificial Intelligence Systems to Improve Response. Front Med (Lausanne) 2022; 8:788777. [PMID: 35141242 PMCID: PMC8818992 DOI: 10.3389/fmed.2021.788777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Legalized use of cannabis products and the rising interest in their therapeutic benefits have opened up new opportunities for therapy and marketing. However, the marked variability in formulations, administration modes, therapeutic regimens, and inter- and intra-subject responses make the standardization of medical cannabis-based regimens difficult. Legalization has made the cannabis market highly competitive and lowered the revenue margins. This study reviews some of the challenges in medical cannabis use and difficulties in standardizing its therapeutic regimens that hinder maximizing its beneficial effects. The development of tolerance toward cannabis and low adherence to chronic administration further impair its long-term beneficial effects. Digital medical cannabis is a cannabis product controlled by a second-generation artificial intelligence (AI) system that improves patient responses by increasing adherence and dealing with tolerance. Second-generation AI systems focus on a single patient's outcome and deal with the inter- and intra-subject variability in responses. The use of digital medical cannabis is expected to improve product standardization, maximize therapeutic benefits, reduce health care costs, and increase the revenue of companies. Digital medical cannabis offers several market differentiators for cannabis companies. This study presents a model for promoting the use of digital medical cannabis and presents its advantages for patients, clinicians, health care authorities, insurance companies, and cannabis manufacturers. Ongoing trials and real-world data on the use of these systems further support the use of digital medical cannabis for improved global health.
Collapse
Affiliation(s)
- Yaron Ilan
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
- Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
- *Correspondence: Yaron Ilan
| |
Collapse
|
7
|
Bartsch U, Corbin LJ, Hellmich C, Taylor M, Easey KE, Durant C, Marston HM, Timpson NJ, Jones MW. Schizophrenia-associated variation at ZNF804A correlates with altered experience-dependent dynamics of sleep slow waves and spindles in healthy young adults. Sleep 2021; 44:zsab191. [PMID: 34329479 PMCID: PMC8664578 DOI: 10.1093/sleep/zsab191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The rs1344706 polymorphism in ZNF804A is robustly associated with schizophrenia and schizophrenia is, in turn, associated with abnormal non-rapid eye movement (NREM) sleep neurophysiology. To examine whether rs1344706 is associated with intermediate neurophysiological traits in the absence of disease, we assessed the relationship between genotype, sleep neurophysiology, and sleep-dependent memory consolidation in healthy participants. We recruited healthy adult males with no history of psychiatric disorder from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort. Participants were homozygous for either the schizophrenia-associated 'A' allele (N = 22) or the alternative 'C' allele (N = 18) at rs1344706. Actigraphy, polysomnography (PSG) and a motor sequence task (MST) were used to characterize daily activity patterns, sleep neurophysiology and sleep-dependent memory consolidation. Average MST learning and sleep-dependent performance improvements were similar across genotype groups, albeit more variable in the AA group. During sleep after learning, CC participants showed increased slow-wave (SW) and spindle amplitudes, plus augmented coupling of SW activity across recording electrodes. SW and spindles in those with the AA genotype were insensitive to learning, whilst SW coherence decreased following MST training. Accordingly, NREM neurophysiology robustly predicted the degree of overnight motor memory consolidation in CC carriers, but not in AA carriers. We describe evidence that rs1344706 polymorphism in ZNF804A is associated with changes in the coordinated neural network activity that supports offline information processing during sleep in a healthy population. These findings highlight the utility of sleep neurophysiology in mapping the impacts of schizophrenia-associated common genetic variants on neural circuit oscillations and function.
Collapse
Affiliation(s)
- Ullrich Bartsch
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
- Translational Neuroscience, Eli Lilly & Co Ltd UK, Erl Wood Manor, Windlesham, UK
- UK DRI Health Care & Technology at Imperial College London and the University of Surrey, Surrey Sleep Research Centre, University of Surrey, Clinical Research Building, Egerton Road, Guildford, Surrey, UK
| | - Laura J Corbin
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Charlotte Hellmich
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Michelle Taylor
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
| | - Kayleigh E Easey
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- UK Centre for Tobacco and Alcohol Studies, School of Psychological Science, University of Bristol, Bristol, UK
| | - Claire Durant
- Clinical Research and Imaging Centre (CRIC), University of Bristol, Bristol, UK
| | - Hugh M Marston
- Translational Neuroscience, Eli Lilly & Co Ltd UK, Erl Wood Manor, Windlesham, UK
- Böhringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew W Jones
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
Lezheiko TV, Gabaeva MV, Kolesina NY, Golimbet VE. Effect of the ZNF804A Gene and Obstetrical Complications on Clinical Characteristics of Schizophrenia. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419060097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|