1
|
Sakrajda K, Bilska K, Czerski PM, Narożna B, Dmitrzak-Węglarz M, Heilmann-Heimbach S, Brockschmidt FF, Herms S, Nöthen MM, Cichon S, Więckowska B, Rybakowski JK, Pawlak J, Szczepankiewicz A. Abelson Helper Integration Site 1 haplotypes and peripheral blood expression associates with lithium response and immunomodulation in bipolar patients. Psychopharmacology (Berl) 2024; 241:727-738. [PMID: 38036661 DOI: 10.1007/s00213-023-06505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
RATIONALE In bipolar disorder (BD), immunological factors play a role in the pathogenesis and treatment of the illness. Studies showed the potential link between Abelson Helper Integration Site 1 (AHI1) protein, behavioural changes and innate immunity regulation. An immunomodulatory effect was suggested for lithium, a mood stabilizer used in BD treatment. OBJECTIVES We hypothesized that AHI1 may be an important mediator of lithium treatment response. Our study aimed to investigate whether the AHI1 haplotypes and expression associates with lithium treatment response in BD patients. We also examined whether AHI1 expression and lithium treatment correlate with innate inflammatory response genes. RESULTS We genotyped seven AHI1 single nucleotide polymorphisms in 97 euthymic BD patients and found that TG haplotype (rs7739635, rs9494332) was significantly associated with lithium response. We also showed significantly increased AHI1 expression in the blood of lithium responders compared to non-responders and BD patients compared to healthy controls (HC). We analyzed the expression of genes involved in the innate immune response and inflammatory response regulation (TLR4, CASP4, CASP5, NLRP3, IL1A, IL1B, IL6, IL10, IL18) in 21 lithium-treated BD patients, 20 BD patients treated with other mood stabilizer and 19 HC. We found significantly altered expression between BD patients and HC, but not between BD patients treated with different mood stabilizers. CONCLUSIONS Our study suggests the involvement of AHI1 in the lithium mode of action. Moreover, mood-stabilizing treatment associated with the innate immunity-related gene expression in BD patients and only the lithium-treated BD patients showed significantly elevated expression of anti-inflammatory IL10, suggesting lithium's immunomodulatory potential.
Collapse
Affiliation(s)
- Kosma Sakrajda
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland.
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr M Czerski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Narożna
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | | | - Stefan Herms
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Sven Cichon
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Barbara Więckowska
- Department of Computer Sciences and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
2
|
Ma KJ, Lin YJ, Liu CS, Tseng PY, Wang SH, Yao CY, Wang JY. Association between 14 candidate genes, PM2.5, and affective disorders: a study of the Taiwan Biobank. BMC Public Health 2023; 23:2346. [PMID: 38012695 PMCID: PMC10683147 DOI: 10.1186/s12889-023-16764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/14/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Most studies have focused on the risk factors, treatment, and care of affective psychosis, and several have reported a relationship between ambient air quality and this psychosis. Although an association has been reported between psychosis and genes, studies mainly explored the associations between one type of psychosis and one gene; few have identified genes related to affective psychosis. This study investigates the genetic and environmental factors of affective psychosis. METHODS In this retrospective longitudinal study, 27 604 participants aged 30-70 were selected from Taiwan Biobank. The participants' propensity scores were calculated based on their demographic information, and propensity score matching was performed to divide the participants into an experimental (i.e., affective psychosis) and control group at a 1:5 ratio. Plink was used to analyze the major and minor types of gene expression related to affective psychosis, and PM2.5 exposure was incorporated into the analyses. RESULTS According to the generalized estimating equation analysis results, 8 single nucleotide polymorphisms (SNPs) belonging to the ANK3, BDNF, CACNA1C, and GRID1 genotypes were significantly correlated with depressive disorder (P < .001), with the majority belonging to the ANK3 and CACNA1C. A total of 5 SNPs belonging to the CACNA1C, GRID1, and SIRT1 genotypes were significantly correlated with bipolar disorder (P < .001), with the majority belonging to the CACNA1C. No significant correlation was identified between ambient air pollution and affective psychosis. CONCLUSIONS CACNA1C and GRID1 are common SNP genotypes for depressive disorder and bipolar disorder and should be considered associated with affective psychosis.
Collapse
Affiliation(s)
- Kai-Jie Ma
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Yi-Ju Lin
- Department of Administration, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Shong Liu
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Ying Tseng
- Department of Public Health, China Medical University, Taichung, Taiwan
- Department of Medical, Lee's General Hospital, Yuanli Town, Miaoli, Taiwan
| | - Shi-Heng Wang
- Interdisciplinary Freshmen Program of Public Health, China Medical University, Taichung, Taiwan
| | - Chi-Yu Yao
- Attending physician Department of psychiatry, An-nan hospital, Tainan, Taiwan.
| | - Jong-Yi Wang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Liu M, Ling Y, Zhang Y, Liu L, Qiu Y, Liu Y, Yin Y. The role of EndophilinA1 in chronic unpredicted mild stress-induced depression model mice. Int Immunopharmacol 2023; 124:111023. [PMID: 37837716 DOI: 10.1016/j.intimp.2023.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Depression is a common mental disease, accompanied by anxiety and persistent depression. Endophilin A1 (EPA1) is a brain-specific protein enriched in synaptic terminals that is primarily expressed in the central nervous system. It has been reported that EPA1 is involved in neurotransmitter release, which indicates that the protein may be involved in depression. However, it is unclear whether EPA1 is implicated in the development of depression. METHODS The mice depression model was established by chronic unpredicted mild stress (CUMS). Depression-like behaviors were detected by sucrose preference test (SPT), forced swim test (FST), tail-suspension test (TST) and open-field test (OFT). Neuronal histopathology was applied by hematoxylin and eosin stain (H&E), and Nissl stain. EPA1, NLRP1 inflammatory complexes, NADPH oxidase2 (NOX2), synaptic-related protein expression of the mice were tested by western blot. Immunofluorescence was applied to detect the expression of EPA1 and ROS in mice hippocampus. EPA1 knockdown was performed by an adeno-associated virus (AAV) vector containing EPA1-shRNA-EGFP infusion. RESULT CUMS exposure induced depressive-like behaviors and increased the expression of EPA1 in the hippocampus. Knockdown hippocampal EPA1 ameliorated CUMS-induced depressive-like behaviors, decreased calcium (Ca2+) overload, decreased ROS generation and NOX2 expression, inhibited NLRP1 inflammasome-driven neuroinflammation, and restored the levels of BDNF, PSD95, GAP-43, SYN, and MAP-2 in the hippocampus. CONCLUSION EPA1 contributes to CUMS induced depressive-like behaviors and the mechanism may be related to NLRP1 inflammasome-driven inflammatory response, regulating calcium ion homeostasis and ROS generation, and alleviating synaptic function damage. This indicated that EPA1 may participate in the occurrence and development of depression.
Collapse
Affiliation(s)
- Mengqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Yi Ling
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Yue Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Lulu Liu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Yue Qiu
- The Second Clinical Medical School, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Yi Liu
- Stomatologic Hospital & College, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, People's Republic of China
| | - Yanyan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China.
| |
Collapse
|
4
|
Wang Y, Zhu Y, Li W, Yan S, Li C, Ma K, Hu M, Du C, Fu L, Sun J, Zhang CX. Synaptotagmin-11 Inhibits Synaptic Vesicle Endocytosis via Endophilin A1. J Neurosci 2023; 43:6230-6248. [PMID: 37474308 PMCID: PMC10490507 DOI: 10.1523/jneurosci.1348-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 07/22/2023] Open
Abstract
Synaptic vesicle (SV) endocytosis is a critical and well-regulated process for the maintenance of neurotransmission. We previously reported that synaptotagmin-11 (Syt11), an essential non-Ca2+-binding Syt associated with brain diseases, inhibits neuronal endocytosis (Wang et al., 2016). Here, we found that Syt11 deficiency caused accelerated SV endocytosis and vesicle recycling under sustained stimulation and led to the abnormal membrane partition of synaptic proteins in mouse hippocampal boutons of either sex. Furthermore, our study revealed that Syt11 has direct but Ca2+-independent binding with endophilin A1 (EndoA1), a membrane curvature sensor and endocytic protein recruiter, with high affinity. EndoA1-knockdown significantly reversed Syt11-KO phenotype, identifying EndoA1 as a main inhibitory target of Syt11 during SV endocytosis. The N-terminus of EndoA1 and the C2B domain of Syt11 were responsible for this interaction. A peptide (amino acids 314-336) derived from the Syt11 C2B efficiently blocked Syt11-EndoA1 binding both in vitro and in vivo Application of this peptide inhibited SV endocytosis in WT hippocampal neurons but not in EndoA1-knockdown neurons. Moreover, intracellular application of this peptide in mouse calyx of Held terminals of either sex effectively hampered both fast and slow SV endocytosis at physiological temperature. We thus propose that Syt11 ensures the precision of protein retrieval during SV endocytosis by inhibiting EndoA1 function at neuronal terminals.SIGNIFICANCE STATEMENT Endocytosis is a key stage of synaptic vesicle (SV) recycling. SV endocytosis retrieves vesicular membrane and protein components precisely to support sustained neurotransmission. However, the molecular mechanisms underlying the regulation of SV endocytosis remain elusive. Here, we reported that Syt11-KO accelerated SV endocytosis and impaired membrane partition of synaptic proteins. EndoA1 was identified as a main inhibitory target of Syt11 during SV endocytosis. Our study reveals a novel inhibitory mechanism of SV endocytosis in preventing hyperactivation of endocytosis, potentially safeguarding the recycling of synaptic proteins during sustained neurotransmission.
Collapse
Affiliation(s)
- Yalong Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; CAS Key Laboratory of Brain Connectome and Manipulation; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Ying Zhu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanru Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Shuxin Yan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Chao Li
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kunpeng Ma
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; CAS Key Laboratory of Brain Connectome and Manipulation; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Meiqin Hu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Cuilian Du
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Lei Fu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Jianyuan Sun
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; CAS Key Laboratory of Brain Connectome and Manipulation; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
5
|
Han J, Liu M, Ling Y, Ren Y, Qiu Y, Liu Y, Yin Y. The Role of Endophilin A1 in Lipopolysaccharide-Induced Parkinson's Disease Model Mice. JOURNAL OF PARKINSON'S DISEASE 2023; 13:743-756. [PMID: 37334616 PMCID: PMC10473136 DOI: 10.3233/jpd-225098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Endophilin A1 (EPA1) is encoded by the SH3GL2 gene, and SH3GL2 was designated as a Parkinson's disease (PD) risk locus by genome-wide association analysis, suggesting that EPA1 may be involved in the occurrence and development of PD. OBJECTIVE To investigate the role of EPA1 in lipopolysaccharide (LPS)-induced PD model mice. METHODS The mice PD model was prepared by injecting LPS into the substantia nigra (SN), and the changes in the behavioral data of mice in each group were observed. The damage of dopaminergic neurons, activation of microglia, and reactive oxygen species (ROS) generation were detected by immunofluorescence method; calcium ion concentration was detected by calcium content detection kit; EPA1 and inflammation and its related indicators were detected by western blot method. EPA1 knockdown was performed by an adeno-associated virus vector containing EPA1-shRNA-eGFP infusion. RESULTS LPS-induced PD model mice developed behavioral dysfunction, SN dopaminergic nerve damage, significantly increased calcium ion, calpain 1, and ROS production, activated NLRP1 inflammasome and promoted pro-inflammatory cell release, and SN EPA1 knockdown improves behavioral disorders, alleviates dopaminergic neuron damage, reduces calcium, calpain 1, ROS generation, and blocks NLRP1 inflammasome-driven inflammatory responses. CONCLUSION The expression of EPA1 in the SN of LPS-induced PD model mice was increased, and it played a role in promoting the occurrence and development of PD. EPA1 knockdown inhibited the NLRP1 inflammasome activation, decreased the release of inflammatory factors and ROS generation, and alleviated dopaminergic neuron damage. This indicated that EPA1 may participating in the occurrence and development of PD.
Collapse
Affiliation(s)
- Junhui Han
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Mengqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yi Ling
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yubo Ren
- The Second Clinical Medical School, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yue Qiu
- The Second Clinical Medical School, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yi Liu
- Stomatological Hospital & College, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yanyan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
6
|
Zhao Z, Zhu L, Wu X, Chen Q, Xu B, Yang J, Guo X, Su L. Genome-wide association studies-supported rs12966547 variant of the long noncoding RNA LOC105372125 is significantly associated with susceptibility to schizophrenia and bipolar disorder in Han Chinese women. Psychiatr Genet 2022; 32:74-79. [PMID: 35191423 DOI: 10.1097/ypg.0000000000000312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Genome-wide association studies have found that rs12966547 polymorphism was associated with susceptibility to schizophrenia in European populations. Recent studies showed that a genetic overlap may exist in schizophrenia and bipolar disorder. Here, we analyzed the associations between LOC105372125 rs12966547 polymorphism and schizophrenia and bipolar disorder in the Han Chinese population. METHODS Our study recruited 548 schizophrenia patients, 512 bipolar disorder patients, and 598 healthy controls. Genotyping of rs12966547 were performed using the Sequenom MassARRAY platform. RESULTS A significant association between rs12966547 polymorphism and susceptibility to bipolar disorder was observed after adjusting for sex and age (additive model: Padj = 0.040, recessive model: Padj = 0.044). However, no significant association was found between rs12966547 polymorphism and schizophrenia risk (all P > 0.05). In the analysis of gender, rs12966547 polymorphism was significantly associated with bipolar disorder (additive model: Padj = 0.027) and schizophrenia (dominant model: Padj = 0.039) in women. However, no significant association was found between rs12966547 polymorphism and the risk of bipolar disorder or schizophrenia in men (all Padj > 0.05). CONCLUSIONS Polymorphism of rs12966547 on the long noncoding RNA LOC10537215 are a shared genetic variant of schizophrenia and bipolar disorder in Han Chinese women.
Collapse
Affiliation(s)
- Zhi Zhao
- School of Public Health of Guangxi Medical University, Nanning
| | - Lulu Zhu
- School of Public Health of Guangxi Medical University, Nanning
| | - Xulong Wu
- School of Public Health of Guangxi Medical University, Nanning
| | - Qiang Chen
- Guangxi Brain Hospital, Liuzhou, Guangxi, China
| | - Bingyi Xu
- School of Public Health of Guangxi Medical University, Nanning
| | - Jialei Yang
- School of Public Health of Guangxi Medical University, Nanning
| | | | - Li Su
- School of Public Health of Guangxi Medical University, Nanning
| |
Collapse
|
7
|
He M, Li M, Guan Y, Wan Z, Tian J, Xu F, Zhou H, Gao M, Bi H, Chong T. A New Prognostic Risk Score: Based on the Analysis of Autophagy-Related Genes and Renal Cell Carcinoma. Front Genet 2022; 12:820154. [PMID: 35237298 PMCID: PMC8884161 DOI: 10.3389/fgene.2021.820154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction: Clear cell renal cell carcinoma (ccRCC) patients suffer from its high recurrence and metastasis rate, and a new prognostic risk score to predict individuals with high possibility of recurrence or metastasis is in urgent need. Autophagy has been found to have a dual influence on tumorigenesis. In this study we aim to analyze autophagy related genes (ATGs) and ccRCC patients and find a new prognostic risk score. Method: Analyzing differential expression genes (DEGs) in TCGA-KIRC dataset, and took intersection with ATGs. Through lasso, univariate, and multivariate cox regression, DEGs were chosen, and the coefficients and expression levels of them were components constructing the formula of risk score. We analyzed mRNA expression of DEGs in tumor and normal tissue in ONCOMINE database and TCGA-KIRC dataset. The Human Protein Atlas (HPA) was used to analyze protein levels of DEGs. The protein-protein interaction (PPI) network was examined in STRING and visualized in cytoscape. Functional enrichment analysis was performed in RStudio. To prove the ability and practicibility of risk score, we analyzed univariate and multivariate cox regression, Kaplan-Meier curve (K-M curve), risk factor association diagram, receiver operating characteristic curve (ROC curve) of survival and nomogram, and the performance of nomogram was evaluated by calibration curve. Then we further explored functional enrichment related to risk groups through Gene Set Enrichment Analysis (GSEA), weighted gene co-expression network analysis (WGCNA), and Metascape database. At last, we investigated immune cell infiltration of DEGs and two risk groups through TIMER database and “Cibersort” algorithm. Result: We identified 7 DEGs (BIRC5, CAPS, CLDN7, CLVS1, GMIP, IFI16, and TCIRG1) as components of construction of risk score. All 7 DEGs were differently expressed in ccRCC and normal tissue according to ONCOMINE database and TCGA-KIRC dataset. Functional enrichment analysis indicated DEGs, and their most associated genes were shown to be abundant in autophagy-related pathways and played roles in tumorigenesis and progression processes. A serious analysis proved that this risk score is independent from the risk signature of ccRCC patients. Conclusion: The risk score constructed by 7 DEGs had the ability of predicting prognosis of ccRCC patients and was conducive to the identification of novel prognostic molecular markers. However, further experiment is still needed to verify its ability and practicability.
Collapse
Affiliation(s)
- Minxin He
- Department of Urology, The Second Afilliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Mingrui Li
- Department of Urology, The Second Afilliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Yibing Guan
- Department of Urology, The Second Afilliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Ziyan Wan
- Department of Urology, The Second Afilliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Juanhua Tian
- Department of Urology, The Second Afilliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Fangshi Xu
- Department of Urology, The Second Afilliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Haibin Zhou
- Department of Urology, The Second Afilliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Mei Gao
- Department of Urology, The Second Afilliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Hang Bi
- Department of Urology, The Second Afilliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Tie Chong
- Department of Urology, The Second Afilliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Tie Chong,
| |
Collapse
|
8
|
Yang Y, Chen J, Chen X, Li D, He J, Wang S, Zhao S, Yang X, Deng S, Tong C, Wang D, Guo Z, Li D, Ma C, Liang X, Shi YS, Liu JJ. Endophilin A1 drives acute structural plasticity of dendritic spines in response to Ca2+/calmodulin. J Cell Biol 2021; 220:212102. [PMID: 33988695 PMCID: PMC8129810 DOI: 10.1083/jcb.202007172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
Induction of long-term potentiation (LTP) in excitatory neurons triggers a large transient increase in the volume of dendritic spines followed by decays to sustained size expansion, a process termed structural LTP (sLTP) that contributes to the cellular basis of learning and memory. Although mechanisms regulating the early and sustained phases of sLTP have been studied intensively, how the acute spine enlargement immediately after LTP stimulation is achieved remains elusive. Here, we report that endophilin A1 orchestrates membrane dynamics with actin polymerization to initiate spine enlargement in NMDAR-mediated LTP. Upon LTP induction, Ca2+/calmodulin enhances binding of endophilin A1 to both membrane and p140Cap, a cytoskeletal regulator. Consequently, endophilin A1 rapidly localizes to the plasma membrane and recruits p140Cap to promote local actin polymerization, leading to spine head expansion. Moreover, its molecular functions in activity-induced rapid spine growth are required for LTP and long-term memory. Thus, endophilin A1 serves as a calmodulin effector to drive acute structural plasticity necessary for learning and memory.
Collapse
Affiliation(s)
- Yanrui Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xue Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Di Li
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianfeng He
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shikun Deng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chunfang Tong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dou Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhenzhen Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yun S Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Martínez-Magaña JJ, Genis-Mendoza AD, Villatoro Velázquez JA, Bustos-Gamiño M, Juárez-Rojop IE, Tovilla-Zarate CA, Sarmiento E, Saucedo E, Rodríguez-Mayoral O, Fleiz-Bautista C, Camarena B, Aguilar A, Gonzalez-Castro TB, Medina-Mora ME, Nicolini H. Genome-wide association study of psychiatric and substance use comorbidity in Mexican individuals. Sci Rep 2021; 11:6771. [PMID: 33762635 PMCID: PMC7990941 DOI: 10.1038/s41598-021-85881-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
The combination of substance use and psychiatric disorders is one of the most common comorbidities. The objective of this study was to perform a genome-wide association study of this comorbidity (Com), substance use alone (Subs), and psychiatric symptomatology alone (Psych) in the Mexican population. The study included 3914 individuals of Mexican descent. Genotyping was carried out using the PsychArray microarray and genome-wide correlations were calculated. Genome-wide associations were analyzed using multiple logistic models, polygenic risk scores (PRSs) were evaluated using multinomial models, and vertical pleiotropy was evaluated by generalized summary-data-based Mendelian randomization. Brain DNA methylation quantitative loci (brain meQTL) were also evaluated in the prefrontal cortex. Genome-wide correlation and vertical pleiotropy were found between all traits. No genome-wide association signals were found, but 64 single-nucleotide polymorphism (SNPs) reached nominal associations (p < 5.00e-05). The SNPs associated with each trait were independent, and the individuals with high PRSs had a higher prevalence of tobacco and alcohol use. In the multinomial models all of the PRSs (Subs-PRS, Com-PRS, and Psych-PRS) were associated with all of the traits. Brain meQTL of the Subs-associated SNPs had an effect on the genes enriched in insulin signaling pathway, and that of the Psych-associated SNPs had an effect on the Fc gamma receptor phagocytosis pathway.
Collapse
Affiliation(s)
- José Jaime Martínez-Magaña
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Hospital Psiquiátrico Infantil Juan N. Navarro, Servicios de Atención Psiquiátrica, Mexico City, Mexico
| | - Jorge Ameth Villatoro Velázquez
- Unidad de Encuestas y Análisis de Datos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Mexico City, Mexico
- Seminario de Estudios Sobre la Globalidad, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City, Mexico
| | - Marycarmen Bustos-Gamiño
- Unidad de Encuestas y Análisis de Datos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Mexico City, Mexico
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | | | - Emmanuel Sarmiento
- Hospital Psiquiátrico Infantil Juan N. Navarro, Servicios de Atención Psiquiátrica, Mexico City, Mexico
| | - Erasmo Saucedo
- Centro de Neurociencias Avanzadas, Departamento de Psiquiátrica del Hospital Psiquiátrico, Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | - Clara Fleiz-Bautista
- Unidad de Encuestas y Análisis de Datos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Mexico City, Mexico
- Seminario de Estudios Sobre la Globalidad, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City, Mexico
| | - Beatriz Camarena
- Laboratorio de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Mexico City, Mexico
| | - Alejandro Aguilar
- Laboratorio de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Mexico City, Mexico
| | - Thelma Beatriz Gonzalez-Castro
- División Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, Mexico
| | - María Elena Medina-Mora
- Unidad de Encuestas y Análisis de Datos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Mexico City, Mexico
- Seminario de Estudios Sobre la Globalidad, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City, Mexico
| | - Humberto Nicolini
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, 14610, Mexico City, Mexico.
| |
Collapse
|
10
|
Psychiatric disorders and SLC6A4 gene variants: possible effects on alcohol dependence and alzheimer’s disease. Mol Biol Rep 2019; 47:191-200. [DOI: 10.1007/s11033-019-05119-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/01/2019] [Indexed: 01/10/2023]
|
11
|
Abstract
Until recently, advances in understanding the genetic architecture of psychiatric disorders have been impeded by a historic, and often mandated, commitment to the use of traditional, and unvalidated, categorical diagnoses in isolation as the relevant phenotype. Such studies typically required lengthy structured interviews to delineate differences in the character and duration of behavioral symptomatology amongst disorders that were thought to be etiologic, and they were often underpowered as a result. Increasing acceptance of the fact that co-morbidity in psychiatric disorders is the rule rather than the exception has led to alternative designs in which shared dimensional symptomatology is analyzed as a quantitative trait and to association analyses in which combined polygenic risk scores are computationally compared across multiple traditional categorical diagnoses to identify both distinct and unique genetic and environmental elements. Increasing evidence that most mental disorders share many common genetic risk variants and environmental risk modifiers suggests that the broad spectrum of psychiatric pathology represents the pleiotropic display of a more limited series of pathologic events in neuronal development than was originally believed, regulated by many common risk variants and a smaller number of rare ones.
Collapse
Affiliation(s)
- Tova Fuller
- Deptartment of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Victor Reus
- Deptartment of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| |
Collapse
|
12
|
Elhawary NA, Tayeb MT, Sindi IA, Qutub N, Rashad M, Mufti A, Arab AH, Khogeer A, Elhawary EN, Dannoun A, Bogari N. Genetic biomarkers predict susceptibility to autism spectrum disorder through interactive models of inheritance in a Saudi community. COGENT BIOLOGY 2019. [DOI: 10.1080/23312025.2019.1606555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nasser A. Elhawary
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Mecca 21955, Saudi Arabia
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Mohammed T. Tayeb
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Ikhlas A. Sindi
- Department of Biotechnology, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nermeen Qutub
- Department of Psychology, Faculty of Education, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mona Rashad
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Ahmad Mufti
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Arwa H. Arab
- Department of Psychology, Faculty of Arts and Humanities, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asim Khogeer
- Department of Plan and Research, General Directorate of Health Affairs, Mecca Region, Ministry of Health, Mecca, Saudi Arabia
| | - Ezzeldin N. Elhawary
- Faculty of Biotechnology, Modern Sciences and Arts University, 6th October City, Giza, Egypt
| | - Anas Dannoun
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Neda Bogari
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|