1
|
Asis JLB, Carampel AC, Bacar JNB, Munar JC, Gregorio CGC, Medina PMB, Dalmacio LMM, Sevilleja JEAD, Quirk GJ, Cena-Navarro R. Repeated toluene inhalation in male and female adolescent rats induces persistent drug preference and impairs cognitive and social behavior. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06731-5. [PMID: 39690317 DOI: 10.1007/s00213-024-06731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
RATIONALE Adolescent inhalant use is an understudied and undertreated disorder, particularly in females. Chronic exposure to inhalants, like toluene, can have long-lasting effects on behavior. However, most animal studies lack the incorporation of both sexes and do not focus on the abstinence period. OBJECTIVE We assessed the behavioral effects during prolonged abstinence following repeated toluene inhalation in adolescent male and female rats. METHODS We repeatedly exposed adolescent male and female Sprague Dawley rats to toluene vapor (1500 or 3000 ppm) for 6 days using the conditioned place preference (CPP) procedure. We tested drug-associated context preference, locomotion, anxiety-like behavior, object memory, social preference, and cognitive flexibility across 22 days of abstinence. RESULTS In females, 3000 ppm toluene increased CPP on days 8 and 22 of abstinence but this effect did not reach significance in males. Instead, males showed a significant increase in locomotion on days 7 and 21. Toluene also impaired social novelty preference and reversal learning during long-term abstinence, but not anxiety-like behavior or object recognition memory. CONCLUSIONS Our rodent findings suggest that female inhalant users may show persistent drug preference during abstinence following chronic use. Furthermore, prolonged cognitive and social deficits should be addressed in treatment programs for adolescents.
Collapse
Affiliation(s)
- Joannes Luke B Asis
- College of Medicine, University of the Philippines Manila, Manila, Philippines
- National Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, 623 Pedro Gil Street, Ermita, 1000, Manila, Philippines
| | - Ajina C Carampel
- College of Medicine, University of the Philippines Manila, Manila, Philippines
- National Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, 623 Pedro Gil Street, Ermita, 1000, Manila, Philippines
| | - Jariel Naomi B Bacar
- National Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, 623 Pedro Gil Street, Ermita, 1000, Manila, Philippines
| | - Johanna C Munar
- National Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, 623 Pedro Gil Street, Ermita, 1000, Manila, Philippines
| | - Cynthia Grace C Gregorio
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Paul Mark B Medina
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Leslie Michelle M Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Jesus Emmanuel A D Sevilleja
- Mental Health Research Unit, Office for Special Concerns, National Center for Mental Health, Mandaluyong, Philippines
| | - Gregory J Quirk
- National Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, 623 Pedro Gil Street, Ermita, 1000, Manila, Philippines
| | - Rohani Cena-Navarro
- National Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, 623 Pedro Gil Street, Ermita, 1000, Manila, Philippines.
| |
Collapse
|
2
|
Yin J, Zhang T, Li D, Xu F, Li H, Pan X, Liu F, Zhao Y, Weng X. Behavioral video coding analysis of chronic morphine administration in rats. Biomed Rep 2024; 21:168. [PMID: 39345955 PMCID: PMC11428083 DOI: 10.3892/br.2024.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
The present study assessed the behavior of morphine-addicted rats using behavioral video coding technology, to evaluate effective methods for identifying morphine addiction. Rats were divided into a control group (n=15) and a morphine addiction group (n=15). The morphine addiction model was established with a 14-day increasing dose scheme, confirmed using a conditional place preference (CPP) experiment. After successful modeling, the rats' behavior was recorded for 12 h, then coded and analyzed using Observer XT behavior analysis software. Compared with the control group, morphine-addicted rats showed increased heat pain tolerance time (P=0.039) and spent more time in the white box during the CPP experiment (P<0.001). Video coding analysis revealed significant behavioral changes in morphine-addicted rats compared to controls. In addition to being lighter, morphine-addicted rats showed decreased water intake, reduced licking of forelimbs and hind limbs, and altered sleeping posture (sleeping curled up) during the day (all P<0.05). In conclusion, chronic morphine administration in rats leads to distinctive behavioral changes, including decreased licking frequency, reduced water intake and altered sleep posture. Video coding analysis, as a safe and non-invasive method, may provide a convenient and efficient approach for studying morphine addiction in rats.
Collapse
Affiliation(s)
- Jie Yin
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Tiecheng Zhang
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Dan Li
- Jingnan Medical Area of the General Hospital of the People's Liberation Army, Beijing 100850, P.R. China
| | - Fan Xu
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Huan Li
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Xinyu Pan
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Fang Liu
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Yongqi Zhao
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| |
Collapse
|
3
|
Mușat MI, Cătălin B, Hadjiargyrou M, Popa-Wagner A, Greșiță A. Advancing Post-Stroke Depression Research: Insights from Murine Models and Behavioral Analyses. Life (Basel) 2024; 14:1110. [PMID: 39337894 PMCID: PMC11433193 DOI: 10.3390/life14091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Post-stroke depression (PSD) represents a significant neuropsychiatric complication that affects between 39% and 52% of stroke survivors, leading to impaired recovery, decreased quality of life, and increased mortality. This comprehensive review synthesizes our current knowledge of PSD, encompassing its epidemiology, risk factors, underlying neurochemical mechanisms, and the existing tools for preclinical investigation, including animal models and behavioral analyses. Despite the high prevalence and severe impact of PSD, challenges persist in accurately modeling its complex symptomatology in preclinical settings, underscoring the need for robust and valid animal models to better understand and treat PSD. This review also highlights the multidimensional nature of PSD, where both biological and psychosocial factors interplay to influence its onset and course. Further, we examine the efficacy and limitations of the current animal models in mimicking the human PSD condition, along with behavioral tests used to evaluate depressive-like behaviors in rodents. This review also sets a new precedent by integrating the latest findings across multidisciplinary studies, thereby offering a unique and comprehensive perspective of existing knowledge. Finally, the development of more sophisticated models that closely replicate the clinical features of PSD is crucial in order to advance translational research and facilitate the discovery of future effective therapies.
Collapse
Affiliation(s)
- Mădălina Iuliana Mușat
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Aurel Popa-Wagner
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Neurology, Vascular Neurology and Dementia, University of Medicine Essen, 45122 Essen, Germany
| | - Andrei Greșiță
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
4
|
King'uyu DN, Edgar EL, Figueroa C, Kirkland JM, Kopec AM. Morphine exposure during adolescence induces enduring social changes dependent on adolescent stage of exposure, sex, and social test. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537856. [PMID: 37131669 PMCID: PMC10153224 DOI: 10.1101/2023.04.21.537856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Drug exposure during adolescence, when the 'reward' circuitry of the brain is developing, can permanently impact reward-related behavior. Epidemiological studies show that opioid treatment during adolescence, such as pain management for a dental procedure or surgery, increases the incidence of psychiatric illness including substance use disorders. Moreover, the opioid epidemic currently in the United States is affecting younger individuals raising the impetus to understand the pathogenesis of the negative effects of opioids. One reward-related behavior that develops during adolescence is social behavior. We previously demonstrated that social development occurs in rats during sex-specific adolescent periods: early to mid-adolescence in males (postnatal day (P)30-40) and pre-early adolescence in females (P20-30). We thus hypothesized that morphine exposure during the female critical period would result in adult sociability deficits in females, but not males, and morphine administered during the male critical period would result in adult sociability deficits in males, but not females. We found that morphine exposure during the female critical period primarily resulted in deficits in sociability in females, while morphine exposure during the male critical period primarily resulted in deficits in sociability primarily in males. However, depending on the test performed and the social parameter measured, social alterations could be found in both sexes that received morphine exposure at either adolescent stage. These data indicate that when drug exposure occurs during adolescence, and how the endpoint data are measured, will play a large role in determining the effects of drug exposures on social development.
Collapse
Affiliation(s)
- David N King'uyu
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Erin L Edgar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Christopher Figueroa
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - J M Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| |
Collapse
|
5
|
Wang B, Chen J, Sheng Z, Lian W, Wu Y, Liu M. Embryonic exposure to fentanyl induces behavioral changes and neurotoxicity in zebrafish larvae. PeerJ 2022; 10:e14524. [PMID: 36540796 PMCID: PMC9760023 DOI: 10.7717/peerj.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The use of fentanyl during pregnancy, whether by prescription or illicit use, may result in high blood levels that pose an early risk to fetal development. However, little is known regarding the neurotoxicity that might arise from excessive fentanyl exposure in growing organisms, particularly drug-related withdrawal symptoms. In this study, zebrafish embryos were exposed to fentanyl solutions (0.1, 1, and 5 mg/L) for 5 days post fertilization (dpf), followed by a 5-day recovery period, and then the larvae were evaluated for photomotor response, anxiety behavior, shoaling behavior, aggression, social preference, and sensitization behavior. Fentanyl solutions at 1 and 5 mg/L induced elevated anxiety, decreased social preference and aggressiveness, and behavioral sensitization in zebrafish larvae. The expression of genes revealed that embryonic exposure to fentanyl caused substantial alterations in neural activity (bdnf, c-fos) and neuronal development and plasticity (npas4a, egr1, btg2, ier2a, vgf). These results suggest that fentanyl exposure during embryonic development is neurotoxic, highlighting the importance of zebrafish as an aquatic species in research on the neurobehavioral effects of opioids in vertebrates.
Collapse
Affiliation(s)
- Binjie Wang
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Jiale Chen
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Zhong Sheng
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Wanting Lian
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Yuanzhao Wu
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Meng Liu
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Piccin A, Courtand G, Contarino A. Morphine reduces the interest for natural rewards. Psychopharmacology (Berl) 2022; 239:2407-2419. [PMID: 35396673 DOI: 10.1007/s00213-022-06131-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
RATIONALE Alongside a pathological, excessive, motivation for substances of abuse, substance use disorder (SUD) patients often show a dramatic loss of interest for naturally rewarding activities, such as positive peer social interaction and food intake. Yet, pre-clinical evidence of the latter SUD features remains scarce and inconsistent. OBJECTIVES In the current study, we investigated the effect of non-rewarding and rewarding doses of morphine upon social behaviour, motivation for and intake of palatable food, in male and female C57BL/6J mice. METHODS First, the rewarding effects of two relatively low morphine doses (1.25 and 2.5 mg/kg) were assessed using a newly established single substance administration/conditioning trial conditioned place preference (CPP) paradigm. Then, morphine (1.25 and 2.5 mg/kg) effects upon social behaviour, motivation for and intake of palatable food were examined by the three-chamber (3-CH), an operant behaviour and a palatable food preference test, respectively. RESULTS Morphine (2.5 mg/kg) induced CPP in both male and female mice, whereas morphine (1.25 mg/kg) induced CPP only in female mice. Both morphine doses (1.25 and 2.5 mg/kg) reduced sociability, motivation for and intake of palatable food in male and female mice, independently of cognitive function or locomotor activity. CONCLUSIONS Female mice were more sensitive than male mice to the rewarding effects of morphine. Moreover, both a non-rewarding and a rewarding dose of morphine impaired the interest for naturally rewarding activities, indicating that brain reward systems might be more sensitive to the deleterious than to the rewarding effects of substances of abuse.
Collapse
Affiliation(s)
- Alessandro Piccin
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Gilles Courtand
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Angelo Contarino
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France. .,CNRS, INCIA, UMR 5287, Bordeaux, France.
| |
Collapse
|
7
|
Espinosa-Velasco M, Reguilón MD, Bellot M, Nadal-Gratacós N, Berzosa X, Gómez-Canela C, Rodríguez-Arias M, Camarasa J, Escubedo E, Pubill D, López-Arnau R. Repeated administration of N-ethyl-pentedrone induces increased aggression and impairs social exploration after withdrawal in mice. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110562. [PMID: 35500841 DOI: 10.1016/j.pnpbp.2022.110562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
N-ethyl-pentedrone (NEPD, 2-(ethylamino)-1-phenyl-1-pentanone) is one of the latest synthetic cathinone derivatives that emerged into the illicit drug market. This drug has psychostimulant properties and has been related with several intoxications and even fatalities. However, information about the consequences of its acute and repeated consumption is lacking. Thus, the aim of our study was to investigate the behavioral effects after both acute and repeated NEPD exposure as well as the neurochemical changes. Male OF1 mice were treated with an acute dose (1, 3 or 10 mg/kg, i.p.) or received repeated injections of these doses (twice/day, 5 days) of NEPD. Shortly after drug-exposure or during drug-withdrawal, anxiety-like behavior, aggressiveness, social interaction, depressive-like symptoms, body weight and temperature were assessed. Also, monoamine synthesis enzymes, levels of neurotransmitters and their precursors and main metabolites, as well as ΔFosB, were determined in striatum and prefrontal cortex from post-mortem tissue. Acute administration of NEPD induced anxiolytic effects and reduced social exploration whereas during withdrawal after repeated administration the anxiolytic effect had vanished, and the reduced social exploration was still present and accompanied with increased aggressive behavior. Moreover, NEPD (10 mg/kg) induced slight hyperthermia and reduced weight gain during the repeated administration, whereas increased locomotor activity and lack of depressive symptoms were found during withdrawal. This was accompanied by increased plasma corticosterone and decrease in striatal dopamine. Finally, the long-lasting and robust increase in ΔFosB levels found in striatum after NEPD chronic exposure suggests a high risk of dependence. The increased aggressivity and locomotor activity, together with this potential of inducing dependence justify a warning about the risks of consumption of NEPD if translated to humans.
Collapse
Affiliation(s)
- María Espinosa-Velasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain
| | - Marina D Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià - Universitat Ramon Llull, Barcelona, Spain
| | - Núria Nadal-Gratacós
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Xavier Berzosa
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià - Universitat Ramon Llull, Barcelona, Spain
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain.
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain
| |
Collapse
|
8
|
Liao SS, Liu W, Cao J, Zhao ZJ. Territory aggression and energy budget in food-restricted striped hamsters. Physiol Behav 2022; 254:113897. [PMID: 35788009 DOI: 10.1016/j.physbeh.2022.113897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Food resource availability is one of the most important factors affecting interindividual competition in a variety of animal species. However, the energy budget and territory aggression strategy of small mammals during periods of food restriction remain uncertain. In this study, metabolic rate, body temperature, territory aggression behavior, and fat deposit were measured in male striped hamster (Cricetulus barabensis) restricted by 20% of ad libitum food intake with or without supplementary methimazole. Serum thyroid hormone (tri-iodothyronine, T3 and thyroxine, T4), and cytochrome c oxidase (COX) activity in liver, brown adipose tissue, and skeletal muscle, were also measured. Attack latency, total attack times and duration, and the interval duration between attacks of resident hamsters were not significantly changed during food restriction, which was not significantly affected by supplementary methimazole. Metabolic rate and body temperature was significantly increased in food-restricted hamsters following introduction of an intruder, which was not completely blocked by supplementary methimazole. Serum T3 and T4 levels and BAT COX activity were not significantly changed following aggression, and were significantly decreased by supplementary methimazole. These findings suggest that striped hamsters increase energy expenditure for territory aggression during food restriction, and consequently lead to excessive energy depletion. Territory aggression behavior may decrease the capacity to cope with food shortage, which may be independent of thyroid hormone.
Collapse
Affiliation(s)
- Sha-Sha Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wei Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
9
|
Flanigan ME, Kash TL. Coordination of social behaviors by the bed nucleus of the stria terminalis. Eur J Neurosci 2022; 55:2404-2420. [PMID: 33006806 PMCID: PMC9906816 DOI: 10.1111/ejn.14991] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a sexually dimorphic, neuropeptide-rich node of the extended amygdala that has been implicated in responses to stress, drugs of abuse, and natural rewards. Its function is dysregulated in neuropsychiatric disorders that are characterized by stress- or drug-induced alterations in mood, arousal, motivation, and social behavior. However, compared to the BNST's role in mood, arousal, and motivation, its role in social behavior has remained relatively understudied. Moreover, the precise cell types and circuits underlying the BNST's role in social behavior have only recently begun to be explored using modern neuroscience techniques. Here, we systematically review the existing literature investigating the neurobiological substrates within the BNST that contribute to the coordination of various sex-dependent and sex-independent social behavioral repertoires, focusing largely on pharmacological and circuit-based behavioral studies in rodents. We suggest that the BNST coordinates social behavior by promoting appropriate assessment of social contexts to select relevant behavioral outputs and that disruption of socially relevant BNST systems by stress and drugs of abuse may be an important factor in the development of social dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Meghan E. Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC,Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC,Correspondence: Thomas L. Kash, John R. Andrews Distinguished Professor, Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA, , (919) 843-7867
| |
Collapse
|
10
|
Qi M, Liu R, Li B, Wang S, Fan R, Zhao X, Xu D. Behavioral Effect of Terahertz Waves in C57BL/6 Mice. BIOSENSORS 2022; 12:79. [PMID: 35200340 PMCID: PMC8869163 DOI: 10.3390/bios12020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Terahertz is a new radiation source with many unique advantages. In recent years, its application has rapidly expanded to various fields, but there are few studies on the individual effects of terahertz. In this study, we investigated the behavioral effects of terahertz radiation on C57BL/6 mice, and we conducted an open field test, an elevated plus maze test, a light-dark box test, a three-chamber social test, and a forced swim test to explore the effects of terahertz radiation on mice from a behavioral perspective. The results show that terahertz wave may increase anti-anxiety, anti-depression, and social interaction in mice.
Collapse
Affiliation(s)
- Miao Qi
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (R.L.); (B.L.); (S.W.); (R.F.); (X.Z.)
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Rong Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (R.L.); (B.L.); (S.W.); (R.F.); (X.Z.)
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Bing Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (R.L.); (B.L.); (S.W.); (R.F.); (X.Z.)
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shuai Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (R.L.); (B.L.); (S.W.); (R.F.); (X.Z.)
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Runze Fan
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (R.L.); (B.L.); (S.W.); (R.F.); (X.Z.)
| | - Xinyi Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (R.L.); (B.L.); (S.W.); (R.F.); (X.Z.)
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (R.L.); (B.L.); (S.W.); (R.F.); (X.Z.)
| |
Collapse
|
11
|
Li N, Gao S, Wang S, He S, Wang J, He L, Jiang D, Shi YS, Zhang J, Gu Y, Chen T, Kong M, Xu X, Zhao Q. Attractin Participates in Schizophrenia by Affecting Testosterone Levels. Front Cell Dev Biol 2021; 9:755165. [PMID: 34869343 PMCID: PMC8636034 DOI: 10.3389/fcell.2021.755165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
Attractin (ATRN) is a widely expressed glycoprotein that is involved in energy homeostasis, neurodevelopment, and immune response. It is encoded by a gene spanning 180 kb on chromosome 20p13, a region previously implicated in schizophrenia by linkage studies. To address a possible role of ATRN in disorders of the central nervous system, we created an atrn knockout zebrafish line and performed behavioral tests. Adult atrn–/– zebrafish exhibited more pronounced attack behavior relative to wild-type control zebrafish in a tracking analysis. Biochemical analysis revealed elevated testosterone levels in atrn–/– zebrafish. At the gene expression level, we noted an upregulation of cyp51 and hsd17b7, key proteins in testosterone synthesis in the brains of both adult and larvae of atrn–/– zebrafish. In order to further elucidate the relationship between testosterone and behavioral syndromes, we then compared testosterone levels of 9,008 psychiatric patients and 247 healthy controls from the same catchment area. Of all subjects examined, male subjects with schizophrenia exhibited lower testosterone levels compared with controls. In contrast, female subjects with a diagnosis of schizophrenia or bipolar disorder featured higher testosterone levels than did same sex controls. Purposeful sampling of extreme groups showed reduced ATRN expression in a subset of these subjects. Finally, we identified 14 subjects with ATRN mutations. All of whom displayed abnormal testosterone levels. In summary, the interplay of ATRN and testosterone may help to explain sexual dimorphisms in selected behavioral phenotypes.
Collapse
Affiliation(s)
- Nan Li
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Shuzhan Gao
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Shuang Wang
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | | | - Jiayin Wang
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Luqingqing He
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Dongya Jiang
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Yun Stone Shi
- Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, China
| | | | - Yuan Gu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Tian Chen
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Mingjun Kong
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xijia Xu
- Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, China.,Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Qingshun Zhao
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Espinosa-Velasco M, Reguilón MD, Bellot M, Nadal-Gratacós N, Berzosa X, Puigseslloses P, Gómez-Canela C, Rodríguez-Arias M, Pubill D, Camarasa J, Escubedo E, López-Arnau R. Behavioural and neurochemical effects after repeated administration of N-ethylpentylone (ephylone) in mice. J Neurochem 2021; 160:218-233. [PMID: 34816436 DOI: 10.1111/jnc.15542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022]
Abstract
N-ethyl-pentylone (NEP), also known as 'ephylone' and N-ethylnorpentylone, has been identified as one of the most recent novel psychostimulants to emerge into the illicit drug market and it has been associated with some intoxications and even fatalities. However, little is known about the consequences of its repeated consumption as well as the role of the monoaminergic system in such consequences. Thus, the aim of our study was to investigate the neurochemical profile and the behavioural effects after both acute and repeated NEP exposure. Male OF1 mice were acutely (1, 3, 10 mg/kg, i.p.) or repeatedly (1, 3, 10 mg/kg, i.p., 5 days, twice/day) exposed to NEP, and anxiety-like behaviour, aggressiveness, social interaction, depressive-like symptoms, body temperature, changes in monoaminergic enzymes and neurotransmitters levels as well as ΔFosB in striatum and prefrontal cortex (PFC) from post-mortem tissue were analysed short after drug-exposure or during drug-withdrawal. Acute administration of NEP induced anxiolytic effects but also an aggressive behaviour and social exploration deficits in mice, which persist during NEP-withdrawal. Moreover, NEP induced hyperthermia as well as depressive-like symptoms after repeated administrations that may be related to the decrease in serotonin and noradrenaline levels observed in striatum and PFC. Finally, the long-term increase in ΔFosB levels in striatum after NEP chronic exposure points to a high risk of dependence. Altogether indicates that NEP consumption induces different neurological and neuropsychiatric disorders accompanied by changes in the monoaminergic system, posing a threat to public health.
Collapse
Affiliation(s)
- María Espinosa-Velasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Marina D Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià - Universitat Ramon Llull, Barcelona, Spain
| | - Núria Nadal-Gratacós
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.,Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Xavier Berzosa
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Pol Puigseslloses
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.,Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià - Universitat Ramon Llull, Barcelona, Spain
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Bao MH, Xu XM, Huo DL, Cao J, Zhao ZJ. The effect of aggression II: Acclimation to a high ambient temperature reduces territorial aggression in male striped hamsters (Cricetulus barabensis). Horm Behav 2021; 132:104993. [PMID: 33991799 DOI: 10.1016/j.yhbeh.2021.104993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/01/2022]
Abstract
Thyroid hormones have a profound influence on development, cellular differentiation and metabolism, and are also suspected of playing a role in aggression. We measured territorial aggression, body temperature (Tb) and serum thyroid hormones levels of male striped hamsters (Cricetulus barabensis) acclimated to either cold (5 °C), cool (21 °C) or hot (34 °C) ambient temperatures. The effects of methimazole on territorial aggression, food intake, metabolic rate and serum thyroid hormone levels, were also examined. Territorial aggression was significantly lower in male hamsters acclimated to the hot temperature compared to those acclimated to the cool or cold temperatures. Tb significantly increased during aggressive territorial interactions with intruders but did not significantly differ among the three temperature treatments. Serum T3, T4 and cortisol levels of hamsters acclimated to 34 °C were significantly lower than those acclimated to 21 °C. In addition to significantly reducing territorial aggression, treatment with methimazole also significantly reduced serum T3 and T4 levels, Tb and metabolic rate. These results suggest that exposure to high temperatures reduces the capacity of hamsters to dissipate heat causing them to lower their metabolic rate, which, in turn, causes them to reduce territorial aggression to prevent hyperthermia. The lower metabolic rate mediated by down-regulated thyroid hormones inhibits territorial aggression and could thereby determine the outcome of territorial conflicts.
Collapse
Affiliation(s)
- Meng-Huan Bao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Ming Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Da-Liang Huo
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
14
|
Eitan S, Madison CA, Kuempel J. The self-serving benefits of being a good host: A role for our micro-inhabitants in shaping opioids' function. Neurosci Biobehav Rev 2021; 127:284-295. [PMID: 33894242 DOI: 10.1016/j.neubiorev.2021.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
Opioids are highly efficacious in their ability to relieve pain, but they are liable for abuse, dependence, and addiction. Risk factors to develop opioid use disorders (OUD) include chronic stress, socio-environment, and preexisting major depressive disorders (MDD) and posttraumatic stress disorders (PTSD). Additionally, opioids reduce gut motility, induce loss of gut barrier function, and alter the composition of the trillions of microbes hosted in the gastrointestinal tract, known as the gut microbiota. The microbiota are significant contributors to the reciprocal communication between the central nervous system (CNS) and the gut, termed the gut-brain axis. They have strong influences on their host behaviors, including the ability to cope with stress, sociability, affect, mood, and anxiety. Thus, they are implicated in the etiology of MDD and PTSD. Here we review the latest studies demonstrating that intestinal flora can, directly and indirectly, by affecting sociability levels, responses to stress, and mental state, alter the responses to opioids. It suggests that microbiota can potentially be used to increase the resilience to develop analgesic tolerance and OUD.
Collapse
Affiliation(s)
- Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA.
| | - Caitlin A Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
| | - Jacob Kuempel
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
15
|
Piccin A, Contarino A. The CRF 1 receptor mediates social behavior deficits induced by opiate withdrawal. J Neurosci Res 2020; 100:309-321. [PMID: 32725663 DOI: 10.1002/jnr.24697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/18/2020] [Accepted: 07/05/2020] [Indexed: 02/01/2023]
Abstract
Poor sociability and aggressive behavior are key clinical features of opioid use disorders. The corticotropin-releasing factor (CRF) system may mediate behavioral effects of substances of abuse but its implication in substance-induced social behavior deficits and outward-directed hostility remains largely unknown. CRF signaling is mediated by two receptor types, termed CRF1 and CRF2 . The present study aimed at understanding the role for the CRF1 receptor in social and aggressive behavior induced by withdrawal from repeated opiate administration. Thus, wild-type (CRF1 +/+), CRF1 receptor heterozygous (CRF1 +/-), and null mutant (CRF1 -/-) female and male mice were treated with saline or escalating doses of morphine (20-100 mg/kg, i.p.) during six consecutive days and tested in the three-chamber task for sociability (i.e., preference for an unfamiliar same-sex conspecific vs. an object) 7 days after the last administration. Moreover, aggressive biting behavior toward the unfamiliar conspecific was assessed during the three-chamber test. Opiate withdrawal disrupted sociability in CRF1 +/+ and CRF1 +/-, but not in CRF1 -/-, female mice, without affecting aggressive biting behavior in any genotype. In contrast, opiate withdrawal did not affect sociability but increased aggressive biting behavior in male mice, independently of CRF1 receptor-deficiency. Nevertheless, in opiate-withdrawn CRF1 +/+, but not CRF1 +/- and CRF1 -/-, male mice, sociability directly correlated with aggressive biting behavior, suggesting a role for the CRF1 receptor in hostility-linked social approach. These findings demonstrate the implication of the CRF1 receptor in social behavior deficits associated with repeated opiate administration and withdrawal, revealing a new potential target for the treatment of opioid use disorders.
Collapse
Affiliation(s)
- Alessandro Piccin
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Angelo Contarino
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|
16
|
Piccin A, Contarino A. Sex-linked roles of the CRF 1 and the CRF 2 receptor in social behavior. J Neurosci Res 2020; 98:1561-1574. [PMID: 32468598 DOI: 10.1002/jnr.24629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 11/08/2022]
Abstract
Dysfunctional social behavior is a major clinical feature of mood, anxiety, autism spectrum, and substance-related disorders, and may dramatically contribute to the poor outcome of these diseases. Nevertheless, the mechanisms underlying social behavior deficits are still largely unknown. The corticotropin-releasing factor (CRF) system, a major coordinator of the stress response, has been hypothesized to modulate social behavior. CRF signaling is mediated by two receptor types, termed CRF1 and CRF2 . Using the three-chamber task for sociability (i.e., preference for an unfamiliar conspecific vs. an object), this study demonstrates that CRF2 receptor null mutation (CRF2 -/-) reduces sociability in female mice but increases it in male mice. Both female and male CRF2 -/- mice display a preference for social odor cues over neutral cues, indicating that sex- and CRF2 receptor-dependent sociability is not due to altered olfaction or impaired social cues discrimination. Moreover, treatment with the CRF1 receptor-preferring antagonist, antalarmin, consistently induces sociability in non-social mice but disrupts it in social mice, independently of CRF2 receptor deficiency. Sex, CRF2 receptor deficiency, or antalarmin affect locomotor activity during the three-chamber test. However, throughout the study CRF1 and CRF2 receptor-linked sociability is independent of locomotor activity. The present findings highlight major functions for the CRF system in the regulation of social behavior. Moreover, they provide initial evidence of sex-linked roles for the CRF1 and the CRF2 receptor, emphasizing the importance of sex as a major biological variable to be taken into consideration in preclinical and clinical studies.
Collapse
Affiliation(s)
- Alessandro Piccin
- INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Angelo Contarino
- INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|