1
|
Li Y, Wang X, Sun H, Wang H, Ma C. Cheminformatics Exploration of Structural Physicochemical Properties, Molecular Fingerprinting, and Diversity of the Chemical Space of Compounds from Betel Nut ( Areca catechu L.). ACS OMEGA 2025; 10:1551-1561. [PMID: 39829595 PMCID: PMC11739985 DOI: 10.1021/acsomega.4c09386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
In this work, the characterization and diversity of 347 compounds from betel nut (Areca catechu L.) were analyzed for the first time. The dataset of compounds from betel nut (BNC) was compared to compounds from food. They were analyzed in terms of physicochemical properties, scaffold diversity, molecular fingerprints, and global diversity. Approximately 48% of compounds in the BNC confirm Lipinski's and Pfizer's rules. The pharmacological and toxicological properties of edible betel nut were evaluated based on their composition. This work applied the research methods of cheminformatics to food science, and it provided theoretical support and data for betel nut pharmacological research, development of betel nut-related novel medication, and healthy products.
Collapse
Affiliation(s)
- Yubing Li
- School
of Food Science and Technology, Jiang Nan
University, Wuxi, Jiangsu 214122, China
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinyue Wang
- School
of Food Science and Technology, Jiang Nan
University, Wuxi, Jiangsu 214122, China
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haixuan Sun
- School
of Food Science and Technology, Jiang Nan
University, Wuxi, Jiangsu 214122, China
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongxin Wang
- School
of Food Science and Technology, Jiang Nan
University, Wuxi, Jiangsu 214122, China
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chaoyang Ma
- School
of Food Science and Technology, Jiang Nan
University, Wuxi, Jiangsu 214122, China
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Amaral NRD, Abreu MSD, Zanella A, Poletto JP, Mello GPD, Croce MAD, Garbelotto LB, Bernardon MG, Giacomini ACVV. Sex differences in β-N-Methylamino-L-alanine effects on zebrafish behavioral response. Neurotoxicology 2024; 105:257-262. [PMID: 39490749 DOI: 10.1016/j.neuro.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The β-N-methylamino-L-alanine (BMAA) is a neurotoxin produced by cyanobacteria and diatoms and related by triggered neurodegeneration. The exposure to neurotoxins has also been reported by causing emotional and neuroendocrine effects and these effects may be sex-specific. However, the effects of BMAA on emotions and pain, as well as neuroendocrine modulations remain poorly understood. Here, we evaluate potential sex differences in zebrafish behavioral responses to BMAA acute exposure on their anxiety and pain phenotypical behavioral repertoire and their neuroendocrine (cortisol) effects. Overall, sex differences in behavioral responses of adult zebrafish to BMAA exposure were demonstrated, as female fish reacted to it more strongly than males by altering their behavioral phenotype in both the novel tank and writhing -like behavior tests. In addition, sex differences were demonstrated in relation to time response, as male increased the writhing-like behavioral responses immediately after injection of BMAA, while female only 24-h after injection, reinforcing the painful stimulus caused by BMAA. However, the exposure to BMAA elevated the whole-body cortisol levels in both male and female zebrafish. Collectively, these findings emphasize the growing importance of studying sex differences in zebrafish, including the evaluation of neurotoxins effects on emotions and pain in this aquatic experimental model.
Collapse
Affiliation(s)
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.
| | - Alexander Zanella
- Institute of Health, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Júlia P Poletto
- Institute of Health, University of Passo Fundo, Passo Fundo, RS, Brazil
| | | | - Marco A da Croce
- Medical School, University of Passo Fundo, Passo Fundo, RS, Brazil
| | | | | | - Ana C V V Giacomini
- Institute of Health, University of Passo Fundo, Passo Fundo, RS, Brazil; Medical School, University of Passo Fundo, Passo Fundo, RS, Brazil; Graduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, RS, Brazil.
| |
Collapse
|
3
|
Huang G, Zeng D, Liang T, Liu Y, Cui F, Zhao H, Lu W. Recent Advance on Biological Activity and Toxicity of Arecoline in Edible Areca (Betel) Nut: A Review. Foods 2024; 13:3825. [PMID: 39682896 DOI: 10.3390/foods13233825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Areca nut (Areca catechu L. AN), which is the dried, mature seed of the palm species Areca catechu L., is consumed by over 600 million individuals, predominantly in South Asia, East Africa, and certain regions of the tropical Pacific. The International Agency for Research on Cancer (IARC) has classified it as a species carcinogenic to humans and designated it as a Group 1 human carcinogen. Arecoline, which has attracted attention for its therapeutic potential in the treatment of mental illness and the relief of gastrointestinal disorders, is the main active alkaloid in the areca nut. However, in 2020, the IARC said that arecoline might be a "probable human carcinogen". Arecoline can cause various types of cellular damage, primarily leading to the destruction of cell morphology, reduced survival rates, abnormal physiological functions, and even cell apoptosis. The research on its toxic mechanisms includes several aspects, such as increased levels of reactive oxygen species, autophagy, epigenetic dysregulation, and immune dysfunction, but these research findings are scattered and lack systematic integration. This article summarizes the effect mechanisms of arecoline on the oral cavity, neurological and cardiovascular systems, and other organs, as well as embryogenesis, and provides detailed and valuable insights for the clinical practice and targeted therapy of arecoline.
Collapse
Affiliation(s)
- Gang Huang
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, China
| | - Deyong Zeng
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing 401151, China
- School of Medicine and Health Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Tisong Liang
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing 401151, China
| | - Yaping Liu
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing 401151, China
| | - Fang Cui
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, China
| | - Haitian Zhao
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing 401151, China
- School of Medicine and Health Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Weihong Lu
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing 401151, China
- School of Medicine and Health Sciences, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Li W, He S, Tan J, Li N, Zhao C, Wang X, Zhang Z, Liu J, Huang J, Li X, Zhou Q, Hu K, Yang P, Hou S. Transcription factor EGR2 alleviates autoimmune uveitis via activation of GDF15 to modulate the retinal microglial phenotype. Proc Natl Acad Sci U S A 2024; 121:e2316161121. [PMID: 39298490 PMCID: PMC11441539 DOI: 10.1073/pnas.2316161121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 07/29/2024] [Indexed: 09/21/2024] Open
Abstract
Uveitis is a vision-threatening disease primarily driven by a dysregulated immune response, with retinal microglia playing a pivotal role in its progression. Although the transcription factor EGR2 is known to be closely associated with uveitis, including Vogt-Koyanagi-Harada disease and Behcet's disease, and is essential for maintaining the dynamic homeostasis of autoimmunity, its exact role in uveitis remains unclear. In this study, diminished EGR2 expression was observed in both retinal microglia from experimental autoimmune uveitis (EAU) mice and inflammation-induced human microglia cell line (HMC3). We constructed a mice model with conditional knockout of EGR2 in microglia and found that EGR2 deficiency resulted in increased intraocular inflammation. Meanwhile, EGR2 overexpression downregulated the expression of inflammatory cytokines as well as cell migration and proliferation in HMC3 cells. Next, RNA sequencing and ChIP-PCR results indicated that EGR2 directly bound to its downstream target growth differentiation factor 15 (GDF15) and further regulated GDF15 transcription. Furthermore, intravitreal injection of GDF15 recombinant protein was shown to ameliorate EAU progression in vivo. Meanwhile, knockdown of GDF15 reversed the phenotype of EGR2 overexpression-induced microglial inflammation in vitro. In summary, this study highlighted the protective role of the transcription factor EGR2 in AU by modulating the microglial phenotype. GFD15 was identified as a downstream target of EGR2, providing a unique target for uveitis treatment.
Collapse
Affiliation(s)
- Wanqian Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Siyuan He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Jun Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Na Li
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Chenyang Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Zhi Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Jiaxing Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Xingran Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Qian Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Shengping Hou
- Department of Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
5
|
Xiang K, Wang B, Wang L, Zhang Y, Li H, Luo Y. Oxidative Stress, Oxidative Damage, and Cell Apoptosis: Toxicity Induced by Arecoline in Caenorhabditis elegans and Screening of Mitigating Agents. Toxins (Basel) 2024; 16:352. [PMID: 39195762 PMCID: PMC11359293 DOI: 10.3390/toxins16080352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
As the areca nut market is expanding, there is a growing concern regarding areca nut toxicity. Areca nut alkaloids are the major risky components in betel nuts, and their toxic effects are not fully understood. Here, we investigated the parental and transgenerational toxicity of varied doses of areca nut alkaloids in Caenorhabditis elegans. The results showed that the minimal effective concentration of arecoline is 0.2-0.4 mM. First, arecoline exhibited transgenerational toxicity on the worms' longevity, oviposition, and reproduction. Second, the redox homeostasis of C. elegans was markedly altered under exposure to 0.2-0.4 mM arecoline. The mitochondrial membrane potential was thereafter impaired, which was also associated with the induction of apoptosis. Moreover, antioxidant treatments such as lycopene could significantly ameliorate the toxic effects caused by arecoline. In conclusion, arecoline enhances the ROS levels, inducing neurotoxicity, developmental toxicity, and reproductive toxicity in C. elegans through dysregulated oxidative stress, cell apoptosis, and DNA damage-related gene expression. Therefore, the drug-induced production of reactive oxygen species (ROS) may be crucial for its toxic effects, which could be mitigated by antioxidants.
Collapse
Affiliation(s)
- Kaiping Xiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| | - Bing Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| | - Lanying Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| | - Yunfei Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| | - Hanzeng Li
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanping Luo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| |
Collapse
|
6
|
Schenk S, Horsfield JA, Dwoskin L, Johnson SL. Methamphetamine effects in zebrafish (Danio rerio) depend on behavioral endpoint, dose and test session duration. Pharmacol Biochem Behav 2024; 240:173777. [PMID: 38670467 DOI: 10.1016/j.pbb.2024.173777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Research using zebrafish (Danio rerio) has begun to provide novel information in many fields, including the behavioral pharmacology of drug use and misuse. There have been limited studies on the effects of methamphetamine in adult zebrafish and the parameters of exposure (dose, test session length) have not been well-documented. Behavior following drug exposure is generally measured during relatively short sessions (6-10 min is common) in a novel tank environment. Many procedural variables (isolation, netting, novel tank) elicit anxiety-like behavior that is most apparent during the initial portion of a test session. This anxiety-like behavior might mask the initial effects of methamphetamine. During longer test sessions, these anxiety-like responses would be expected to habituate and drug effects should become more apparent. To test this idea, we measured several locomotor activity responses for 50-min following a range of methamphetamine doses (0.1-3.0 mg/L via immersion in methamphetamine solution). Methamphetamine failed to alter swimming velocity, distance travelled, or freezing time. In contrast, methamphetamine produced a dose-dependent decrease in time spent in the bottom of the tank, an increase in the number of visits to the top of the tank, and an increase in the number of transitions along the sides of the tank. The effects of methamphetamine were apparent 10-20 min following exposure and generally persisted throughout the session. These findings indicate that longer test sessions are required to measure methamphetamine-induced changes in behavior in zebrafish, as has been shown in other laboratory animals. The results also suggest that anxiety-like responses associated with various procedural aspects (netting, isolation, novel test apparatus) likely interfere with the ability to observe many behavioral effects of methamphetamine in zebrafish. Based on the current results, habituation to testing procedures to reduce anxiety-like behaviors is recommended in determining the effects of methamphetamine in zebrafish.
Collapse
Affiliation(s)
- Susan Schenk
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Linda Dwoskin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Sheri L Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
7
|
Chen QY, Zhang Y, Ma Y, Zhuo M. Inhibition of cortical synaptic transmission, behavioral nociceptive, and anxiodepressive-like responses by arecoline in adult mice. Mol Brain 2024; 17:39. [PMID: 38886822 PMCID: PMC11184806 DOI: 10.1186/s13041-024-01106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Areca nut, the seed of Areca catechu L., is one of the most widely consumed addictive substances in the world after nicotine, ethanol, and caffeine. The major effective constituent of A. catechu, arecoline, has been reported to affect the central nervous system. Less is known if it may affect pain and its related emotional responses. In this study, we found that oral application of arecoline alleviated the inflammatory pain and its induced anxiolytic and anti-depressive-like behavior. Arecoline also increased the mechanical nociceptive threshold and alleviated depression-like behavior in naïve mice. In the anterior cingulate cortex (ACC), which acts as a hinge of nociception and its related anxiety and depression, by using the multi-electrode field potential recording and whole-cell patch-clamp recording, we found that the evoked postsynaptic transmission in the ACC of adult mice has been inhibited by the application of arecoline. The muscarinic receptor is the major receptor of the arecoline in the ACC. Our results suggest that arecoline alleviates pain, anxiety, and depression-like behavior in both physiological and pathological conditions, and this new mechanism may help to treat patients with chronic pain and its related anxiety and disorder in the future.
Collapse
Affiliation(s)
- Qi-Yu Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, Chinese Academy of Sciences Shenzhen Institute of Advanced Technology, Shenzhen, China
- Zhuomin International Institute for Brain Research, Qingdao, China
| | - Yuxiang Zhang
- Zhuomin International Institute for Brain Research, Qingdao, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yujie Ma
- Zhuomin International Institute for Brain Research, Qingdao, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Min Zhuo
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China.
- Zhuomin International Institute for Brain Research, Qingdao, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Room #3342, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
8
|
Sun Y, Feng J, Hou W, Qi H, Liu Y. Comprehensive insights into areca nut: active components and omics technologies for bioactivity evaluation and quality control. Front Pharmacol 2024; 15:1407212. [PMID: 38873426 PMCID: PMC11169615 DOI: 10.3389/fphar.2024.1407212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Areca nut (AN), the fruit or seed of Areca catechu Linn, has many uses, including chewing and medicinal purposes. It has sparked worries about health due to the presence of alkaloids. Chewing AN may have a variety of negative consequences; however, the medicinal use of AN has no notable adverse effects. To completely understand and effectively use AN, researchers have investigated its chemical makeup or biological activity, analyzed the variations between different AN species and different periods, and improved extraction and processing procedures. Today, an increasing number of researchers are exploring the underlying reasons for AN variations, as well as the molecular mechanisms of biosynthesis of chemical components, to comprehend and change AN at the genetic level. This review presents an overview of the clinical study, pharmacology, and detection of the main bioactive components in AN, and the main factors influencing their content, delving into the omics applications in AN research. On the basis of the discussions and summaries, this review identifies current research gaps and proposes future directions for investigation.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Feng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Wencheng Hou
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Huasha Qi
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yangyang Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| |
Collapse
|
9
|
Ilyin NP, Nabiullin AD, Kozlova AD, Kupriyanova OV, Shevyrin VA, Gloriozova T, Filimonov D, Lagunin A, Galstyan DS, Kolesnikova TO, Mor MS, Efimova EV, Poroikov V, Yenkoyan KB, de Abreu MS, Demin KA, Kalueff AV. Chronic Behavioral and Neurochemical Effects of Four Novel N-Benzyl-2-phenylethylamine Derivatives Recently Identified as "Psychoactive" in Adult Zebrafish Screens. ACS Chem Neurosci 2024; 15:2006-2017. [PMID: 38683969 DOI: 10.1021/acschemneuro.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Arslan D Nabiullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna D Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str. ,Ekaterinburg 620002, Russia
| | - Tatyana Gloriozova
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Dmitry Filimonov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Alexey Lagunin
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
- Biochemistry Department, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 900050, Brazil
| | - Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Allan V Kalueff
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
- Suzhou Key Laboratory of Neurobiology and Cell Signalling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
10
|
Jiang Z, Deng L, Xiang G, Xu X, Wang Y. A Mechanistic Study of the Osteogenic Effect of Arecoline in an Osteoporosis Model: Inhibition of Iron Overload-Induced Osteogenesis by Promoting Heme Oxygenase-1 Expression. Antioxidants (Basel) 2024; 13:430. [PMID: 38671878 PMCID: PMC11047558 DOI: 10.3390/antiox13040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Iron overload-associated osteoporosis presents a significant challenge to bone health. This study examines the effects of arecoline (ACL), an alkaloid found in areca nut, on bone metabolism under iron overload conditions induced by ferric ammonium citrate (FAC) treatment. The results indicate that ACL mitigates the FAC-induced inhibition of osteogenesis in zebrafish larvae, as demonstrated by increased skeletal mineralization and upregulation of osteogenic genes. ACL attenuates FAC-mediated suppression of osteoblast differentiation and mineralization in MC3T3-E1 cells. RNA sequencing analysis suggests that the protective effects of ACL are related to the regulation of ferroptosis. We demonstrate that ACL inhibits ferroptosis, including oxidative stress, lipid peroxidation, mitochondrial damage, and cell death under FAC exposure. In this study, we have identified heme oxygenase-1 (HO-1) as a critical mediator of ACL inhibiting ferroptosis and promoting osteogenesis, which was validated by HO-1 knockdown and knockout experiments. The study links ACL to HO-1 activation and ferroptosis regulation in the context of bone metabolism. These findings provide new insights into the mechanisms underlying the modulation of osteogenesis by ACL. Targeting the HO-1/ferroptosis axis is a promising therapeutic approach for treating iron overload-induced bone diseases.
Collapse
Affiliation(s)
- Zhongjing Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Linhua Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xia Xu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Practice, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
11
|
Sun H, Yu W, Li H, Hu X, Wang X. Bioactive Components of Areca Nut: An Overview of Their Positive Impacts Targeting Different Organs. Nutrients 2024; 16:695. [PMID: 38474823 PMCID: PMC10935369 DOI: 10.3390/nu16050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Areca catechu L. is a widely cultivated tropical crop in Southeast Asia, and its fruit, areca nut, has been consumed as a traditional Chinese medicinal material for more than 10,000 years, although it has recently attracted widespread attention due to potential hazards. Areca nut holds a significant position in traditional medicine in many areas and ranks first among the four southern medicines in China. Numerous bioactive compounds have been identified in areca nuts, including alkaloids, polyphenols, polysaccharides, and fatty acids, which exhibit diverse bioactive functions, such as anti-bacterial, deworming, anti-viral, anti-oxidant, anti-inflammatory, and anti-tumor effects. Furthermore, they also display beneficial impacts targeting the nervous, digestive, and endocrine systems. This review summarizes the pharmacological functions and underlying mechanisms of the bioactive ingredients in areca nut. This helps to ascertain the beneficial components of areca nut, discover its medicinal potential, and guide the utilization of the areca nut.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Wenzhen Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| |
Collapse
|
12
|
Cabral IB, de Lima Moreira CV, Rodrigues ACC, da Silva Moreira LK, Pereira JKA, Gomides CD, Lião LM, Machado LS, Vaz BG, da Cunha LC, de Oliveira Neto JR, da Silva-Júnior EF, de Aquino TM, da Silva Santos-Júnior PF, Silva ON, da Rocha FF, Costa EA, Menegatti R, Fajemiroye JO. Preclinical data on morpholine (3,5-di-tertbutyl-4-hydroxyphenyl) methanone induced anxiolysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2957-2975. [PMID: 37097335 DOI: 10.1007/s00210-023-02502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/15/2023] [Indexed: 04/26/2023]
Abstract
Trimetozine is used to be indicated for the treatment of mental illnesses, particularly anxiety. The present study provides data on the pharmacological profile of trimetozine derivative morpholine (3,5-di-tert-butyl-4-hydroxyphenyl) methanone (LQFM289) which was designed from molecular hybridization of trimetozine lead compound and 2,6-di-tert-butyl-hydroxytoluene to develop new anxiolytic drugs. Here, we conduct molecular dynamics simulations, docking studies, receptor binding assays, and in silico ADMET profiling of LQFM289 before its behavioral and biochemical assessment in mice within the dose range of 5-20 mg/kg. The docking of LQFM289 showed strong interactions with the benzodiazepine binding sites and matched well with receptor binding data. With the ADMET profile of this trimetozine derivative that predicts a high intestinal absorption and permeability to blood-brain barrier without being inhibited by the permeability glycoprotein, the oral administration of LQFM289 10 mg/kg consistently induced anxiolytic-like behavior of the mice exposed to the open field and light-dark box apparatus without eliciting motor incoordination in the wire, rotarod, and chimney tests. A decrease in the wire and rotarod´s fall latency coupled with an increase in the chimney test´s climbing time and a decrease in the number of crossings in the open field apparatus at the dose of 20 mg/kg of this trimetozine derivative suggest sedative or motor coordination impairment at this highest dose. The attenuation of the anxiolytic-like effects of LQFM289 (10 mg/kg) by flumazenil pretreatment implicates the participation of benzodiazepine binding sites. The lowering of corticosterone and tumor necrosis factor alpha (cytokine) in LQFM289-treated mice at a single oral (acute) dose of 10 mg/kg suggests that the anxiolytic-like effect of this compound also involves the recruitment of non-benzodiazepine binding sites/GABAergic molecular machinery.
Collapse
Affiliation(s)
- Iara Barbosa Cabral
- Institute of Biological Science, Federal University of Goiás, CEP 74001-970, Goiânia, GO, Brazil
| | | | | | | | | | - Christian Dias Gomides
- Institute of Chemistry, Federal University of Goiás, Av. Esperança S/N, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Luciano M Lião
- Institute of Chemistry, Federal University of Goiás, Av. Esperança S/N, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Lucas S Machado
- Institute of Chemistry, Federal University of Goiás, Av. Esperança S/N, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Boniek G Vaz
- Institute of Chemistry, Federal University of Goiás, Av. Esperança S/N, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Luiz Carlos da Cunha
- Faculty of Pharmacy, Federal University of Goiás, PMB 131, CEP 74001-970, Goiânia, Brazil
| | | | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, Alagoas, Maceió, 57072-900, Brazil
| | - Thiago Mendonça de Aquino
- Research Group in Therapeutic Strategies, Federal University of Alagoas, Lourival Melo Mota Avenue, Alagoas, Maceió, 57072-900, Brazil
| | | | - Osmar N Silva
- Evangelical University of Goias, UniEvangélica, Av. Universitária Km 3, 5 Cidade Universitária Anápolis, Goias, GO, 75083-515, Brazil
| | - Fábio Fagundes da Rocha
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Elson Alves Costa
- Institute of Biological Science, Federal University of Goiás, CEP 74001-970, Goiânia, GO, Brazil
| | - Ricardo Menegatti
- Faculty of Pharmacy, Federal University of Goiás, PMB 131, CEP 74001-970, Goiânia, Brazil
| | - James O Fajemiroye
- Institute of Biological Science, Federal University of Goiás, CEP 74001-970, Goiânia, GO, Brazil.
- Evangelical University of Goias, UniEvangélica, Av. Universitária Km 3, 5 Cidade Universitária Anápolis, Goias, GO, 75083-515, Brazil.
| |
Collapse
|
13
|
Yehuda H, Madrer N, Goldberg D, Soreq H, Meerson A. Inversely Regulated Inflammation-Related Processes Mediate Anxiety-Obesity Links in Zebrafish Larvae and Adults. Cells 2023; 12:1794. [PMID: 37443828 PMCID: PMC10341043 DOI: 10.3390/cells12131794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Anxiety and metabolic impairments are often inter-related, but the underlying mechanisms are unknown. To seek RNAs involved in the anxiety disorder-metabolic disorder link, we subjected zebrafish larvae to caffeine-induced anxiety or high-fat diet (HFD)-induced obesity followed by RNA sequencing and analyses. Notably, differentially expressed (DE) transcripts in these larval models and an adult zebrafish caffeine-induced anxiety model, as well as the transcript profiles of inherently anxious versus less anxious zebrafish strains and high-fat diet-fed versus standard diet-fed adult zebrafish, revealed inversely regulated DE transcripts. In both larval anxiety and obesity models, these included long noncoding RNAs and transfer RNA fragments, with the overrepresented immune system and inflammation pathways, e.g., the "interleukin signaling pathway" and "inflammation mediated by chemokine and cytokine signaling pathway". In adulthood, overrepresented immune system processes included "T cell activation", "leukocyte cell-cell adhesion", and "antigen processing and presentation". Furthermore, unlike adult zebrafish, obesity in larvae was not accompanied by anxiety-like behavior. Together, these results may reflect an antagonistic pleiotropic phenomenon involving a re-adjusted modulation of the anxiety-metabolic links with an occurrence of the acquired immune system. Furthermore, the HFD potential to normalize anxiety-upregulated immune-related genes may reflect the high-fat diet protection of anxiety and neurodegeneration reported by others.
Collapse
Affiliation(s)
- Hila Yehuda
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
| | - Nimrod Madrer
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Doron Goldberg
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- Tel-Hai College, Upper Galilee 1220800, Israel;
| | - Hermona Soreq
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ari Meerson
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- Tel-Hai College, Upper Galilee 1220800, Israel;
| |
Collapse
|
14
|
Liu PF, Chang YF. The Controversial Roles of Areca Nut: Medicine or Toxin? Int J Mol Sci 2023; 24:ijms24108996. [PMID: 37240342 DOI: 10.3390/ijms24108996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Areca nut (AN) is used for traditional herbal medicine and social activities in several countries. It was used as early as about A.D. 25-220 as a remedy. Traditionally, AN was applied for several medicinal functions. However, it was also reported to have toxicological effects. In this review article, we updated recent trends of research in addition to acquire new knowledge about AN. First, the history of AN usage from ancient years was described. Then, the chemical components of AN and their biological functions was compared; arecoline is an especially important compound in AN. AN extract has different effects caused by different components. Thus, the dual effects of AN with pharmacological and toxicological effects were summarized. Finally, we described perspectives, trends and challenges of AN. It will provide the insight of removing or modifying the toxic compounds of AN extractions for enhancing their pharmacological activity to treat several diseases in future applications.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
15
|
Yan W, Zhang T, Li S, Wang Y, Zhu L, Cao Y, Lai X, Huang H. Oxidative Stress and Endoplasmic Reticulum Stress Contributes to Arecoline and Its Secondary Metabolites-Induced Dyskinesia in Zebrafish Embryos. Int J Mol Sci 2023; 24:ijms24076327. [PMID: 37047326 PMCID: PMC10094114 DOI: 10.3390/ijms24076327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Areca nut has been listed as one of the most addictive substances, along with tobacco, alcohol and caffeine. Areca nut contains seven psychoactive alkaloids; however, the effects of these alkaloids on embryonic development and motor behavior are rarely addressed in zebrafish embryo-larvae. Herein, we investigated the effects of exposure to three alkaloids (arecoline and secondary metabolites—arecaidine and arecoline N-oxide) on the developmental parameters, locomotive behavior, oxidative stress and transcriptome of zebrafish embryos. Zebrafish embryos exposed to different concentrations (0, 0.1, 1, 10, 100 and 1000 μM) of arecoline, arecaidine and arecoline N-oxide showed no changes in mortality and hatchability rates, but the malformation rate of zebrafish larvae was significantly increased in a dose-dependent manner and accompanied by changes in body length. Moreover, the swimming activity of zebrafish larvae decreased, which may be due to the increase in reactive oxygen species and the imbalance between oxidation and antioxidation. Meanwhile, transcriptome analysis showed that endoplasmic reticulum stress and the apoptosis p53 signaling pathway were significantly enriched after exposure to arecoline and arecoline N-oxide. However, arecaidine exposure focuses on protein synthesis and transport. These findings provide an important reference for risk assessment and early warning of areca nut alkaloid exposure.
Collapse
Affiliation(s)
- Wenhua Yan
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing 400010, China; (W.Y.)
| | - Tian Zhang
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, China; (T.Z.)
| | - Shuaiting Li
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing 400010, China; (W.Y.)
| | - Yunpeng Wang
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing 400010, China; (W.Y.)
| | - Li Zhu
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, China; (T.Z.)
| | - Yu Cao
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, China; (T.Z.)
| | - Xiaofang Lai
- Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huizhe Huang
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing 400010, China; (W.Y.)
- Correspondence: ; Tel.: +86-023-62888334
| |
Collapse
|
16
|
Factors in oral-related quality of life of betel quid users receiving oral mucosal screening: a cross‑sectional study in Taiwan. BMC Oral Health 2023; 23:88. [PMID: 36782200 PMCID: PMC9924842 DOI: 10.1186/s12903-023-02800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Betel quid (BQ) chewing is associated with poor oral hygiene, psychological impairment, and acute and long-term addictive effects, resulting in worse oral-related quality of life (OHRQoL). The purpose of this study was to characterize the factors associated with OHRQoL among BQ users receiving oral mucosal screening. METHODS A cross-sectional study was conducted. Data were collected by random sampling of BQ users who visited outpatient departments receiving oral mucosal screening in a medical center Taiwan. The oral health assessment tool, the state anxiety inventory, the betel quid dependence scale, and the oral health impact profile were used to measure oral health status, anxiety, BQ dependence, and OHRQoL, respectively. Pearson's product-moment coefficient was used to examine the relationship between OHRQoL and the selected independent variables. Independent-samples t-test was used to compare OHRQoL by annual family income, the presence of chronic disease, and BQ dependence. Hierarchical multiple linear regression analysis was used to identify factors associated with OHRQoL. RESULTS A total of 175 BQ users were surveyed. Factors associated with OHRQoL included oral health status, anxiety, and BQ dependence. BQ users reporting low oral health status, greater anxiety, and more BQ dependence were more likely to have worse OHRQoL. CONCLUSIONS Poor oral health status, anxiety, and BQ dependence negatively impact on OHRQoL among patients with BQ use receiving oral mucosal screening.
Collapse
|
17
|
Pandy V, Challa H, Byram P. Protective effect of methanolic extract of Areca catechu nut on ethanol withdrawal symptoms in mice. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Background
The purpose of the current study was to examine the potential impact of a methanolic extract of Areca catechu nut (MAN) on handling-induced convulsions (HIC), anxiety and anhedonia behaviour of alcohol-withdrawn mice. 30 female Swiss albino mice were divided into 5 groups, each with 6 animals. Group 1 (saline withdrawal) received saline during the 3-day alcohol/saline induction phase, while the other 4 groups (alcohol withdrawal) received 20% v/v ethanol (1.25 ml/100 g body weight, i.p.; 20% v/v ethanol was made from absolute ethanol with 79.9 ml saline + 0.1 ml fomepizole, an alcohol dehydrogenase inhibitor). Day four (test day) involved studying handling-induced convulsions; open field test (OFT), elevated plus maze test (EPM), marble burying test (MBT) for anxiety; 24-h sucrose preference test (SPT) for anhedonia in mice. On the test day, Group I and II (saline withdrawal and alcohol withdrawal) received oral treatments with 1% w/v sodium carboxyl methylcellulose 1 h prior to the behavioural testing. Group III received an injection of diazepam (1 mg/kg, i.p., 30 min prior) and Group IV and V were treated with two different doses of MAN (50 and 100 mg/kg, p.o.) 1 h prior to the behavioural test.
Results
At doses of 50 and 100 mg/kg, p.o., the Areca catechu nut methanolic extract significantly reduced handling convulsions and anxiety, and had an anti-anhedonic effect using various evaluation criteria, such as convulsion score (HIC), no. of central and peripheral line crossings (OFT), % entries and time spent in open arms (EPM), no. of marbles buried (MBT), and sucrose intake ratio (SPT) in alcohol-withdrawn mice.
Conclusion
In mice undergoing alcohol withdrawal, Areca catechu nut extract (MAN) greatly lessens handling-induced convulsions, anxiety and depression symptoms.
Graphical Abstract
Collapse
|
18
|
Siregar P, Audira G, Castillo AL, Roldan MJM, Suryanto ME, Liu RX, Lin YT, Lai YH, Hsiao CD. Comparison of the psychoactive activity of four primary Areca nut alkaloids in zebrafish by behavioral approach and molecular docking. Biomed Pharmacother 2022; 155:113809. [DOI: 10.1016/j.biopha.2022.113809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022] Open
|
19
|
Han Y, Ma Y, Tong J, Zhang J, Hu C. Systems assessment of statins hazard: Integrating in silico prediction, developmental toxicity profile and transcriptomics in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113981. [PMID: 36029576 DOI: 10.1016/j.ecoenv.2022.113981] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Statins are prescribed widely as lipid-lowering agents. However, statins are associated with an increased harmful risk on public health and the ecosystem. Little is known about statins' toxicity on biological development and the underlying molecular mechanisms. We exposed zebrafish embryos to a series of statins to evaluate their development toxicity. Statins-induced embryonic developmental defects in a concentration-dependent manner. 72 h LC50 values for lovastatin, simvastatin, fluvastatin, atorvastatin, rosuvastatin, and pravastatin were 0.01 μM, 0.04 μM, 1.93 μM, 37.28 μM, 79.29 μM, and 2170 μM, respectively. Moreover, the expression of genes involved in heart contraction, calcium ion binding, transcription factors, nucleus, and G protein-coupled receptor signaling pathway was altered by statins. The early growth response gene (egr4) and transcription factor genes (fosab and fosb) were screened as potential toxicity targets due to their significant upregulation based on protein-protein interaction (PPI) and drug-gene interaction network analysis. Finally, the ecotoxicity profile of statins was predicted by in silico method, and statins were high or moderate risk to aquatic organisms. We provide a systems toxicology strategy to explore the toxicity of statins and illustrate the potential mechanisms of action.
Collapse
Affiliation(s)
- Ying Han
- NHC Key Laboratory of Biotechnology of Antibiotics, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuanyuan Ma
- NHC Key Laboratory of Biotechnology of Antibiotics, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Junwei Tong
- NHC Key Laboratory of Biotechnology of Antibiotics, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingpu Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Changqin Hu
- Institute for Chemical Drug Control, National Institutes for Food and Drug Control, Beijing 102629, China.
| |
Collapse
|
20
|
Dong K, Li L, Chen C, Tengbe MS, Chen K, Shi Y, Wu X, Qiu X. Impacts of cetylpyridinium chloride on the behavior and brain neurotransmitter levels of juvenile and adult zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109393. [PMID: 35700941 DOI: 10.1016/j.cbpc.2022.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Cetylpyridinium chloride (CPC) is a cationic surfactant that has been widely used as an antibacterial ingredient in pharmaceutical and personal care products. Due to its high residue in surface waters, there is increasing concern over the potential risk of CPC to aquatic ecosystems. However, knowledge of its impacts on fish is still limited. Therefore, this study exposed juvenile and adult zebrafish to CPC (0, 10, and 40 μg/L) for four days. Subsequently, changes in their behavioral traits and brain levels of several neurotransmitters were investigated. The behavioral assay showed that CPC exposure significantly decreased the locomotor activity and social interaction of zebrafish at both life stages, and juveniles were more sensitive to CPC exposure than adults. In the control groups, the brain neurotransmitters concentrations increased with age in zebrafish. However, CPC exposure tended to increase the brain neurotransmitter levels of juveniles but decreased their levels in adults. Correlation analysis revealed that the brain monoamine neurotransmitters and their turnover might play important roles in the life stage-dependent behavioral response to CPC. In particular, the DOPAC/DA ratio was significantly associated with CPC-induced hypoactivity and reduced social interactions in juveniles but not adults. Our findings demonstrated that CPC exposure could cause abnormal behavior in juvenile and adult zebrafish and disturb their brain neurotransmitters, even at environmentally relevant concentrations, and thus highlighted the necessity for further assessing its potential risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Kejun Dong
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lixia Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Michaela Sia Tengbe
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
21
|
Liu X, Jiang L, Zhang Q, Zhao Z, Zhang H. Arecoline and arecaidine lixiviation in areca nut blanching: Liquid chromatography‐ion trap‐time of flight hybrid mass spectrometry determination and kinetic modeling. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoling Liu
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
| | - Lian Jiang
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
| | - Qi Zhang
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
| | - Zhendong Zhao
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
- Analytical and Testing Center Hainan University Haikou China
| | - Haide Zhang
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
| |
Collapse
|
22
|
Kolesnikova TO, Galstyan DS, Demin KA, Barabanov MA, Pestov AV, S de Abreu M, Strekalova T, Kalueff AV. Pharmacological characterization of a novel putative nootropic beta-alanine derivative, MB-005, in adult zebrafish. J Psychopharmacol 2022; 36:892-902. [PMID: 35713386 DOI: 10.1177/02698811221098192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cognitive deficits represent an urgent biomedical problem, and are commonly reduced by nootropic drugs. Animal models, including both rodents and zebrafish, offer a valuable tool for studying cognitive phenotypes and screening novel nootropics. Beta-alanine and its derivatives have recently been proposed to exert nootropic activity. AIMS This study aimed to characterize putative nootropic profile of a novel β-alanine analogue, 1,3-diaminopropane (MB-005), in adult zebrafish. METHODS Nootropic profile of MB-005 was assessed in adult zebrafish in the novel tank and conditioned place aversion (CPA) tests acutely, and in cued-learning plus-maze (PMT) tests chronically. RESULTS/OUTCOMES MB-005 did not alter zebrafish anxiety-like behavior or monoamine neurochemistry acutely, improved short-term memory in the CPA test, but impaired cognitive performance in both CPA and PMT tests chronically. CONCLUSIONS/INTERPRETATION This study reveals high sensitivity of zebrafish cognitive phenotypes to MB-005, suggesting it as a potential novel cognitive enhancer acutely, but raises concerns over its cognitive (and, possibly, other) side-effects chronically.
Collapse
Affiliation(s)
| | - David S Galstyan
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia.,Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Konstantin A Demin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia.,Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia.,Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, Saint Petersburg, Russia
| | - Mikhail A Barabanov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Alexander V Pestov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.,Ural Federal University, Yekaterinburg, Russia
| | | | - Tatyana Strekalova
- Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia.,Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia.,Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia.,Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, Saint Petersburg, Russia.,Moscow Institute of Physics and Technology, Moscow, Russia.,Maastricht University, Maastricht, The Netherlands.,COBRAIN Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia.,Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia.,School of Pharmacy, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Demin KA, Kupriyanova OV, Shevyrin VA, Derzhavina KA, Krotova NA, Ilyin NP, Kolesnikova TO, Galstyan DS, Kositsyn YM, Khaybaev AAS, Seredinskaya MV, Dubrovskii Y, Sadykova RG, Nerush MO, Mor MS, Petersen EV, Strekalova T, Efimova EV, Kuvarzin SR, Yenkoyan KB, Bozhko DV, Myrov VO, Kolchanova SM, Polovian AI, Galumov GK, Kalueff AV. Acute behavioral and Neurochemical Effects of Novel N-Benzyl-2-Phenylethylamine Derivatives in Adult Zebrafish. ACS Chem Neurosci 2022; 13:1902-1922. [PMID: 35671176 DOI: 10.1021/acschemneuro.2c00123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hallucinogenic drugs potently affect brain and behavior and have also recently emerged as potentially promising agents in pharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful animal model organism for screening neuroactive drugs, including hallucinogens. Here, we test a battery of ten novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with the 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -OCH3, -OCF3, -F, -Cl, and -Br substitutions in the ortho position of the phenyl ring of the N-benzyl moiety, assessing their acute behavioral and neurochemical effects in the adult zebrafish. Overall, substitutions in the Overall, substitutions in the N-benzyl moiety modulate locomotion, and substitutions in the phenethylamine moiety alter zebrafish anxiety-like behavior, also affecting the brain serotonin and/or dopamine turnover. The 24H-NBOMe(F) and 34H-NBOMe(F) treatment also reduced zebrafish despair-like behavior. Computational analyses of zebrafish behavioral data by artificial intelligence identified several distinct clusters for these agents, including anxiogenic/hypolocomotor (24H-NBF, 24H-NBOMe, and 34H-NBF), behaviorally inert (34H-NBBr, 34H-NBCl, and 34H-NBOMe), anxiogenic/hallucinogenic-like (24H-NBBr, 24H-NBCl, and 24H-NBOMe(F)), and anxiolytic/hallucinogenic-like (34H-NBOMe(F)) drugs. Our computational analyses also revealed phenotypic similarity of the behavioral activity of some NBPEAs to that of selected conventional serotonergic and antiglutamatergic hallucinogens. In silico functional molecular activity modeling further supported the overlap of the drug targets for NBPEAs tested here and the conventional serotonergic and antiglutamatergic hallucinogens. Overall, these findings suggest potent neuroactive properties of several novel synthetic NBPEAs, detected in a sensitive in vivo vertebrate model system, the zebrafish, raising the possibility of their potential clinical use and abuse.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, Kazan 420008, Russia.,Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemistry and Technology, Ural Federal University, 19 Mira Str., Ekaterinburg 620002, Russia
| | - Ksenia A Derzhavina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Nataliya A Krotova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
| | - Yurii M Kositsyn
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | | | - Maria V Seredinskaya
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Yaroslav Dubrovskii
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia.,Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg State Chemical Pharmaceutical University, St. Petersburg 197022, Russia
| | | | - Maria O Nerush
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | | | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Savelii R Kuvarzin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, M. Heratsi Yerevan State Medical University, Yerevan AM 0025, Armenia.,COBRAIN Scientific Educational Center for Fundamental Brain Research, Yerevan AM 0025, Armenia
| | | | | | | | | | | | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia.,Ural Federal University, Ekaterinburg 620075, Russia.,Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia.,Moscow Institute of Physics and Technology, Moscow 141701, Russia.,COBRAIN Scientific Educational Center for Fundamental Brain Research, Yerevan AM 0025, Armenia.,Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
24
|
Lan Q, Guan P, Huang C, Huang S, Zhou P, Zhang C. Arecoline Induces an Excitatory Response in Ventral Tegmental Area Dopaminergic Neurons in Anesthetized Rats. Front Pharmacol 2022; 13:872212. [PMID: 35548350 PMCID: PMC9081529 DOI: 10.3389/fphar.2022.872212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/21/2022] Open
Abstract
Arecoline is the principle psychoactive alkaloid in areca nuts. Areca nuts are chewable seeds of Areca catechu L., which are epidemic plants that grow in tropical and subtropical countries and cause dependency after long-term use. However, the mechanisms underlying such dependency remain largely unclear, and therefore, no effective interventions for its cessation have been developed. The present study aimed to examine the effects of arecoline on neurons of the ventral tegmental area (VTA). After rats were anesthetized and craniotomized, electrophysiological electrodes were lowered into the VTA to obtain extracellular recordings. The mean firing rate of dopaminergic and GABAergic neurons were then calculated and analyzed before and after arecoline treatment. The burst characteristics of the dopaminergic neurons were also analyzed. The results showed that arecoline evoked a significant enhancement of the firing rate of dopaminergic neurons, but not GABAergic neurons. Moreover, arecoline evoked remarkable burst firings in the dopaminergic neurons, including an increase in the burst rate, elongation in the burst duration, and an enhancement in the number of spikes per burst. Collectively, the findings revealed that arecoline significantly excited VTA dopaminergic neurons, which may be a mechanism underlying areca nut dependency and a potential target for areca nut cessation therapy.
Collapse
Affiliation(s)
- Qinghui Lan
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, China
| | - Peiqing Guan
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, China
| | - Chunzheng Huang
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, China
| | - Shile Huang
- Western Guangdong Characteristic Biology and Medicine Engineering and Research Center, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Peiling Zhou
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, China
- *Correspondence: Changzheng Zhang, ; Peiling Zhou,
| | - Changzheng Zhang
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, China
- *Correspondence: Changzheng Zhang, ; Peiling Zhou,
| |
Collapse
|
25
|
Bashirzade AAO, Cheresiz SV, Belova AS, Drobkov AV, Korotaeva AD, Azizi-Arani S, Azimirad A, Odle E, Gild EYV, Ardashov OV, Volcho KP, Bozhko DV, Myrov VO, Kolchanova SM, Polovian AI, Galumov GK, Salakhutdinov NF, Amstislavskaya TG, Kalueff AV. MPTP-Treated Zebrafish Recapitulate 'Late-Stage' Parkinson's-like Cognitive Decline. TOXICS 2022; 10:69. [PMID: 35202255 PMCID: PMC8879925 DOI: 10.3390/toxics10020069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/25/2022]
Abstract
The zebrafish is a promising model species in biomedical research, including neurotoxicology and neuroactive drug screening. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) evokes degeneration of dopaminergic neurons and is commonly used to model Parkinson's disease (PD) in laboratory animals, including zebrafish. However, cognitive phenotypes in MPTP-evoked experimental PD models remain poorly understood. Here, we established an LD50 (292 mg/kg) for intraperitoneal MPTP administration in adult zebrafish, and report impaired spatial working memory (poorer spontaneous alternation in the Y-maze) in a PD model utilizing fish treated with 200 µg of this agent. In addition to conventional behavioral analyses, we also employed artificial intelligence (AI)-based approaches to independently and without bias characterize MPTP effects on zebrafish behavior during the Y-maze test. These analyses yielded a distinct cluster for 200-μg MPTP (vs. other) groups, suggesting that high-dose MPTP produced distinct, computationally detectable patterns of zebrafish swimming. Collectively, these findings support MPTP treatment in adult zebrafish as a late-stage experimental PD model with overt cognitive phenotypes.
Collapse
Affiliation(s)
- Alim A. O. Bashirzade
- Scientific Research Institute of Neuroscience and Medicine, 630090 Novosibirsk, Russia; (S.V.C.); (A.S.B.); (T.G.A.)
- Institute of Medicine and Psychology, Novosibirsk State University, 630117 Novosibirsk, Russia; (A.V.D.); (A.D.K.); (S.A.-A.); (A.A.); (E.O.); (E.-Y.V.G.)
| | - Sergey V. Cheresiz
- Scientific Research Institute of Neuroscience and Medicine, 630090 Novosibirsk, Russia; (S.V.C.); (A.S.B.); (T.G.A.)
- Institute of Medicine and Psychology, Novosibirsk State University, 630117 Novosibirsk, Russia; (A.V.D.); (A.D.K.); (S.A.-A.); (A.A.); (E.O.); (E.-Y.V.G.)
| | - Alisa S. Belova
- Scientific Research Institute of Neuroscience and Medicine, 630090 Novosibirsk, Russia; (S.V.C.); (A.S.B.); (T.G.A.)
- Institute of Medicine and Psychology, Novosibirsk State University, 630117 Novosibirsk, Russia; (A.V.D.); (A.D.K.); (S.A.-A.); (A.A.); (E.O.); (E.-Y.V.G.)
| | - Alexey V. Drobkov
- Institute of Medicine and Psychology, Novosibirsk State University, 630117 Novosibirsk, Russia; (A.V.D.); (A.D.K.); (S.A.-A.); (A.A.); (E.O.); (E.-Y.V.G.)
| | - Anastasiia D. Korotaeva
- Institute of Medicine and Psychology, Novosibirsk State University, 630117 Novosibirsk, Russia; (A.V.D.); (A.D.K.); (S.A.-A.); (A.A.); (E.O.); (E.-Y.V.G.)
| | - Soheil Azizi-Arani
- Institute of Medicine and Psychology, Novosibirsk State University, 630117 Novosibirsk, Russia; (A.V.D.); (A.D.K.); (S.A.-A.); (A.A.); (E.O.); (E.-Y.V.G.)
| | - Amirhossein Azimirad
- Institute of Medicine and Psychology, Novosibirsk State University, 630117 Novosibirsk, Russia; (A.V.D.); (A.D.K.); (S.A.-A.); (A.A.); (E.O.); (E.-Y.V.G.)
| | - Eric Odle
- Institute of Medicine and Psychology, Novosibirsk State University, 630117 Novosibirsk, Russia; (A.V.D.); (A.D.K.); (S.A.-A.); (A.A.); (E.O.); (E.-Y.V.G.)
| | - Emma-Yanina V. Gild
- Institute of Medicine and Psychology, Novosibirsk State University, 630117 Novosibirsk, Russia; (A.V.D.); (A.D.K.); (S.A.-A.); (A.A.); (E.O.); (E.-Y.V.G.)
| | - Oleg V. Ardashov
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (O.V.A.); (K.P.V.); (N.F.S.)
| | - Konstantin P. Volcho
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (O.V.A.); (K.P.V.); (N.F.S.)
| | - Dmitrii V. Bozhko
- ZebraML, Inc., Houston, TX 77043, USA; (D.V.B.); (V.O.M.); (S.M.K.); (A.I.P.); (G.K.G.)
| | - Vladislav O. Myrov
- ZebraML, Inc., Houston, TX 77043, USA; (D.V.B.); (V.O.M.); (S.M.K.); (A.I.P.); (G.K.G.)
| | - Sofia M. Kolchanova
- ZebraML, Inc., Houston, TX 77043, USA; (D.V.B.); (V.O.M.); (S.M.K.); (A.I.P.); (G.K.G.)
| | | | - Georgii K. Galumov
- ZebraML, Inc., Houston, TX 77043, USA; (D.V.B.); (V.O.M.); (S.M.K.); (A.I.P.); (G.K.G.)
| | - Nariman F. Salakhutdinov
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (O.V.A.); (K.P.V.); (N.F.S.)
| | - Tamara G. Amstislavskaya
- Scientific Research Institute of Neuroscience and Medicine, 630090 Novosibirsk, Russia; (S.V.C.); (A.S.B.); (T.G.A.)
- Institute of Medicine and Psychology, Novosibirsk State University, 630117 Novosibirsk, Russia; (A.V.D.); (A.D.K.); (S.A.-A.); (A.A.); (E.O.); (E.-Y.V.G.)
| | - Allan V. Kalueff
- Scientific Research Institute of Neuroscience and Medicine, 630090 Novosibirsk, Russia; (S.V.C.); (A.S.B.); (T.G.A.)
- Institute of Medicine and Psychology, Novosibirsk State University, 630117 Novosibirsk, Russia; (A.V.D.); (A.D.K.); (S.A.-A.); (A.A.); (E.O.); (E.-Y.V.G.)
- Ural Federal University, 620002 Yekaterinburg, Russia
- Neurobiology Program, Sirius University of Science and Technology, 354340 Sochi, Russia
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
- Granov Scientific Research Center of Radiology and Surgical Technologies, 197758 St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- School of Pharmacy, Southwest University, Chongqing 400715, China
| |
Collapse
|
26
|
Cueto-Escobedo J, German-Ponciano LJ, Guillén-Ruiz G, Soria-Fregozo C, Herrera-Huerta EV. Zebrafish as a Useful Tool in the Research of Natural Products With Potential Anxiolytic Effects. Front Behav Neurosci 2022; 15:795285. [PMID: 35095438 PMCID: PMC8789748 DOI: 10.3389/fnbeh.2021.795285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Zebrafish (Danio rerio) is a popular and valuable species used in many different biomedical research areas. The complex behavior that fish exhibit in response to different stimuli allows researchers to explore the biological and pharmacological basis of affective and mood disorders. In this sense, anxiety is commonly studied in preclinical research with animal models in rodents. During the last decade, those models have been successfully adapted to zebrafish. Stressful stimuli, such as novel environments, chemical substances, light conditions, and predator images, can trigger defensive behaviors considered indicators of an anxiety-like state. In the first stage, models were adapted and validated with different stressors and anxiolytic drugs with promising results and are now successfully used to generate scientific knowledge. In that sense, zebrafish allows several routes of administration and other methodological advantages to explore the anxiolytic effects of natural products in behavioral tests as novel tank, light-dark chamber, and black/white maze, among others. The present work will review the main findings on preclinical research using adult zebrafish to explore anxiolytics effects of natural products as plant secondary metabolites such as flavonoids, alkaloids and terpenes or standardized extracts of plants, among others. Scientific literature confirms the utility of zebrafish tests to explore anxiety-like states and anxiolytic-like effects of plant secondary metabolites, which represent a useful and ethical tool in the first stages of behavioral.
Collapse
Affiliation(s)
- Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica y Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | | | - Gabriel Guillén-Ruiz
- Investigador por México, Consejo Nacional de Ciencia y Tecnología (CONACyT) – Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Cesar Soria-Fregozo
- Laboratorio Ciencias Biomédicas/Área Histología y Psicobiología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno, Mexico
| | | |
Collapse
|
27
|
Bozhko DV, Myrov VO, Kolchanova SM, Polovian AI, Galumov GK, Demin KA, Zabegalov KN, Strekalova T, de Abreu MS, Petersen EV, Kalueff AV. Artificial intelligence-driven phenotyping of zebrafish psychoactive drug responses. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110405. [PMID: 34320403 DOI: 10.1016/j.pnpbp.2021.110405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Zebrafish (Danio rerio) are rapidly emerging in biomedicine as promising tools for disease modelling and drug discovery. The use of zebrafish for neuroscience research is also growing rapidly, necessitating novel reliable and unbiased methods of neurophenotypic data collection and analyses. Here, we applied the artificial intelligence (AI) neural network-based algorithms to a large dataset of adult zebrafish locomotor tracks collected previously in a series of in vivo experiments with multiple established psychotropic drugs. We first trained AI to recognize various drugs from a wide range of psychotropic agents tested, and then confirmed prediction accuracy of trained AI by comparing several agents with known similar behavioral and pharmacological profiles. Presenting a framework for innovative neurophenotyping, this proof-of-concept study aims to improve AI-driven movement pattern classification in zebrafish, thereby fostering drug discovery and development utilizing this key model organism.
Collapse
Affiliation(s)
| | | | | | | | | | - Konstantin A Demin
- Institite of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Almazov National Medical Research Center, St. Petersburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Konstantin N Zabegalov
- Institite of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia; Group of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Tatiana Strekalova
- Maastricht University, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; ZENEREI, LLC, Slidell, LA, USA; Group of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia.
| |
Collapse
|
28
|
Marcon L, C V V Giacomini A, Dos Santos BE, Costa F, Rosemberg DB, Demin KA, Kalueff AV, de Abreu MS. Understanding sex differences in zebrafish pain- and fear-related behaviors. Neurosci Lett 2021; 772:136412. [PMID: 34942320 DOI: 10.1016/j.neulet.2021.136412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
Sex is an important variable in translational biomedical research. While overt sex differences have been reported for pain and fear-like behaviors in humans and rodents, these differences in other popular model organisms, such as zebrafish, remain poorly understood. Here, we evaluate potential sex differences in zebrafish behavioral responses to pain (intraperitoneal administration of 5% acetic acid) and fear stimuli (exposure to alarm substance). Overall, both male and female zebrafish exposed to pain (intraperitoneal 5% acetic acid injection) show lesser distance traveled, fewer top entries and more writhing-like pain-related behavior vs. controls. However, female fish more robustly (than males) altered some other pain-like behaviors (e.g., increasing freezing episodes and time in top) in this model. In contrast, zebrafish of both sexes responded equally strongly to fear evoked by alarm substance exposure. Collectively, these findings emphasize the growing importance of studying sex differences in zebrafish, including pain models.
Collapse
Affiliation(s)
- Leticia Marcon
- Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Bruna E Dos Santos
- Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Fabiano Costa
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Denis B Rosemberg
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Novosibirsk State University, Novosibirsk, Russia; Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia.
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|
29
|
Zou H, Li J, Zhou J, Yi X, Cao S. Effects of norepinephrine on microglial neuroinflammation and neuropathic pain. IBRAIN 2021; 7:309-317. [PMID: 37786561 PMCID: PMC10528971 DOI: 10.1002/ibra.12001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 10/04/2023]
Abstract
Norepinephrine (NE) is an important neurotransmitter in the central nervous system. NE is released from locus coeruleus neurons and is involved in a variety of physiological and pathological processes. Neuroinflammation is a common manifestation of many kinds of neurological diseases. The activation of microglia directly affects the status of neuroinflammation. Several kinds of adrenergic receptors, which anchor on microglia and can be regulated by NE, affect the activation of microglia and neuroinflammation. NE influences chronic pain, anxiety, and depression by regulating the activation of microglia.
Collapse
Affiliation(s)
- He‐Lin Zou
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| | - Juan Li
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| | - Jun‐Li Zhou
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| | - Xi Yi
- Department of Pain MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Song Cao
- Department of Pain MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
30
|
Chen X, He Y, Deng Y. Chemical Composition, Pharmacological, and Toxicological Effects of Betel Nut. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1808081. [PMID: 34457017 PMCID: PMC8387188 DOI: 10.1155/2021/1808081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/07/2021] [Indexed: 01/18/2023]
Abstract
Betel nut, the fruit of Areca catechu L, has a long medical history in Southeast Asia. It is native to Malaysia and is cultivated and processed extensively in subtropical regions, such as South China and India. Betel nut almost appears as a "snack" in various occasions in most parts of China. Clinically, betel nut can play a certain pharmacology role and was used in malaria, ascariasis, arthritis, enterozoic abdominalgia, stagnation of food, diarrhea, edema, and beriberi. The nervous excitement of betel nut chewing has made it gradually become popular. However, chewing betel nut can induce oral submucosal fibrosis (OSF) and oral cancer (OC). At the same time, long-term chewing of betel nut also causes inhaled asthma, sperm reducing, betel quid dependence (BQD), and uterine and esophageal cancers. The main components of processed betel nut are the goal of this review. This study will mainly start from the pharmacological activity and toxicology study of betel nut in recent years, aiming to seek its advantages and disadvantages. In the meantime, this study will analyze and emphasize that betel nut and arecoline are the high-risk factors for oral cancer, which should arouse attention and vigilance of the public.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanru Deng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
31
|
Anxiety, Depression, Psychological Symptoms, Negative Effects, and Other Symptoms of Nicotine Withdrawal. ADDICTIVE DISORDERS & THEIR TREATMENT 2021. [DOI: 10.1097/adt.0000000000000288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
de Abreu MS, Costa F, Giacomini ACVV, Demin KA, Petersen EV, Rosemberg DB, Kalueff AV. Exploring CNS effects of American traditional medicines using zebrafish models. Curr Neuropharmacol 2021; 20:550-559. [PMID: 34254921 DOI: 10.2174/1570159x19666210712153329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022] Open
Abstract
Although American traditional medicine (ATM) has been practiced for millennia, its complex multi-target mechanisms of therapeutic action remain poorly understood. Animal models are widely used to elucidate the therapeutic effects of various ATMs, including their modulation of brain and behavior. Complementing rodent models, the zebrafish (Danio rerio) is a promising novel organism in translational neuroscience and neuropharmacology research. Here, we emphasize the growing value of zebrafish for testing neurotropic effects of ATMs and outline future directions of research in this field. We also demonstrate the developing utility of zebrafish as complementary models for probing CNS mechanisms of ATM action and their potential to treat brain disorders.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Fabiano Costa
- Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Brazil
| | - Ana C V V Giacomini
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | | | - Elena V Petersen
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Denis B Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, United States
| | | |
Collapse
|
33
|
Modulation of behavioral and neurochemical responses of adult zebrafish by fluoxetine, eicosapentaenoic acid and lipopolysaccharide in the prolonged chronic unpredictable stress model. Sci Rep 2021; 11:14289. [PMID: 34253753 PMCID: PMC8275758 DOI: 10.1038/s41598-021-92422-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Long-term recurrent stress is a common cause of neuropsychiatric disorders. Animal models are widely used to study the pathogenesis of stress-related psychiatric disorders. The zebrafish (Danio rerio) is emerging as a powerful tool to study chronic stress and its mechanisms. Here, we developed a prolonged 11-week chronic unpredictable stress (PCUS) model in zebrafish to more fully mimic chronic stress in human populations. We also examined behavioral and neurochemical alterations in zebrafish, and attempted to modulate these states by 3-week treatment with an antidepressant fluoxetine, a neuroprotective omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA), a pro-inflammatory endotoxin lipopolysaccharide (LPS), and their combinations. Overall, PCUS induced severe anxiety and elevated norepinephrine levels, whereas fluoxetine (alone or combined with other agents) corrected most of these behavioral deficits. While EPA and LPS alone had little effects on the zebrafish PCUS-induced anxiety behavior, both fluoxetine (alone or in combination) and EPA restored norepinephrine levels, whereas LPS + EPA increased dopamine levels. As these data support the validity of PCUS as an effective tool to study stress-related pathologies in zebrafish, further research is needed into the ability of various conventional and novel treatments to modulate behavioral and neurochemical biomarkers of chronic stress in this model organism.
Collapse
|
34
|
Sex differences shape zebrafish performance in a battery of anxiety tests and in response to acute scopolamine treatment. Neurosci Lett 2021; 759:135993. [PMID: 34058290 DOI: 10.1016/j.neulet.2021.135993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
Sex differences influence human and animal behavioral and pharmacological responses. The zebrafish (Danio rerio) is a powerful, popular model system in neuroscience and drug screening. However, the impact of zebrafish sex differences on their behavior and drug responses remains poorly understood. Here, we evaluate baseline anxiety-like behavior in adult male and female zebrafish, and its changes following an acute 30-min exposure to 800-μM scopolamine, a common psychoactive anticholinergic drug. Overall, we report high baseline anxiety-like behavior and more individual variability in locomotion in female zebrafish, as well as distinct, sex-specific (anxiolytic-like in females and anxiogenic-like in males) effects of scopolamine. Collectively, these findings reinforce the growing importance of zebrafish models for studying how both individual and sex differences shape behavioral and pharmacological responses.
Collapse
|
35
|
de Abreu MS, Giacomini ACVV, Demin KA, Galstyan DS, Zabegalov KN, Kolesnikova TO, Amstislavskaya TG, Strekalova T, Petersen EV, Kalueff AV. Unconventional anxiety pharmacology in zebrafish: Drugs beyond traditional anxiogenic and anxiolytic spectra. Pharmacol Biochem Behav 2021; 207:173205. [PMID: 33991579 DOI: 10.1016/j.pbb.2021.173205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Anxiety is the most prevalent brain disorder and a common cause of human disability. Animal models are critical for understanding anxiety pathogenesis and its pharmacotherapy. The zebrafish (Danio rerio) is increasingly utilized as a powerful model organism in anxiety research and anxiolytic drug screening. High similarity between human, rodent and zebrafish molecular targets implies shared signaling pathways involved in anxiety pathogenesis. However, mounting evidence shows that zebrafish behavior can be modulated by drugs beyond conventional anxiolytics or anxiogenics. Furthermore, these effects may differ from human and/or rodent responses, as such 'unconventional' drugs may affect zebrafish behavior despite having no such profiles (or exerting opposite effects) in humans or rodents. Here, we discuss the effects of several putative unconventional anxiotropic drugs (aspirin, lysergic acid diethylamide (LSD), nicotine, naloxone and naltrexone) and their potential mechanisms of action in zebrafish. Emphasizing the growing utility of zebrafish models in CNS drug discovery, such unconventional anxiety pharmacology may provide important, evolutionarily relevant insights into complex regulation of anxiety in biological systems. Albeit seemingly complicating direct translation from zebrafish into clinical phenotypes, this knowledge may instead foster the development of novel CNS drugs, eventually facilitating innovative treatment of patients based on novel 'unconventional' targets identified in fish models.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David S Galstyan
- Institute of Experimental Medicine, Almazov Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Granov Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Konstantin N Zabegalov
- Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Tatyana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; School of Chemistry, Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov 1st Moscow State Medical University, Moscow, Russia; Institute of General Pathology and Pathophysiology, Moscow, Russia; Department of Preventive Medicine, Maastricht Medical Center Annadal, Maastricht, Netherlands
| | - Elena V Petersen
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; School of Chemistry, Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia.
| |
Collapse
|
36
|
Siregar P, Audira G, Feng LY, Lee JH, Santoso F, Yu WH, Lai YH, Li JH, Lin YT, Chen JR, Hsiao CD. Pharmaceutical Assessment Suggests Locomotion Hyperactivity in Zebrafish Triggered by Arecoline Might Be Associated with Multiple Muscarinic Acetylcholine Receptors Activation. Toxins (Basel) 2021; 13:toxins13040259. [PMID: 33916832 PMCID: PMC8066688 DOI: 10.3390/toxins13040259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 04/01/2021] [Indexed: 12/02/2022] Open
Abstract
Arecoline is one of the nicotinic acid-based alkaloids, which is found in the betel nut. In addition to its function as a muscarinic agonist, arecoline exhibits several adverse effects, such as inducing growth retardation and causing developmental defects in animal embryos, including zebrafish, chicken, and mice. In this study, we aimed to study the potential adverse effects of waterborne arecoline exposure on zebrafish larvae locomotor activity and investigate the possible mechanism of the arecoline effects in zebrafish behavior. The zebrafish behavior analysis, together with molecular docking and the antagonist co-exposure experiment using muscarinic acetylcholine receptor antagonists were conducted. Zebrafish larvae aged 96 h post-fertilization (hpf) were exposed to different concentrations (0.001, 0.01, 0.1, and 1 ppm) of arecoline for 30 min and 24 h, respectively, to find out the effect of arecoline in different time exposures. Locomotor activities were measured and quantified at 120 hpf. The results showed that arecoline caused zebrafish larvae locomotor hyperactivities, even at a very low concentration. For the mechanistic study, we conducted a structure-based molecular docking simulation and antagonist co-exposure experiment to explore the potential interactions between arecoline and eight subtypes, namely, M1a, M2a, M2b, M3a, M3b, M4a, M5a, and M5b, of zebrafish endogenous muscarinic acetylcholine receptors (mAChRs). Arecoline was predicted to show a strong binding affinity to most of the subtypes. We also discovered that the locomotion hyperactivity phenotypes triggered by arecoline could be rescued by co-incubating it with M1 to M4 mAChR antagonists. Taken together, by a pharmacological approach, we demonstrated that arecoline functions as a highly potent hyperactivity-stimulating compound in zebrafish that is mediated by multiple muscarinic acetylcholine receptors.
Collapse
Affiliation(s)
- Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan; (P.S.); (G.A.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 3020314, Taiwan;
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan; (P.S.); (G.A.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 3020314, Taiwan;
| | - Ling-Yi Feng
- School of Pharmacy and Ph.D. Program in Toxicology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Substance and Behavior Addiction Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jia-Hau Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.L.); (W.-H.Y.)
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fiorency Santoso
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 3020314, Taiwan;
| | - Wen-Hao Yu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.L.); (W.-H.Y.)
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Jih-Heng Li
- School of Pharmacy and Ph.D. Program in Toxicology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Substance and Behavior Addiction Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.L.); (Y.-T.L.); (C.-D.H.)
| | - Ying-Ting Lin
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.L.); (W.-H.Y.)
- Drug Development & Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.L.); (Y.-T.L.); (C.-D.H.)
| | - Jung-Ren Chen
- Department of Biological Science & Technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan; (P.S.); (G.A.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 3020314, Taiwan;
- Correspondence: (J.-H.L.); (Y.-T.L.); (C.-D.H.)
| |
Collapse
|
37
|
de F Cesário HPS, Silva FCO, Ferreira MKA, de Menezes JESA, Dos Santos HS, Nogueira CES, de L Silva KSB, Hajdu E, Silveira ER, Pessoa ODL. Anxiolytic-like effect of brominated compounds from the marine sponge Aplysina fulva on adult zebrafish (Danio rerio): Involvement of the GABAergic system. Neurochem Int 2021; 146:105021. [PMID: 33741413 DOI: 10.1016/j.neuint.2021.105021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Benzodiazepines are commonly used to treat disorders of the central nervous system, including anxiety. However, due to their adverse effects, there is a continuing interest in discovering new safe and effective drugs. Marine natural products have emerged as a prolific source of bioactive nitrogenated compounds. Aiming to discover new biologically active natural compounds, the marine sponge Aplysina fulva, a nitrogen-bearing heterocyst producer, was investigated. The main isolated compounds (4, 6, and 9) were evaluated on adult zebrafish (Danio rerio). A group of fishes (n = 6) was preliminarily subjected to acute toxicity, and open field tests using 0.1, 0.5, and 1.0 mg/mL (v. o.) of those compounds was performed. The anxiolytic effect was further investigated in the light/dark assay based on the locomotor response at zebrafish. Interactions through the GABAergic system were investigated using flumazenil, a silent modulator of GABA receptors. To improve the results, a study of molecular docking using the GABAA receptor also was performed. Based on the results, the bromotyrosine derivative compounds 4, 6, and 9 exhibited anxiolytic-like effects mediated by the GABAergic system.
Collapse
Affiliation(s)
- Hozana Patrícia S de F Cesário
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, 60455-760, Brazil
| | | | | | - Jane Eire S A de Menezes
- Laboratory of Chemistry of Natural Products, Ceará State University, Fortaleza, CE, 60174-903, Brazil
| | - Hélcio S Dos Santos
- Laboratory of Chemistry of Natural Products, Synthesis and Biocatalysis of Organic Compounds, Vale do Acaraú University, Sobral, CE, 62040-370, Brazil
| | - Carlos E S Nogueira
- Department of Physics, Regional University of Cariri, Crato, CE, 63041-145, Brazil
| | - Karísia S B de L Silva
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, 60455-760, Brazil
| | - Eduardo Hajdu
- Department of Invertebrates, National Museum, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 20940-040, Brazil
| | - Edilberto R Silveira
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, 60455-760, Brazil
| | - Otília Deusdênia L Pessoa
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, 60455-760, Brazil.
| |
Collapse
|
38
|
Wang D, Hu G, Wang J, Yan D, Wang M, Yang L, Serikuly N, Alpyshov E, Demin KA, Galstyan DS, Amstislavskaya TG, de Abreu MS, Kalueff AV. Studying CNS effects of Traditional Chinese Medicine using zebrafish models. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113383. [PMID: 32918992 DOI: 10.1016/j.jep.2020.113383] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although Traditional Chinese Medicine (TCM) has a millennia-long history of treating human brain disorders, its complex multi-target mechanisms of action remain poorly understood. Animal models are currently widely used to probe the effects of various TCMs on brain and behavior. The zebrafish (Danio rerio) has recently emerged as a novel vertebrate model organism for neuroscience research, and is increasingly applied for CNS drug screening and development. AIM OF THE STUDY As zebrafish models are only beginning to be applied to studying TCM, we aim to provide a comprehensive review of the TCM effects on brain and behavior in this fish model species. MATERIALS AND METHODS A comprehensive search of published literature was conducted using biomedical databases (Web of Science, Pubmed, Sciencedirect, Google Scholar and China National Knowledge Internet, CNKI), with key search words zebrafish, brain, Traditional Chinese Medicine, herbs, CNS, behavior. RESULTS We recognize the developing utility of zebrafish for studying TCM, as well as outline the existing model limitations, problems and challenges, as well as future directions of research in this field. CONCLUSIONS We demonstrate the growing value of zebrafish models for studying TCM, aiming to improve our understanding of TCM' therapeutic mechanisms and potential in treating brain disorders.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Mengyao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - Erik Alpyshov
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David S Galstyan
- Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Zelman Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
39
|
Understanding complex dynamics of behavioral, neurochemical and transcriptomic changes induced by prolonged chronic unpredictable stress in zebrafish. Sci Rep 2020; 10:19981. [PMID: 33203921 PMCID: PMC7673038 DOI: 10.1038/s41598-020-75855-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Stress-related neuropsychiatric disorders are widespread, debilitating and often treatment-resistant illnesses that represent an urgent unmet biomedical problem. Animal models of these disorders are widely used to study stress pathogenesis. A more recent and historically less utilized model organism, the zebrafish (Danio rerio), is a valuable tool in stress neuroscience research. Utilizing the 5-week chronic unpredictable stress (CUS) model, here we examined brain transcriptomic profiles and complex dynamic behavioral stress responses, as well as neurochemical alterations in adult zebrafish and their correction by chronic antidepressant, fluoxetine, treatment. Overall, CUS induced complex neurochemical and behavioral alterations in zebrafish, including stable anxiety-like behaviors and serotonin metabolism deficits. Chronic fluoxetine (0.1 mg/L for 11 days) rescued most of the observed behavioral and neurochemical responses. Finally, whole-genome brain transcriptomic analyses revealed altered expression of various CNS genes (partially rescued by chronic fluoxetine), including inflammation-, ubiquitin- and arrestin-related genes. Collectively, this supports zebrafish as a valuable translational tool to study stress-related pathogenesis, whose anxiety and serotonergic deficits parallel rodent and clinical studies, and genomic analyses implicate neuroinflammation, structural neuronal remodeling and arrestin/ubiquitin pathways in both stress pathogenesis and its potential therapy.
Collapse
|
40
|
Zabegalov KN, Wang D, Yang L, Wang J, Hu G, Serikuly N, Alpyshov ET, Khatsko SL, Zhdanov A, Demin KA, Galstyan DS, Volgin AD, de Abreu MS, Strekalova T, Song C, Amstislavskaya TG, Sysoev Y, Musienko PE, Kalueff AV. Decoding the role of zebrafish neuroglia in CNS disease modeling. Brain Res Bull 2020; 166:44-53. [PMID: 33027679 DOI: 10.1016/j.brainresbull.2020.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
Neuroglia, including microglia and astrocytes, is a critical component of the central nervous system (CNS) that interacts with neurons to modulate brain activity, development, metabolism and signaling pathways. Thus, a better understanding of the role of neuroglia in the brain is critical. Complementing clinical and rodent data, the zebrafish (Danio rerio) is rapidly becoming an important model organism to probe the role of neuroglia in brain disorders. With high genetic and physiological similarity to humans and rodents, zebrafish possess some common (shared), as well as some specific molecular biomarkers and features of neuroglia development and functioning. Studying these common and zebrafish-specific aspects of neuroglia may generate important insights into key brain mechanisms, including neurodevelopmental, neurodegenerative, neuroregenerative and neurological processes. Here, we discuss the biology of neuroglia in humans, rodents and fish, its role in various CNS functions, and further directions of translational research into the role of neuroglia in CNS disorders using zebrafish models.
Collapse
Affiliation(s)
- Konstantin N Zabegalov
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | | | | | | | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Division of Molecular Psychiatry, Centre of Mental Health, University of Würzburg, Würzburg, Germany
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Zelman Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Yury Sysoev
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Petersburg State University, St. Petersburg, Russia; Department of Pharmacology and Clinical Pharmacology, St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Pavel E Musienko
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Petersburg State University, St. Petersburg, Russia; Institute of Phthisiopulmonology, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|