1
|
Feng Y, Sun L, Dang X, Liu D, Liao Z, Yao J, Zhang Y, Deng Z, Li J, Zhao M, Liu F. Aberrant glycosylation in schizophrenia: insights into pathophysiological mechanisms and therapeutic potentials. Front Pharmacol 2024; 15:1457811. [PMID: 39286629 PMCID: PMC11402814 DOI: 10.3389/fphar.2024.1457811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Schizophrenia (SCZ) is a severe neuropsychiatric disorder characterized by cognitive, affective, and social dysfunction, resulting in hallucinations, delusions, emotional blunting, and disordered thinking. In recent years, proteomics has been increasingly influential in SCZ research. Glycosylation, a key post-translational modification, can alter neuronal stability and normal signaling in the nervous system by affecting protein folding, stability, and cellular signaling. Recent research evidence suggests that abnormal glycosylation patterns exist in different brain regions in autopsy samples from SCZ patients, and that there are significant differences in various glycosylation modification types and glycosylation modifying enzymes. Therefore, this review explores the mechanisms of aberrant modifications of N-glycosylation, O-glycosylation, glycosyltransferases, and polysialic acid in the brains of SCZ patients, emphasizing their roles in neurotransmitter receptor function, synaptic plasticity, and neural adhesion. Additionally, the effects of antipsychotic drugs on glycosylation processes and the potential for glycosylation-targeted therapies are discussed. By integrating these findings, this review aims to provide a comprehensive perspective to further understand the role of aberrant glycosylation modifications in the pathophysiology of SCZ.
Collapse
Affiliation(s)
- Yanchen Feng
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Sun
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Diyan Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziyun Liao
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianping Yao
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziqi Deng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinyao Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Min Zhao
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Feixiang Liu
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Frescura F, Stark T, Tiziani E, Di Martino S, Ruda-Kucerova J, Drago F, Ferraro L, Micale V, Beggiato S. Prenatal MAM exposure raises kynurenic acid levels in the prefrontal cortex of adult rats. Pharmacol Rep 2024; 76:887-894. [PMID: 38789891 DOI: 10.1007/s43440-024-00604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Elevated brain levels of kynurenic acid (KYNA), a metabolite in the kynurenine pathway, are associated with cognitive dysfunctions, which are nowadays often considered as fundamental characteristics of several psychopathologies; however, the role of KYNA in mental illnesses, such as schizophrenia, is not fully elucidated. This study aimed to assess KYNA levels in the prefrontal cortex (PFC) of rats prenatally treated with methylazoxymethanol (MAM) acetate, i.e., a well-validated neurodevelopmental animal model of schizophrenia. The effects of an early pharmacological modulation of the endogenous cannabinoid system were also evaluated. METHODS Pregnant Sprague-Dawley rats were treated with MAM (22 mg/kg, ip) or its vehicle at gestational day 17. Male offspring were treated with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day, ip) or with the typical antipsychotic haloperidol (0.6 mg/kg/day, ip) from postnatal day (PND) 19 to PND39. The locomotor activity and cognitive performance were assessed in the novel object recognition test and the open field test in adulthood. KYNA levels in the PFC of prenatally MAM-treated rats were also assessed. RESULTS A significant cognitive impairment was observed in prenatally MAM-treated rats (p < 0.01), which was associated with enhanced PFC KYNA levels (p < 0.05). The peripubertal AM251, but not haloperidol, treatment ameliorated the cognitive deficit (p < 0.05), by normalizing the PFC KYNA content in MAM rats. CONCLUSIONS The present findings suggest that the cognitive deficit observed in MAM rats may be related to enhanced PFC KYNA levels which could be, in turn, mediated by the activation of cannabinoid CB1 receptor. These results further support the modulation of brain KYNA levels as a potential therapeutic strategy to ameliorate the cognitive dysfunctions in schizophrenia.
Collapse
Affiliation(s)
- Francesca Frescura
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Tibor Stark
- Department Emotion Research, Max Planck Institute of Psychiatry, 80807, Munich, Germany
| | - Edoardo Tiziani
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
- LTTA Centre, University of Ferrara, Ferrara, Italy.
- Psychiatric Department, School of Medicine, University of Maryland, Baltimore, MD, USA.
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
- Psychiatric Department, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
3
|
Horska K, Skrede S, Kucera J, Kuzminova G, Suchy P, Micale V, Ruda‐Kucerova J. Olanzapine, but not haloperidol, exerts pronounced acute metabolic effects in the methylazoxymethanol rat model. CNS Neurosci Ther 2024; 30:e14565. [PMID: 38421095 PMCID: PMC10850806 DOI: 10.1111/cns.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 03/02/2024] Open
Abstract
AIM Widely used second-generation antipsychotics are associated with adverse metabolic effects, contributing to increased cardiovascular mortality. To develop strategies to prevent or treat adverse metabolic effects, preclinical models have a clear role in uncovering underlying molecular mechanisms. However, with few exceptions, preclinical studies have been performed in healthy animals, neglecting the contribution of dysmetabolic features inherent to psychotic disorders. METHODS In this study, methylazoxymethanol acetate (MAM) was prenatally administered to pregnant Sprague-Dawley rats at gestational day 17 to induce a well-validated neurodevelopmental model of schizophrenia mimicking its assumed pathogenesis with persistent phenotype. Against this background, the dysmetabolic effects of acute treatment with olanzapine and haloperidol were examined in female rats. RESULTS Prenatally MAM-exposed animals exhibited several metabolic features, including lipid disturbances. Half of the MAM rats exposed to olanzapine had pronounced serum lipid profile alteration compared to non-MAM controls, interpreted as a reflection of a delicate MAM-induced metabolic balance disrupted by olanzapine. In accordance with the drugs' clinical metabolic profiles, olanzapine-associated dysmetabolic effects were more pronounced than haloperidol-associated dysmetabolic effects in non-MAM rats and rats exposed to MAM. CONCLUSION Our results demonstrate metabolic vulnerability in female prenatally MAM-exposed rats, indicating that findings from healthy animals likely provide an underestimated impression of metabolic dysfunction associated with antipsychotics. In the context of metabolic disturbances, neurodevelopmental models possess a relevant background, and the search for adequate animal models should receive more attention within the field of experimental psychopharmacology.
Collapse
Affiliation(s)
- Katerina Horska
- Department of Pharmacology and Toxicology, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| | - Silje Skrede
- Department of Clinical Science, Faculty of MedicineUniversity of BergenBergenNorway
- Section of Clinical Pharmacology, Department of Medical Biochemistry and PharmacologyHaukeland University HospitalBergenNorway
| | - Jan Kucera
- RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- Department of Physical Activities and Health, Faculty of Sports StudiesMasaryk UniversityBrnoCzech Republic
| | - Gabriela Kuzminova
- Department of Pharmacology and Toxicology, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| | - Pavel Suchy
- Department of Pharmacology and Toxicology, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of PharmacologyUniversity of CataniaCataniaItaly
| | - Jana Ruda‐Kucerova
- Department of Pharmacology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
4
|
Eder J, Simon MS, Glocker C, Musil R. [Weight gain and treatment with psychotropic drugs : Background and management]. DER NERVENARZT 2023; 94:859-869. [PMID: 37672085 DOI: 10.1007/s00115-023-01534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 09/07/2023]
Abstract
Psychotropic drug-induced weight gain (PIWG) is a well-known and frequent side effect which is relevant for the prognosis of patients. Individual medications have varying risks for the occurrence of PIWG, and at the same time there are individual risk factors on the part of patients, such as age, gender, metabolic and genetic factors. As the metabolic changes in the context of PIWG result in increased mortality in the long term, it is important to prevent PIWG by appropriate prevention and to intervene in a targeted manner if PIWG has already occurred. Appropriate monitoring is therefore essential. This article provides an overview of underlying mechanisms, risk constellations and possible countermeasures.
Collapse
Affiliation(s)
- J Eder
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität (LMU) München, Nußbaumstraße 7, 80336, München, Deutschland
| | - M S Simon
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität (LMU) München, Nußbaumstraße 7, 80336, München, Deutschland
| | - C Glocker
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität (LMU) München, Nußbaumstraße 7, 80336, München, Deutschland.
| | - R Musil
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität (LMU) München, Nußbaumstraße 7, 80336, München, Deutschland
- Oberberg Fachklinik Bad Tölz, Bad Tölz, Deutschland
| |
Collapse
|
5
|
Di Bartolomeo M, Stark T, Di Martino S, Iannotti FA, Ruda-Kucerova J, Romano GL, Kuchar M, Laudani S, Palivec P, Piscitelli F, Wotjak CT, Bucolo C, Drago F, Di Marzo V, D’Addario C, Micale V. The Effects of Peripubertal THC Exposure in Neurodevelopmental Rat Models of Psychopathology. Int J Mol Sci 2023; 24:ijms24043907. [PMID: 36835313 PMCID: PMC9962163 DOI: 10.3390/ijms24043907] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Adolescent exposure to cannabinoids as a postnatal environmental insult may increase the risk of psychosis in subjects exposed to perinatal insult, as suggested by the two-hit hypothesis of schizophrenia. Here, we hypothesized that peripubertal Δ9-tetrahydrocannabinol (aTHC) may affect the impact of prenatal methylazoxymethanol acetate (MAM) or perinatal THC (pTHC) exposure in adult rats. We found that MAM and pTHC-exposed rats, when compared to the control group (CNT), were characterized by adult phenotype relevant to schizophrenia, including social withdrawal and cognitive impairment, as revealed by social interaction test and novel object recognition test, respectively. At the molecular level, we observed an increase in cannabinoid CB1 receptor (Cnr1) and/or dopamine D2/D3 receptor (Drd2, Drd3) gene expression in the prefrontal cortex of adult MAM or pTHC-exposed rats, which we attributed to changes in DNA methylation at key regulatory gene regions. Interestingly, aTHC treatment significantly impaired social behavior, but not cognitive performance in CNT groups. In pTHC rats, aTHC did not exacerbate the altered phenotype nor dopaminergic signaling, while it reversed cognitive deficit in MAM rats by modulating Drd2 and Drd3 gene expression. In conclusion, our results suggest that the effects of peripubertal THC exposure may depend on individual differences related to dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Tibor Stark
- Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic
- Psychedelic Research Centre, National Institute of Mental Health, Topolová 748, 25067 Klecany, Czech Republic
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Petr Palivec
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Carsten T. Wotjak
- Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine, Agricultural and Food Sciences, CRIUCPQ, INAF and Centre NUTRISS, Université Laval, Quebec City, QC G1V 4G5, Canada
| | - Claudio D’Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence: or ; Tel.: +39-095-4781199
| |
Collapse
|
6
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Morén C, Treder N, Martínez-Pinteño A, Rodríguez N, Arbelo N, Madero S, Gómez M, Mas S, Gassó P, Parellada E. Systematic Review of the Therapeutic Role of Apoptotic Inhibitors in Neurodegeneration and Their Potential Use in Schizophrenia. Antioxidants (Basel) 2022; 11:2275. [PMID: 36421461 PMCID: PMC9686909 DOI: 10.3390/antiox11112275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/15/2023] Open
Abstract
Schizophrenia (SZ) is a deleterious brain disorder affecting cognition, emotion and reality perception. The most widely accepted neurochemical-hypothesis is the imbalance of neurotransmitter-systems. Depleted GABAergic-inhibitory function might produce a regionally-located dopaminergic and glutamatergic-storm in the brain. The dopaminergic-release may underlie the positive psychotic-symptoms while the glutamatergic-release could prompt the primary negative symptoms/cognitive deficits. This may occur due to excessive synaptic-pruning during the neurodevelopmental stages of adolescence/early adulthood. Thus, although SZ is not a neurodegenerative disease, it has been suggested that exaggerated dendritic-apoptosis could explain the limited neuroprogression around its onset. This apoptotic nature of SZ highlights the potential therapeutic action of anti-apoptotic drugs, especially at prodromal stages. If dysregulation of apoptotic mechanisms underlies the molecular basis of SZ, then anti-apoptotic molecules could be a prodromal therapeutic option to halt or prevent SZ. In fact, risk alleles related in apoptotic genes have been recently associated to SZ and shared molecular apoptotic changes are common in the main neurodegenerative disorders and SZ. PRISMA-guidelines were considered. Anti-apoptotic drugs are commonly applied in classic neurodegenerative disorders with promising results. Despite both the apoptotic-hallmarks of SZ and the widespread use of anti-apoptotic targets in neurodegeneration, there is a strikingly scarce number of studies investigating anti-apoptotic approaches in SZ. We analyzed the anti-apoptotic approaches conducted in neurodegeneration and the potential applications of such anti-apoptotic therapies as a promising novel therapeutic strategy, especially during early stages.
Collapse
Affiliation(s)
- Constanza Morén
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- U722 Group, Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Nina Treder
- Faculty of Psychology and Neuroscience, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Albert Martínez-Pinteño
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Natàlia Rodríguez
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Néstor Arbelo
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Santiago Madero
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Marta Gómez
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
- Department of Psychiatry, Servizo Galego de Saúde (SERGAS), 36001 Pontevedra, Spain
| | - Sergi Mas
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Patricia Gassó
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Eduard Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
8
|
Stark T, Iannotti FA, Di Martino S, Di Bartolomeo M, Ruda-Kucerova J, Piscitelli F, Wotjak CT, D’Addario C, Drago F, Di Marzo V, Micale V. Early Blockade of CB1 Receptors Ameliorates Schizophrenia-like Alterations in the Neurodevelopmental MAM Model of Schizophrenia. Biomolecules 2022; 12:biom12010108. [PMID: 35053256 PMCID: PMC8773886 DOI: 10.3390/biom12010108] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of Sprague-Dawley rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produces long-lasting behavioral alterations such as social withdrawal and cognitive impairment in adulthood, mimicking a schizophrenia-like phenotype. These abnormalities were preceded at neonatal age both by the delayed appearance of neonatal reflexes, an index of impaired brain maturation, and by higher 2-arachidonoylglycerol (2-AG) brain levels. Schizophrenia-like deficits were reversed by early treatment [from postnatal day (PND) 2 to PND 8] with the CB1 antagonist/inverse agonist AM251 (0.5 mg/kg/day). By contrast, early CB1 blockade affected the behavioral performance of control rats which was paralleled by enhanced 2-AG content in the prefrontal cortex (PFC). These results suggest that prenatal MAM insult leads to premorbid anomalies at neonatal age via altered tone of the endocannabinoid system, which may be considered as an early marker preceding the development of schizophrenia-like alterations in adulthood.
Collapse
Affiliation(s)
- Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (T.S.); (J.R.-K.)
- Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (V.D.M.)
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, 95123 Catania, Italy; (S.D.M.); (F.D.)
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.B.); (C.D.)
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (T.S.); (J.R.-K.)
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (V.D.M.)
| | - Carsten T. Wotjak
- Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach an der Riss, Germany;
| | - Claudio D’Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.B.); (C.D.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, 95123 Catania, Italy; (S.D.M.); (F.D.)
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (V.D.M.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agricultural and Food Sciences, Centre de Recherche de l’Institut de Cardiologie et Pneumologie de l’Université et Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, QC G1V 4G5, Canada
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, 95123 Catania, Italy; (S.D.M.); (F.D.)
- Correspondence: ; Tel.: +39-095-4781199
| |
Collapse
|
9
|
Borovcanin MM, Vesic K, Jovanovic M, Mijailovic NR. Galectin-3 possible involvement in antipsychotic-induced metabolic changes of schizophrenia: A minireview. World J Diabetes 2021; 12:1731-1739. [PMID: 34754374 PMCID: PMC8554363 DOI: 10.4239/wjd.v12.i10.1731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, specific immunometabolic profiles have been postulated in patients with schizophrenia, even before full-blown disease and independent of antipsychotic treatment. Proteomic profiling studies offer a promising potential for elucidating the cellular and molecular pathways that may be involved in the onset and progression of schizophrenia symptoms, and co-occurrent metabolic changes. In view of all this, we were intrigued to explore galectin-3 (Gal-3) as a glycan, and in our previous study, we measured its elevated levels in remission of schizophrenia. The finding may be a consequence of antipsychotic treatment and may have an impact on the onset of inflammation, the development of obesity, and the presumed cognitive changes in schizophrenia. In the animal study, it was shown that downregulation of Gal-3 was beneficial in insulin regulation of obesity and cognitive preservation. Strategies involving plasma exchange are discussed in this review, particularly in the context of Gal-3 elimination.
Collapse
Affiliation(s)
- Milica M Borovcanin
- Department of Psychiatry, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
| | - Katarina Vesic
- Department of Neurology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
| | - Milena Jovanovic
- PhD Studies, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
- Clinic for Nephrology and Dialysis, University Clinical Center Kragujevac, Kragujevac 34000, Sumadija, Serbia
| | - Natasa R Mijailovic
- Department of Pharmacy, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
| |
Collapse
|
10
|
Stark T, Di Martino S, Drago F, Wotjak CT, Micale V. Phytocannabinoids and schizophrenia: Focus on adolescence as a critical window of enhanced vulnerability and opportunity for treatment. Pharmacol Res 2021; 174:105938. [PMID: 34655773 DOI: 10.1016/j.phrs.2021.105938] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
The recent shift in socio-political debates and growing liberalization of Cannabis use across the globe has raised concern regarding its impact on vulnerable populations such as adolescents. Concurrent with declining perception of Cannabis harms, more adolescents are using it daily in several countries and consuming marijuana strains with high content of psychotropic delta (9)-tetrahydrocannabinol (THC). These dual, related trends seem to facilitate the development of compromised social and cognitive performance at adulthood, which are described in preclinical and human studies. Cannabis exerts its effects via altering signalling within the endocannabinoid system (ECS), which modulates the stress circuitry during the neurodevelopment. In this context early interventions appear to circumvent the emergence of adult neurodevelopmental deficits. Accordingly, Cannabis sativa second-most abundant compound, cannabidiol (CBD), emerges as a potential therapeutic agent to treat neuropsychiatric disorders. We first focus on human and preclinical studies on the long-term effects induced by adolescent THC exposure as a "critical window" of enhanced neurophysiological vulnerability, which could be involved in the pathophysiology of schizophrenia and related primary psychotic disorders. Then, we focus on adolescence as a "window of opportunity" for early pharmacological treatment, as novel risk reduction strategy for neurodevelopmental disorders. Thus, we review current preclinical and clinical evidence regarding the efficacy of CBD in terms of positive, negative and cognitive symptoms treatment, safety profile, and molecular targets.
Collapse
Affiliation(s)
- Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carsten T Wotjak
- Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach an der Riss, Germany
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
11
|
Spencer PS, Kisby GE. Role of Hydrazine-Related Chemicals in Cancer and Neurodegenerative Disease. Chem Res Toxicol 2021; 34:1953-1969. [PMID: 34379394 DOI: 10.1021/acs.chemrestox.1c00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrazine-related chemicals (HRCs) with carcinogenic and neurotoxic potential are found in certain mushrooms and plants used for food and in products employed in various industries, including aerospace. Their propensity to induce DNA damage (mostly O6-, N7- and 8-oxo-guanine lesions) resulting in multiple downstream effects is linked with both cancer and neurological disease. For cycling cells, unrepaired DNA damage leads to mutation and uncontrolled mitosis. By contrast, postmitotic neurons attempt to re-enter the cell cycle but undergo apoptosis or nonapoptotic cell death. Biomarkers of exposure to HRCs can be used to explore whether these substances are risk factors for sporadic amyotrophic laterals sclerosis and other noninherited neurodegenerative diseases, which is the focus of this paper.
Collapse
Affiliation(s)
- Peter S Spencer
- Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Glen E Kisby
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, Oregon 97355, United States
| |
Collapse
|
12
|
Di Bartolomeo M, Stark T, Maurel OM, Iannotti FA, Kuchar M, Ruda-Kucerova J, Piscitelli F, Laudani S, Pekarik V, Salomone S, Arosio B, Mechoulam R, Maccarrone M, Drago F, Wotjak CT, Di Marzo V, Vismara M, Dell'Osso B, D'Addario C, Micale V. Crosstalk between the transcriptional regulation of dopamine D2 and cannabinoid CB1 receptors in schizophrenia: Analyses in patients and in perinatal Δ9-tetrahydrocannabinol-exposed rats. Pharmacol Res 2021; 164:105357. [PMID: 33285233 DOI: 10.1016/j.phrs.2020.105357] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/07/2020] [Accepted: 11/28/2020] [Indexed: 02/08/2023]
Abstract
Perinatal exposure to Δ9-tetrahydrocannabinol (THC) affects brain development and might increase the incidence of psychopathology later in life, which seems to be related to a dysregulation of endocannabinoid and/or dopaminergic systems. We here evaluated the transcriptional regulation of the genes encoding for the cannabinoid CB1 receptor (Cnr1) and the dopamine D2 receptor (Drd2) in perinatal THC-(pTHC) exposed male rats, focusing on the role of DNA methylation analyzed by pyrosequencing. Simultaneously, the molecular and behavioral abnormalities at two different time points (i.e., neonatal age and adulthood) and the potential preventive effect of peripubertal treatment with cannabidiol, a non-euphoric component of Cannabis, were assessed. The DRD2 methylation was also evaluated in a cohort of subjects with schizophrenia. We observed an increase in both Cnr1 and Drd2 mRNA levels selectively in the prefrontal cortex of adult pTHC-exposed rats with a consistent reduction in DNA methylation at the Drd2 regulatory region, paralleled by social withdrawal and cognitive impairment which were reversed by cannabidiol treatment. These adult abnormalities were preceded at neonatal age by delayed appearance of neonatal reflexes, higher Drd2 mRNA and lower 2-arachidonoylglycerol (2-AG) brain levels, which persisted till adulthood. Alterations of the epigenetic mark for DRD2 were also found in subjects with schizophrenia. Overall, reported data add further evidence to the dopamine-cannabinoid interaction in terms of DRD2 and CNR1 dysregulation which could be implicated in the pathogenesis of schizophrenia spectrum disorders, suggesting that cannabidiol treatment may normalize pTHC-induced psychopathology by modulating the altered dopaminergic activity.
Collapse
Affiliation(s)
- Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Oriana Maria Maurel
- Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czech Republic; National Institute of Mental Health, Klecany, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Vladimir Pekarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Fondazione Ca' Granda, IRCCS, Ospedale Maggiore Policlinico, Milan, Italy
| | - Raphael Mechoulam
- Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carsten T Wotjak
- Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Boehringer Ingelheim Pharma GmbH & KO KG, Germany
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic, Health, Université Laval, Quebec City, Canada; Joint International Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), between Université Laval and Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Matteo Vismara
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy; Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy; Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, California, USA
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy; National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|