1
|
He Y, Jia H, Yang Q, Shan W, Chen X, Huang X, Liu T, Sun R. Specific Activation of CB2R Ameliorates Psoriasis-Like Skin Lesions by Inhibiting Inflammation and Oxidative Stress. Inflammation 2023:10.1007/s10753-023-01805-6. [PMID: 37000322 DOI: 10.1007/s10753-023-01805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease. Inflammation and oxidative stress play crucial roles in the pathogenesis of psoriasis. Cannabinoid receptor type 2 (CB2R) is an attractive target for treating various inflammatory disorders. However, the precise role and mechanism of CB2R activation in psoriasis remain to be further elucidated. In this study, imiquimod (IMQ)-induced experimental psoriasis mice and tumor necrosis factor-α (TNF-α)-activated keratinocytes (HaCaT) were used to examine the effect of CB2R activation on psoriasis-like lesions and the mechanism in vivo and in vitro. Our results demonstrated that activation of CB2R by the specific agonist GW842166X (GW) significantly ameliorated IMQ-induced psoriasiform skin lesions in mice by reducing epidermal thickness and decreasing plaque thickness. On the one hand, GW alleviated inflammation by decreasing inflammatory cytokines and abating inflammatory cell infiltration. On the other hand, this treatment reduced the level of iNOS and downregulated the expression of CB2R in psoriatic skin tissue. Further studies suggested that the Kelch-like ECH-associated protein 1/nuclear factor erythroid-2-related factor (Keap1/Nrf2) signaling pathway might be involved. Our findings reveal that selective activation of CB2R may serve as a new strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Yufeng He
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Honglin Jia
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qunfang Yang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Wenjun Shan
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Xiaohong Chen
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Xianqiong Huang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Tao Liu
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China.
| | - Renshan Sun
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Department of Dermatology, Health Science Center, South China Hospital, Shenzhen University, Guangdong, 518116, China.
| |
Collapse
|
2
|
Fišar Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110626. [PMID: 36055561 DOI: 10.1016/j.pnpbp.2022.110626] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022]
Abstract
Both the discovery of biomarkers of schizophrenia and the verification of biological hypotheses of schizophrenia are an essential part of the process of understanding the etiology of this mental disorder. Schizophrenia has long been considered a neurodevelopmental disease whose symptoms are caused by impaired synaptic signal transduction and brain neuroplasticity. Both the onset and chronic course of schizophrenia are associated with risk factors-induced disruption of brain function and the establishment of a new homeostatic setpoint characterized by biomarkers. Different risk factors and biomarkers can converge to the same symptoms of schizophrenia, suggesting that the primary cause of the disease can be highly individual. Schizophrenia-related biomarkers include measurable biochemical changes induced by stress (elevated allostatic load), mitochondrial dysfunction, neuroinflammation, oxidative and nitrosative stress, and circadian rhythm disturbances. Here is a summary of selected valid biological hypotheses of schizophrenia formulated based on risk factors and biomarkers, neurodevelopment, neuroplasticity, brain chemistry, and antipsychotic medication. The integrative neurodevelopmental-vulnerability-neurochemical model is based on current knowledge of the neurobiology of the onset and progression of the disease and the effects of antipsychotics and psychotomimetics and reflects the complex and multifactorial nature of schizophrenia.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Czech Republic.
| |
Collapse
|
3
|
Lipid-Based Molecules on Signaling Pathways in Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23179803. [PMID: 36077195 PMCID: PMC9456412 DOI: 10.3390/ijms23179803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The signaling pathways associated with lipid metabolism contribute to the pathophysiology of autism spectrum disorder (ASD) and provide insights for devising new therapeutic strategies. Prostaglandin E2 is a membrane-derived lipid molecule that contributes to developing ASD associated with canonical Wnt signaling. Cyclooxygenase-2 plays a key role in neuroinflammation and is implicated in the pathogenesis of neurodevelopmental diseases, such as ASD. The endocannabinoid system maintains a balance between inflammatory and redox status and synaptic plasticity and is a potential target for ASD pathophysiology. Redox signaling refers to specific and usually reversible oxidation–reduction reactions, some of which are also involved in pathways accounting for the abnormal behavior observed in ASD. Redox signaling and redox status-sensitive transcription factors contribute to the pathophysiology of ASD. Cannabinoids regulate the redox balance by altering the levels and activity of antioxidant molecules via ROS-producing NADPH oxidase (NOX) and ROS-scavenging superoxide dismutase enzymes. These signaling cascades integrate a broad range of neurodevelopmental processes that may be involved in the pathophysiology of ASD. Based on these pathways, we highlight putative targets that may be used for devising novel therapeutic interventions for ASD.
Collapse
|
4
|
Rachayon M, Jirakran K, Sodsai P, Klinchanhom S, Sughondhabirom A, Plaimas K, Suratanee A, Maes M. In Vitro Effects of Cannabidiol on Activated Immune–Inflammatory Pathways in Major Depressive Patients and Healthy Controls. Pharmaceuticals (Basel) 2022; 15:ph15040405. [PMID: 35455402 PMCID: PMC9032852 DOI: 10.3390/ph15040405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Major depressive disorder and major depressive episodes (MDD/MDE) are characterized by the activation of the immune–inflammatory response system (IRS) and the compensatory immune–regulatory system (CIRS). Cannabidiol (CBD) is a phytocannabinoid isolated from the cannabis plant, which is reported to have antidepressant-like and anti-inflammatory effects. The aim of the present study is to examine the effects of CBD on IRS, CIRS, M1, T helper (Th)-1, Th-2, Th-17, T regulatory (Treg) profiles, and growth factors in depression and healthy controls. Culture supernatant of stimulated (5 μg/mL of PHA and 25 μg/mL of LPS) whole blood of 30 depressed patients and 20 controls was assayed for cytokines using the LUMINEX assay. The effects of three CBD concentrations (0.1 µg/mL, 1 µg/mL, and 10 µg/mL) were examined. Depression was characterized by significantly increased PHA + LPS-stimulated Th-1, Th-2, Th-17, Treg, IRS, CIRS, and neurotoxicity profiles. CBD 0.1 µg/mL did not have any immune effects. CBD 1.0 µg/mL decreased CIRS activities but increased growth factor production, while CBD 10.0 µg/mL suppressed Th-1, Th-17, IRS, CIRS, and a neurotoxicity profile and enhanced T cell growth and growth factor production. CBD 1.0 to 10.0 µg/mL dose-dependently decreased sIL-1RA, IL-8, IL-9, IL-10, IL-13, CCL11, G-CSF, IFN-γ, CCL2, CCL4, and CCL5, and increased IL-1β, IL-4, IL-15, IL-17, GM-CSF, TNF-α, FGF, and VEGF. In summary, in this experiment, there was no beneficial effect of CBD on the activated immune profile of depression and higher CBD concentrations can worsen inflammatory processes.
Collapse
Affiliation(s)
- Muanpetch Rachayon
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand; (M.R.); (K.J.); (A.S.)
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand; (M.R.); (K.J.); (A.S.)
- Maximizing Thai Children’s Developmental Potential Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pimpayao Sodsai
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Siriwan Klinchanhom
- Division of Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Atapol Sughondhabirom
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand; (M.R.); (K.J.); (A.S.)
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand; (M.R.); (K.J.); (A.S.)
- IMPACT Strategic Research Center, Barwon Health, Geelong, VIC 3220, Australia
- Department of Psychiatry, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
5
|
Coelho AA, Vila-Verde C, Sartim AG, Uliana DL, Braga LA, Guimarães FS, Lisboa SF. Inducible Nitric Oxide Synthase Inhibition in the Medial Prefrontal Cortex Attenuates the Anxiogenic-Like Effect of Acute Restraint Stress via CB 1 Receptors. Front Psychiatry 2022; 13:923177. [PMID: 35911236 PMCID: PMC9330908 DOI: 10.3389/fpsyt.2022.923177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Stress exposure can result in several proinflammatory alterations in the brain, including overexpression of the inducible isoform of nitric oxide synthase (iNOS) in the medial prefrontal cortex (mPFC). These changes may be involved in the development of many psychiatric conditions. However, it is unknown if iNOS in mPFC plays a significant role in stress-induced behavioral changes. The endocannabinoid (ECB) system is also influenced by stress. Its activation seems to be a counter regulatory mechanism to prevent or decrease the stress-mediated neuroinflammatory consequences. However, it is unclear if the ECB system and iNOS interact to influence stress consequences. This study aimed to test the hypothesis that the anti-stress effect of iNOS inhibition in mPFC involves the local ECB system, particularly the CB1 cannabinoid receptors. Male Wistar rats with guide cannula aimed at the mPFC were submitted to acute restraint stress (RS) for 2 h. In the following morning, rats received bilateral microinjections of vehicle, AM251 (CB1 antagonist; 100 pmol), and/or 1400W (iNOS selective inhibitor; 10-4, 10-3, or 10-2 nmol) into the prelimbic area of mPFC (PL-mPFC) before being tested in the elevated plus-maze (EPM). iNOS inhibition by 1400W prevented the anxiogenic-like effect observed in animals submitted to RS. The drug did not promote behavior changes in naive animals, demonstrating a stress-dependent effect. The 1400W-anti-stress effect was prevented by local pretreatment with AM251. Our data suggest that iNOS inhibition may facilitate the local endocannabinoid signaling, attenuating stress effects.
Collapse
Affiliation(s)
- Arthur A Coelho
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| | - Carla Vila-Verde
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Ariandra G Sartim
- Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| | - Daniela L Uliana
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Laura A Braga
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Francisco S Guimarães
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Sabrina F Lisboa
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| |
Collapse
|