1
|
Akcay E, Karatas H. P2X7 receptors from the perspective of NLRP3 inflammasome pathway in depression: Potential role of cannabidiol. Brain Behav Immun Health 2024; 41:100853. [PMID: 39296605 PMCID: PMC11407962 DOI: 10.1016/j.bbih.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Many patients with depressive disorder do not respond to conventional antidepressant treatment. There is an ongoing interest in investigating potential mechanisms of treatment resistance in depression to provide alternative treatment options involving inflammatory mechanisms. Increasing evidence implicates the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome as a critical factor in neuroinflammation. ATP-induced P2X7 receptor (P2X7R) activation is a major trigger for inflammation, activating the canonical NLRP3 inflammatory cascade. Psychosocial stress, the primary environmental risk factor for depression, is associated with changes in ATP-mediated P2X7R signaling. Depression and stress response can be alleviated by Cannabidiol (CBD). CBD has an anti-inflammatory activity related to the regulation of NLRP3 inflammasome activation. However, CBD's effects on the inflammasome pathway are poorly understood in central nervous system (CNS) cells, including microglia, astrocytes, and neurons. This review will emphasize some findings for neuroinflammation and NLRP3 inflammasome pathway involvement in depression, particularly addressing the ATP-induced P2X7R activation. Moreover, we will underline evidence for the effect of CBD on depression and address its potential impacts on neuroinflammation through the NLRP3 inflammasome cascade.
Collapse
Affiliation(s)
- Elif Akcay
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
- University of Health Sciences, Ankara Bilkent City Hospital, Department of Child and Adolescent Psychiatry, Ankara, Turkey
| | - Hulya Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| |
Collapse
|
2
|
Ma YN, Zhang CC, Sun YX, Liu X, Li XX, Wang H, Wang T, Wang XD, Su YA, Li JT, Si TM. Dorsal CA1 NECTIN3 Reduction Mediates Early-Life Stress-Induced Object Recognition Memory Deficits in Adolescent Female Mice. Neurosci Bull 2024:10.1007/s12264-024-01305-z. [PMID: 39395912 DOI: 10.1007/s12264-024-01305-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/28/2024] [Indexed: 10/14/2024] Open
Abstract
Early-life stress (ES) leads to cognitive dysfunction in female adolescents, but the underlying neural mechanisms remain elusive. Recent evidence suggests that the cell adhesion molecules NECTIN1 and NECTIN3 play a role in cognition and ES-related cognitive deficits in male rodents. In this study, we aimed to investigate whether and how nectins contribute to ES-induced cognitive dysfunction in female adolescents. Applying the well-established limited bedding and nesting material paradigm, we found that ES impairs recognition memory, suppresses prefrontal NECTIN1 and hippocampal NECTIN3 expression, and upregulates corticotropin-releasing hormone (Crh) and its receptor 1 (Crhr1) mRNA levels in the hippocampus of adolescent female mice. Genetic experiments revealed that the reduction of dorsal CA1 (dCA1) NECTIN3 mediates ES-induced object recognition memory deficits, as knocking down dCA1 NECTIN3 impaired animals' performance in the novel object recognition task, while overexpression of dCA1 NECTIN3 successfully reversed the ES-induced deficits. Notably, prefrontal NECTIN1 knockdown did not result in significant cognitive impairments. Furthermore, acute systemic administration of antalarmin, a CRHR1 antagonist, upregulated hippocampal NECTIN3 levels and rescued object and spatial memory deficits in stressed mice. Our findings underscore the critical role of dCA1 NECTIN3 in mediating ES-induced object recognition memory deficits in adolescent female mice, highlighting it as a potential therapeutic target for stress-related psychiatric disorders in women.
Collapse
Affiliation(s)
- Yu-Nu Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Chen-Chen Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xue-Xin Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Han Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
3
|
Andressa Caetano R, Alves J, Smaniotto TA, Daroda Dutra F, de Assis EZB, Soares Pedroso L, Peres A, Machado AG, Krolow R, Maciel August P, Matté C, Seady M, Leite MC, Machado BG, Marques C, Saraiva L, de Lima RMS, Dalmaz C. Impacts of linseed oil diet on anxiety and memory extinction after early life stress: A sex-specific analysis of mitochondrial dysfunction, astrocytic markers, and inflammation in the amygdala. Brain Res 2024; 1846:149268. [PMID: 39374840 DOI: 10.1016/j.brainres.2024.149268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Early exposure to stressors affects how the organism reacts to stimuli, its emotional state throughout life, and how it deals with emotional memories. Consequently, it may affect susceptibility to psychopathology later in life. We used an animal model of early stress by maternal separation to study its potential impact on the extinction of aversive memories and anxiety-like behavior in adulthood, as well as its effects on mitochondrial functionality, inflammatory and astrocytic markers in the amygdala. We also assessed whether a diet enriched with linseed oil, known for its high content in omega-3 fats, could be used to attenuate the behavioral and neurochemical effects of early stress. Litters of Wistar rats were divided into controls (intact) or subjected to maternal separation (MS). They were subdivided into two groups receiving isocaloric diets enriched in soy or linseed oils at weaning. In adulthood, the animals were exposed to the open field and the elevated plus maze, to evaluate exploratory activity and anxiety-like behavior. They were also trained in a context of fear conditioning, and afterward subjected to an extinction session, followed by a test session to evaluate the extinction memory. Amygdalae were evaluated for inflammatory cytokines (interleukin (IL)-1beta, IL-6, and tumor-necrose factor (TNF)-alpha), mitochondrial functionality, and astrocyte markers (glial fibrillary acidic protein - GFAP, S100B, and glutamine synthetase activity). MS induced anxiety-like behavior in the elevated plus-maze, which was reversed by a diet enriched in linseed oil offered from weaning. When testing the memory of an extinction session of fear conditioning, MS animals showed more freezing behavior. MS males receiving a linseed oil-enriched diet had lower functional mitochondria in the amygdala. In addition, MS led to increased inflammatory cytokines, particularly IL-1beta, and the diet enriched in linseed oil further increased these levels in MS animals. MS also increased S100B levels. These results point to a higher emotionality presented by MS animals, with higher levels of inflammatory cytokines and S100B. While a diet enriched in linseed oil attenuated anxiety-like behavior, it further altered amygdala IL-1beta and reduced mitochondria functionality, particularly in males. MS also increased glutamine synthetase activity in the amygdala, and this effect was higher when the animals received a diet enriched in linseed oil, particularly in females. In conclusion, these results point to MS effects on emotional behavior, and neurochemical alterations in the amygdala, with sex-specific effects. Although a diet enriched in linseed oil appears to be able to reverse some of MS behavioral effects, these results must be considered with caution, since biochemical parameters could be worsened in MS animals receiving a linseed oil-enriched diet. This knowledge is important for the understanding of mechanisms of action of strategies aiming to reverse early stress effects, and future studies are warranted to determine possible interventions to promote resilience.
Collapse
Affiliation(s)
- Regina Andressa Caetano
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Brazil
| | - Joelma Alves
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Thiago A Smaniotto
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Francisco Daroda Dutra
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Brazil
| | - Eduardo Z B de Assis
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Luisa Soares Pedroso
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Ariadni Peres
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Alessandra G Machado
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Rachel Krolow
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Pauline Maciel August
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Cristiane Matté
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Marina Seady
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Marina C Leite
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Brenda G Machado
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Carolina Marques
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Laura Saraiva
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Randriely Merscher Sobreira de Lima
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Brazil; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Menculini G, Cinesi G, Scopetta F, Cardelli M, Caramanico G, Balducci PM, De Giorgi F, Moretti P, Tortorella A. Major challenges in youth psychopathology: treatment-resistant depression. A narrative review. Front Psychiatry 2024; 15:1417977. [PMID: 39056019 PMCID: PMC11269237 DOI: 10.3389/fpsyt.2024.1417977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Major depressive disorder (MDD) represents a major health issue in adolescents and young adults, leading to high levels of disability and profoundly impacting overall functioning. The clinical presentation of MDD in this vulnerable age group may slightly differ from what can be observed in adult populations, and psychopharmacological strategies do not always lead to optimal response. Resistance to antidepressant treatment has a prevalence estimated around 40% in youths suffering from MDD and is associated with higher comorbidity rates and suicidality. Several factors, encompassing biological, environmental, and clinical features, may contribute to the emergence of treatment-resistant depression (TRD) in adolescents and young adults. Furthermore, TRD may underpin the presence of an unrecognized bipolar diathesis, increasing the overall complexity of the clinical picture and posing major differential diagnosis challenges in the clinical practice. After summarizing current evidence on epidemiological and clinical correlates of TRD in adolescents and young adults, the present review also provides an overview of possible treatment strategies, including novel fast-acting antidepressants. Despite these pharmacological agents are promising in this population, their usage is expected to rely on risk-benefit ratio and to be considered in the context of integrated models of care.
Collapse
Affiliation(s)
- Giulia Menculini
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Gianmarco Cinesi
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesca Scopetta
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Matteo Cardelli
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Guido Caramanico
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Pierfrancesco Maria Balducci
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Community Mental Health Center “CSM Terni”, Department of Psychiatry, Local Health Unit USL Umbria 2, Terni, Italy
| | - Filippo De Giorgi
- Division of Psychiatry, Clinical Psychology and Rehabilitation, General Hospital of Perugia, Perugia, Italy
| | - Patrizia Moretti
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alfonso Tortorella
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Ledesma-Corvi S, Jornet-Plaza J, Gálvez-Melero L, García-Fuster MJ. Novel rapid treatment options for adolescent depression. Pharmacol Res 2024; 201:107085. [PMID: 38309382 DOI: 10.1016/j.phrs.2024.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
There is an urgent need for novel fast-acting antidepressants for adolescent treatment-resistant depression and/or suicidal risk, since the selective serotonin reuptake inhibitors that are clinically approved for that age (i.e., fluoxetine or escitalopram) take weeks to work. In this context, one of the main research lines of our group is to characterize at the preclinical level novel approaches for rapid-acting antidepressants for adolescence. The present review summarizes the potential use in adolescence of non-pharmacological options, such as neuromodulators (electroconvulsive therapy and other innovative types of brain stimulation), as well as pharmacological options, including consciousness-altering drugs (mainly ketamine but also classical psychedelics) and cannabinoids (i.e., cannabidiol), with promising fast-acting responses. Following a brief analytical explanation of adolescent depression, we present a general introduction for each therapeutical approach together with the clinical evidence supporting its potential beneficial use in adolescence (mainly extrapolated from prior successful examples for adults), to then report recent and/or ongoing preclinical studies that will aid in improving the inclusion of these therapies in the clinic, by considering potential sex-, age-, and dose-related differences, and/or other factors that might affect efficacy or long-term safety. Finally, we conclude the review by providing future avenues to maximize treatment response, including the need for more clinical studies and the importance of designing and/or testing novel treatment options that are safe and fast-acting for adolescent depression.
Collapse
Affiliation(s)
- Sandra Ledesma-Corvi
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Jordi Jornet-Plaza
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Laura Gálvez-Melero
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Department of Medicine, University of the Balearic Islands, Palma, Spain.
| |
Collapse
|
6
|
Kong CH, Park K, Kim DY, Kim JY, Kang WC, Jeon M, Min JW, Lee WH, Jung SY, Ryu JH. Effects of oleanolic acid and ursolic acid on depression-like behaviors induced by maternal separation in mice. Eur J Pharmacol 2023; 956:175954. [PMID: 37541369 DOI: 10.1016/j.ejphar.2023.175954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Oleanolic acid (OA) and ursolic acid (UA) are structural isomeric triterpenoids. Both triterpenoids have been reported to be able to improve depression. However, no studies have compared their effects in the same system. Whether OA or UA could ameliorate depression-like behaviors in maternal separation (MS)-induced depression-like model was investigated. MS model is a well-accepted mouse model that can reflect the phenotype and pathogenesis of depression. Depression is a mental illness caused by neuroinflammation or changes in neuroplasticity in certain brain regions, such as the prefrontal cortex and hippocampus. Depression-like behaviors were measured using splash test or forced swimming test. In addition, anxiety-like behaviors were also measured using the open field test or elevated plus-maze test. MS-treated female mice showed greater depression-like behaviors than male mice, and that OA improved several depression-like behaviors, whereas UA only relieved anxiety-like behavior of MS-treated mice. Microglial activation, expression levels of TNF-α, and mRNA levels of IDO1 were increased in the hippocampi of MS-treated female mice. However, OA and UA treatments attenuated such increases. In addition, expression levels of synaptophysin and PSD-95 were decreased in the hippocampi of MS-treated female mice. These decreased expression levels of synaptophysin were reversed by both OA and UA treatments, although decreased PSD-95 expression levels were only reversed by OA treatment. Our findings suggest that MS cause depression-like behaviors through female-specific neuroinflammation, changes of tryptophan metabolism, and alterations of synaptic plasticity. Our findings also suggest that OA could reverse MS-induced depression-like behaviors more effectively than UA.
Collapse
Affiliation(s)
- Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Do Yeon Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Youn Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ji Won Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Won Hyung Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
7
|
Gutiérrez-Rodelo C, Martínez-Tolibia SE, Morales-Figueroa GE, Velázquez-Moyado JA, Olivares-Reyes JA, Navarrete-Castro A. Modulating cyclic nucleotides pathways by bioactive compounds in combatting anxiety and depression disorders. Mol Biol Rep 2023; 50:7797-7814. [PMID: 37486442 PMCID: PMC10460744 DOI: 10.1007/s11033-023-08650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023]
Abstract
Anxiety and depression disorders are highly prevalent neurological disorders (NDs) that impact up to one in three individuals during their lifetime. Addressing these disorders requires reducing their frequency and impact, understanding molecular causes, implementing prevention strategies, and improving treatments. Cyclic nucleotide monophosphates (cNMPs) like cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), cyclic uridine monophosphate (cUMP), and cyclic cytidine monophosphate (cCMP) regulate the transcription of genes involved in neurotransmitters and neurological functions. Evidence suggests that cNMP pathways, including cAMP/cGMP, cAMP response element binding protein (CREB), and Protein kinase A (PKA), play a role in the physiopathology of anxiety and depression disorders. Plant and mushroom-based compounds have been used in traditional and modern medicine due to their beneficial properties. Bioactive compound metabolism can activate key pathways and yield pharmacological outcomes. This review focuses on the molecular mechanisms of bioactive compounds from plants and mushrooms in modulating cNMP pathways. Understanding these processes will support current treatments and aid in the development of novel approaches to reduce the prevalence of anxiety and depression disorders, contributing to improved outcomes and the prevention of associated complications.
Collapse
Affiliation(s)
- Citlaly Gutiérrez-Rodelo
- Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, ZIP 04510, Mexico.
| | | | - Guadalupe Elide Morales-Figueroa
- Department of Physiology, Biophysics, and Neurosciences of the Center for Research, Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, ZIP, 07360, Mexico
| | - Josué Arturo Velázquez-Moyado
- Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, ZIP 04510, Mexico
| | - J Alberto Olivares-Reyes
- Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) Mexico City, Mexico City, ZIP 07360, Mexico
| | - Andrés Navarrete-Castro
- Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, ZIP 04510, Mexico.
| |
Collapse
|
8
|
Mottarlini F, Rizzi B, Targa G, Fumagalli F, Caffino L. Long-lasting BDNF signaling alterations in the amygdala of adolescent female rats exposed to the activity-based anorexia model. Front Behav Neurosci 2022; 16:1087075. [PMID: 36570702 PMCID: PMC9772010 DOI: 10.3389/fnbeh.2022.1087075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction: Anorexia nervosa (AN) is a severe psychiatric disorder characterized by a pathological fear of gaining weight, excessive physical exercise, and emotional instability. Since the amygdala is a key region for emotion processing and BDNF has been shown to play a critical role in this process, we hypothesized that alteration in the amygdalar BDNF system might underline vulnerability traits typical of AN patients. Methods: To this end, adolescent female rats have been exposed to the Activity-Based Anorexia (ABA) protocol, characterized by the combination of caloric restriction and intense physical exercise. Results: The induction of the anorexic phenotype caused hyperactivity and body weight loss in ABA animals. These changes were paralleled by amygdalar hyperactivation, as measured by the up-regulation of cfos mRNA levels. In the acute phase of the pathology, we observed reduced Bdnf exon IX, exon IV, and exon VI gene expression, while mBDNF protein levels were enhanced, an increase that was, instead, uncoupled from its downstream signaling as the phosphorylation of TrkB, Akt, and S6 in ABA rats were reduced. Despite the body weight recovery observed 7 days later, the BDNF-mediated signaling was still downregulated at this time point. Discussion: Our findings indicate that the BDNF system is downregulated in the amygdala of adolescent female rats under these experimental conditions, which mimic the anorexic phenotype in humans, pointing to such dysregulation as a potential contributor to the altered emotional processing observed in AN patients. In addition, since the modulation of BDNF levels is observed in other psychiatric conditions, the persistent AN-induced changes of the BDNF system in the amygdala might contribute to explaining the onset of comorbid psychiatric disorders that persist in patients even beyond recovery from AN.
Collapse
|
9
|
Mahony C, O'Ryan C. A molecular framework for autistic experiences: Mitochondrial allostatic load as a mediator between autism and psychopathology. Front Psychiatry 2022; 13:985713. [PMID: 36506457 PMCID: PMC9732262 DOI: 10.3389/fpsyt.2022.985713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Molecular autism research is evolving toward a biopsychosocial framework that is more informed by autistic experiences. In this context, research aims are moving away from correcting external autistic behaviors and toward alleviating internal distress. Autism Spectrum Conditions (ASCs) are associated with high rates of depression, suicidality and other comorbid psychopathologies, but this relationship is poorly understood. Here, we integrate emerging characterizations of internal autistic experiences within a molecular framework to yield insight into the prevalence of psychopathology in ASC. We demonstrate that descriptions of social camouflaging and autistic burnout resonate closely with the accepted definitions for early life stress (ELS) and chronic adolescent stress (CAS). We propose that social camouflaging could be considered a distinct form of CAS that contributes to allostatic overload, culminating in a pathophysiological state that is experienced as autistic burnout. Autistic burnout is thought to contribute to psychopathology via psychological and physiological mechanisms, but these remain largely unexplored by molecular researchers. Building on converging fields in molecular neuroscience, we discuss the substantial evidence implicating mitochondrial dysfunction in ASC to propose a novel role for mitochondrial allostatic load in the relationship between autism and psychopathology. An interplay between mitochondrial, neuroimmune and neuroendocrine signaling is increasingly implicated in stress-related psychopathologies, and these molecular players are also associated with neurodevelopmental, neurophysiological and neurochemical aspects of ASC. Together, this suggests an increased exposure and underlying molecular susceptibility to ELS that increases the risk of psychopathology in ASC. This article describes an integrative framework shaped by autistic experiences that highlights novel avenues for molecular research into mechanisms that directly affect the quality of life and wellbeing of autistic individuals. Moreover, this framework emphasizes the need for increased access to diagnoses, accommodations, and resources to improve mental health outcomes in autism.
Collapse
Affiliation(s)
| | - Colleen O'Ryan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Matheson J, Bourgault Z, Le Foll B. Sex Differences in the Neuropsychiatric Effects and Pharmacokinetics of Cannabidiol: A Scoping Review. Biomolecules 2022; 12:biom12101462. [PMID: 36291671 PMCID: PMC9599539 DOI: 10.3390/biom12101462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating cannabinoid compound with diverse molecular targets and potential therapeutic effects, including effects relevant to the treatment of psychiatric disorders. In this scoping review, we sought to determine the extent to which sex and gender have been considered as potential moderators of the neuropsychiatric effects and pharmacokinetics of CBD. In this case, 300 articles were screened, retrieved from searches in PubMed/Medline, Scopus, Google Scholar, PsycInfo and CINAHL, though only 12 met our eligibility criteria: eight studies in preclinical models and four studies in humans. Among the preclinical studies, three suggested that sex may influence long-term effects of gestational or adolescent exposure to CBD; two found no impact of sex on CBD modulation of addiction-relevant effects of Δ⁹-tetrahydrocannabinol (THC); two found antidepressant-like effects of CBD in males only; and one found greater plasma and liver CBD concentrations in females compared to males. Among the human studies, two found no sex difference in CBD pharmacokinetics in patient samples, one found greater plasma CBD concentrations in healthy females compared to males, and one found no evidence of sex differences in the effects of CBD on responses to trauma recall in patients with post-traumatic stress disorder (PTSD). No studies were identified that considered the role of gender in CBD treatment effects. We discuss potential implications and current limitations of the existing literature.
Collapse
Affiliation(s)
- Justin Matheson
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Ursula Franklin Street, Toronto, ON M5S 2S1, Canada
- Correspondence:
| | - Zoe Bourgault
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Ursula Franklin Street, Toronto, ON M5S 2S1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Ursula Franklin Street, Toronto, ON M5S 2S1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 1A8, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, ON L9M 1G3, Canada
| |
Collapse
|
11
|
Hernández-Hernández E, García-Fuster MJ. Dose-Dependent Antidepressant-Like Effects of Cannabidiol in Aged Rats. Front Pharmacol 2022; 13:891842. [PMID: 35847003 PMCID: PMC9283859 DOI: 10.3389/fphar.2022.891842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aging predisposes to late-life depression and since antidepressants are known to change their efficacy with age, novel treatment options are needed for our increased aged population. In this context, the goal of the present study was to evaluate the potential antidepressant-like effect of cannabidiol in aged rats. For this purpose, 19–21-month-old Sprague–Dawley rats were treated for 7 days with cannabidiol (dose range: 3–30 mg/kg) and scored under the stress of the forced-swim test. Hippocampal cannabinoid receptors and cell proliferation were evaluated as potential molecular markers underlying cannabidiol’s actions. The main results of the present study demonstrated that cannabidiol exerted a dose-dependent antidepressant-like effect in aged rats (U-shaped, effective at the intermediate dose of 10 mg/kg as compared to the other doses tested), without affecting body weight. None of the molecular markers analyzed in the hippocampus were altered by cannabidiol’s treatment. Overall, this study demonstrated a dose-dependent antidepressant-like response for cannabidiol at this age-window (aged rats up to 21 months old) and in line with other studies suggesting a beneficial role for this drug in age-related behavioral deficits.
Collapse
Affiliation(s)
- Elena Hernández-Hernández
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
| | - M. Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- *Correspondence: M. Julia García-Fuster,
| |
Collapse
|
12
|
Rachayon M, Jirakran K, Sodsai P, Klinchanhom S, Sughondhabirom A, Plaimas K, Suratanee A, Maes M. In Vitro Effects of Cannabidiol on Activated Immune–Inflammatory Pathways in Major Depressive Patients and Healthy Controls. Pharmaceuticals (Basel) 2022; 15:ph15040405. [PMID: 35455402 PMCID: PMC9032852 DOI: 10.3390/ph15040405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Major depressive disorder and major depressive episodes (MDD/MDE) are characterized by the activation of the immune–inflammatory response system (IRS) and the compensatory immune–regulatory system (CIRS). Cannabidiol (CBD) is a phytocannabinoid isolated from the cannabis plant, which is reported to have antidepressant-like and anti-inflammatory effects. The aim of the present study is to examine the effects of CBD on IRS, CIRS, M1, T helper (Th)-1, Th-2, Th-17, T regulatory (Treg) profiles, and growth factors in depression and healthy controls. Culture supernatant of stimulated (5 μg/mL of PHA and 25 μg/mL of LPS) whole blood of 30 depressed patients and 20 controls was assayed for cytokines using the LUMINEX assay. The effects of three CBD concentrations (0.1 µg/mL, 1 µg/mL, and 10 µg/mL) were examined. Depression was characterized by significantly increased PHA + LPS-stimulated Th-1, Th-2, Th-17, Treg, IRS, CIRS, and neurotoxicity profiles. CBD 0.1 µg/mL did not have any immune effects. CBD 1.0 µg/mL decreased CIRS activities but increased growth factor production, while CBD 10.0 µg/mL suppressed Th-1, Th-17, IRS, CIRS, and a neurotoxicity profile and enhanced T cell growth and growth factor production. CBD 1.0 to 10.0 µg/mL dose-dependently decreased sIL-1RA, IL-8, IL-9, IL-10, IL-13, CCL11, G-CSF, IFN-γ, CCL2, CCL4, and CCL5, and increased IL-1β, IL-4, IL-15, IL-17, GM-CSF, TNF-α, FGF, and VEGF. In summary, in this experiment, there was no beneficial effect of CBD on the activated immune profile of depression and higher CBD concentrations can worsen inflammatory processes.
Collapse
Affiliation(s)
- Muanpetch Rachayon
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand; (M.R.); (K.J.); (A.S.)
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand; (M.R.); (K.J.); (A.S.)
- Maximizing Thai Children’s Developmental Potential Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pimpayao Sodsai
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Siriwan Klinchanhom
- Division of Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Atapol Sughondhabirom
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand; (M.R.); (K.J.); (A.S.)
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand; (M.R.); (K.J.); (A.S.)
- IMPACT Strategic Research Center, Barwon Health, Geelong, VIC 3220, Australia
- Department of Psychiatry, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|