1
|
Mei Y, Becker B, Leppänen PHT, Lei Y. Exploring the 'black box' of anxiety: An ERP study of non-consciously triggered fear generalization. Behav Res Ther 2024; 178:104552. [PMID: 38718631 DOI: 10.1016/j.brat.2024.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/11/2024]
Abstract
Individuals with anxiety disorders frequently display heightened fear responses, even in situations where there is no imminent danger. We hypothesize that these irrational fear responses are related to automatic processing of fear generalization. The initial automatic detection of stimuli often operates at a non-conscious level. However, whether fear generalization can occur when the cues are not perceived consciously remains unclear. The current study investigated the neurocognitive mechanisms underlying fear conditioning and its non-conscious and conscious generalization using a backward masking paradigm, combined with analysis of event-related potentials from electroencephalographic recordings. Behaviorally, participants showed heightened shock expectancy in response to non-conscious perceived generalization stimuli compared to those perceived consciously. Nonetheless, participants could not consciously distinguish between danger and safe cues in non-conscious trials. Physiologically, danger cues evoked larger frontal N1 amplitudes than safety cues in non-conscious trials, suggesting enhanced attention vigilance towards danger cues in the early sensory processing stage. Meanwhile, when fear generalization was conscious, it was accompanied by a larger P2 amplitude, indicating attention orientation or stimulus evaluation. In addition, fear conditioning was associated with sustained discrimination on P2, P3, and LPP. These findings collectively suggest that non-conscious fear generalization occurs at the neural level, yet additional control conditions are required to confirm this phenomenon on the US expectancy. Thus, non-consciously fear generalization may represent a mechanism that could trigger automatic irrational fear, highlighting the need for further research to explore therapeutic targets in anxiety disorders.
Collapse
Affiliation(s)
- Ying Mei
- Institute for Brain and Psychological Sciences, Sichuan Normal University, 610066, China; Centre of Excellence for Learning Dynamics and Intervention Research, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Paavo H T Leppänen
- Centre of Excellence for Learning Dynamics and Intervention Research, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Yi Lei
- Institute for Brain and Psychological Sciences, Sichuan Normal University, 610066, China.
| |
Collapse
|
2
|
Qiu Y, Dou H, Wang J, Zhang H, Zhang S, Shen D, Li H, Lei Y. Reduced generalization of reward among individuals with subthreshold depression: Behavioral and EEG evidence. Int J Psychophysiol 2024; 200:112339. [PMID: 38554769 DOI: 10.1016/j.ijpsycho.2024.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Altered stimulus generalization has been well-documented in anxiety disorders; however, there is a paucity of research investigating this phenomenon in the context of depression. Depression is characterized by impaired reward processing and heightened attention to negative stimuli. It is hypothesized that individuals with depression exhibit reduced generalization of reward stimuli and enhanced generalization of loss stimuli. Nevertheless, no study has examined this process and its underlying neural mechanisms. In the present study, we recruited 25 participants with subthreshold depression (SD group) and 24 age-matched healthy controls (HC group). Participants completed an acquisition task, in which they learned to associate three distinct pure tones (conditioned stimuli, CSs) with a reward, a loss, or no outcome. Subsequently, a generalization session was conducted, during which similar tones (generalization stimuli, GSs) were presented, and participants were required to classify them as a reward tone, a loss tone, or neither. The results revealed that the SD group exhibited reduced generalization errors in the early phase of generalization, suggesting a diminished ability to generalize reward-related stimuli. The event-related potential (ERP) results indicated that the SD group exhibited decreased generalization of positive valence to reward-related GSs and heightened generalization of negative valence to loss-related GSs, as reflected by the N1 and P2 components. However, the late positive potential (LPP) was not modulated by depression in reward generalization or loss generalization. These findings suggested that individuals with subthreshold depression may have a blunted or reduced ability to generalize reward stimuli, shedding light on potential treatment strategies targeting this particular process.
Collapse
Affiliation(s)
- Yiwen Qiu
- College of Psychology, Shenzhen University, Shenzhen 518060, China; Center for Neurogenetics, Shenzhen Institute of Neuroscience, Shenzhen 518057, China
| | - Haoran Dou
- Institution for Brain and Psychological Science, Sichuan Normal University, Chengdu 610066, China; Center for Neurogenetics, Shenzhen Institute of Neuroscience, Shenzhen 518057, China
| | - Jinxia Wang
- Institution for Brain and Psychological Science, Sichuan Normal University, Chengdu 610066, China; Center for Neurogenetics, Shenzhen Institute of Neuroscience, Shenzhen 518057, China; Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Huoyin Zhang
- College of Psychology, Shenzhen University, Shenzhen 518060, China; Center for Neurogenetics, Shenzhen Institute of Neuroscience, Shenzhen 518057, China
| | - Shiyunmeng Zhang
- College of Psychology, Shenzhen University, Shenzhen 518060, China; Center for Neurogenetics, Shenzhen Institute of Neuroscience, Shenzhen 518057, China
| | - Die Shen
- College of Psychology, Shenzhen University, Shenzhen 518060, China; Center for Neurogenetics, Shenzhen Institute of Neuroscience, Shenzhen 518057, China
| | - Hong Li
- College of Psychology, Shenzhen University, Shenzhen 518060, China; Center for studies of Psychological Applications Guangdong Key Laboratory of Mental Health and Cognitive Science Key Laboratory of Brain Cognition and Educational Science, Ministry of Education School of Psychology, South China Normal University, Guangzhou 510631, China; Center for Neurogenetics, Shenzhen Institute of Neuroscience, Shenzhen 518057, China.
| | - Yi Lei
- Institution for Brain and Psychological Science, Sichuan Normal University, Chengdu 610066, China; Center for Neurogenetics, Shenzhen Institute of Neuroscience, Shenzhen 518057, China.
| |
Collapse
|
3
|
Wang J, Shen S, Becker B, Hei Lam Tsang M, Mei Y, Wikgren J, Lei Y. Neurocognitive mechanisms of mental imagery-based disgust learning. Behav Res Ther 2024; 175:104502. [PMID: 38402674 DOI: 10.1016/j.brat.2024.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Disgust imagery represents a potential pathological mechanism for disgust-related disorders. However, it remains controversial as to whether disgust can be conditioned with disgust-evoking mental imagery serving as the unconditioned stimulus (US). Therefore, we examined this using a conditioned learning paradigm in combination with event-related potential (ERP) analysis in 35 healthy college students. The results indicated that the initial neutral face (conditioned stimulus, CS+) became more disgust-evoking, unpleasant, and arousing after pairing with disgust-evoking imagery (disgust CS+), compared to pairing with neutral (neutral CS+) and no (CS-) imagery. Moreover, we observed that mental imagery-based disgust conditioning was resistant to extinction. While the disgust CS + evoked larger P3 and late positive potential amplitudes than CS- during acquisition, no significant differences were found between disgust CS+ and neutral CS+, indicating a dissociation between self-reported and neurophysiological responses. Future studies may additionally acquire facial EMG as an implicit index of conditioned disgust. This study provides the first neurobiological evidence that associative disgust learning can occur without aversive physical stimuli, with implications for understanding how disgust-related disorders may manifest or deteriorate without external perceptual aversive experiences, such as in obsessive-compulsive disorder (OCD).
Collapse
Affiliation(s)
- Jinxia Wang
- Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China; Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Siyi Shen
- Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Michelle Hei Lam Tsang
- State Key Laboratory of Brain and Cognitive Sciences, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Ying Mei
- Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China; Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jan Wikgren
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Yi Lei
- Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China.
| |
Collapse
|
4
|
Kitamura T, Ramesh K, Terranova JI. Understanding Others' Distress Through Past Experiences: The Role of Memory Engram Cells in Observational Fear. ADVANCES IN NEUROBIOLOGY 2024; 38:215-234. [PMID: 39008018 DOI: 10.1007/978-3-031-62983-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
For individuals to survive and function in society, it is essential that they recognize, interact with, and learn from other conspecifics. Observational fear (OF) is the well-conserved empathic ability of individuals to understand the other's aversive situation. While it is widely known that factors such as prior similar aversive experience and social familiarity with the demonstrator facilitate OF, the neural circuit mechanisms that explicitly regulate experience-dependent OF (Exp OF) were unclear. In this review, we examine the neural circuit mechanisms that regulate OF, with an emphasis on rodent models, and then discuss emerging evidence for the role of fear memory engram cells in the regulation of Exp OF. First, we examine the neural circuit mechanisms that underlie Naive OF, which is when an observer lacks prior experiences relevant to OF. In particular, the anterior cingulate cortex to basolateral amygdala (BLA) neural circuit is essential for Naive OF. Next, we discuss a recent study that developed a behavioral paradigm in mice to examine the neural circuit mechanisms that underlie Exp OF. This study found that fear memory engram cells in the BLA of observers, which form during a prior similar aversive experience with shock, are reactivated by ventral hippocampal neurons in response to shock delivery to the familiar demonstrator to elicit Exp OF. Finally, we discuss the implications of fear memory engram cells in Exp OF and directions of future research that are of both translational and basic interest.
Collapse
Affiliation(s)
- Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kritika Ramesh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
5
|
Zhou X, Gu Y, Wang J, Huang L, Lei Y. Intolerance of uncertainty enhances generalisation of cued conditioned threat: An event-related potential study. Biol Psychol 2023; 181:108601. [PMID: 37295767 DOI: 10.1016/j.biopsycho.2023.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Overgeneralisation is one of the aetiologies of anxiety disorders and is closely associated with elevated intolerance of uncertainty (IU) levels. However, the underlying mechanisms are unclear. Considering the inconsistency of previous results and the high sensitivity of IU to uncertainty, the present study investigated the effect of IU on threat generalisation in predictable and unpredictable conditions. We compared self-reported unconditioned stimuli (US) expectancy and event-related potentials (ERPs) during generalisation in high IU (n = 34) and low IU (n = 35) participants. The results indicated that high IU was associated with higher US expectancy for generalisation stimuli (GS) than with low IU. At the electrophysiological level, compared to low IU, high IU showed increased P1 to ambiguous GS as well as decreased early late positive potential (LPP) to GS in unpredictable conditions, and no differential response to GS in late LPP in predictable conditions. These findings suggest that IU enhances threat generalisation and may be related to increased early automatic attention to ambiguous stimulus and inadequate late elaborate processing in a high uncertainty context. These findings might contribute to the treatment of mood disorders characterized by high IU.
Collapse
Affiliation(s)
- Xiao Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yuanyuan Gu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Jinxia Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Lihui Huang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.
| | - Yi Lei
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.
| |
Collapse
|