Kondinski A. Configurational Isomerism in Bimetallic Decametalates.
MATERIALS (BASEL, SWITZERLAND) 2024;
17:3624. [PMID:
39063915 PMCID:
PMC11278824 DOI:
10.3390/ma17143624]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
In this work, we report on the development of a computational algorithm that explores the configurational isomer space of bimetallic decametalates with general formula MxM10-x'O28q. For x being a natural number in the range of 0 to 10, the algorithm identifies 318 unique configurational isomers. The algorithm is used to generate mixed molybdenum(VI)-vanadium(V) systems MoxV10-xO288- for x=0,1,2, and 3 that are of experimental relevance. The application of the density functional theory (DFT) effectively predicts stability trends that correspond well with empirical observations. In dimolybdenum-substituted decavanadate systems, we discover that a two-electron reduction preferentially stabilizes a configurational isomer due to the formation of metal-metal bonding. The particular polyoxometalate structure is of interest for further experimental studies.
Collapse