1
|
Thuéry P, Harrowfield J. 2,5-Thiophenedicarboxylate: An Interpenetration-Inducing Ligand in Uranyl Chemistry. Inorg Chem 2021; 60:9074-9083. [PMID: 34110817 DOI: 10.1021/acs.inorgchem.1c01069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Seven uranyl ion complexes have been crystallized under solvo-hydrothermal conditions from 2,5-thiophenedicarboxylic acid (tdcH2) and diverse additional, structure-directing species. [UO2(tdc)(DMF)] (1) is a two-stranded monoperiodic coordination polymer, while [PPh3Me][UO2(tdc)(HCOO)] (2) is a simple chain with terminal formate coligands. Although it is also monoperiodic, [C(NH2)3][H2NMe2]2[(UO2)3(tdc)4(HCOO)] (3) displays an alternation of tetra- and hexanuclear rings. Two-stranded subunits are bridged by oxo-coordinated NiII cations to form a diperiodic network in [UO2(tdc)2Ni(cyclam)] (4), but a homometallic sql diperiodic assembly is built in [Cu(R,S-Me6cyclam)(H2O)][UO2(tdc)2]·H2O (5), to which the counterion is hydrogen bonded only. Diperiodic networks with the hcb topology are formed in both [Zn(phen)3][(UO2)2(tdc)3]·2H2O·3CH3CN (6) and [PPh4]2[(UO2)2(tdc)3]·2H2O (7). The slightly undulating layers in 6 are crossed by oblique columns of weakly interacting counterions in polythreading-like fashion. In contrast, the larger curvature in 7 allows for three-fold, parallel 2D interpenetration to occur. These results are compared with previously reported cases of interpenetration and polycatenation in the uranyl-tdc2- system.
Collapse
Affiliation(s)
- Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 allée Gaspard Monge, 67083 Strasbourg, France
| |
Collapse
|
3
|
Bałczewski P, Biczak R, Turek M, Pawłowska B, Różycka-Sokołowska E, Marciniak B, Deska M, Skalik J. Ammonium 2,2'-thiodiacetates - Selective and environmentally safe herbicides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:408-416. [PMID: 30071461 DOI: 10.1016/j.ecoenv.2018.07.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 05/26/2023]
Abstract
2,2'-Thiodiacetic acid derivatives have a wide application potential, mainly in coordination chemistry. This research indicates that quaternary ammonium 2,2'-thiodiacetate salts may also be potent herbicidal agents used in agriculture. To provide a rationale for this statement, the toxic effect by a alkyl and aryl quaternary ammonium salts (QASs) on plant growth was investigated. The phytotoxicity of these compounds was tested against cultivated monocotyledonous (spring barley) and dicotyledonous (common radish) plants, whereas herbicidal activity was investigated in relation to popular weeds species (white goosefoot, sorrel and gallant-soldier). The results showed that aliphatic QASs possessed a low phytotoxicity to food crops and that some of them (in particular triethylammonium salt) had potent and selective herbicidal properties against common weeds, such as sorrel and gallant-soldier. However, the investigated compounds appeared to be ineffective herbicides against white goosefoot.
Collapse
Affiliation(s)
- P Bałczewski
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland; Department of Heteroorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź 90-363, Poland.
| | - R Biczak
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - M Turek
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - B Pawłowska
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - E Różycka-Sokołowska
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - B Marciniak
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - M Deska
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - J Skalik
- Department of Heteroorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź 90-363, Poland
| |
Collapse
|
4
|
Biczak R, Turek M, Pawłowska B, Różycka-Sokołowska E, Marciniak B, Deska M, Krupa P, Jatulewicz I, Skalik J, Bałczewski P. An influence of structural changes in ammonium cations on ecotoxicity of 2,2'-thiodiacetate mono and bis-salts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 155:37-42. [PMID: 29500938 DOI: 10.1016/j.ecoenv.2018.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
2,2'-Thiodiacetates with their excellent complexing properties may be used as metal extraction agents, fluorescent and superparamagnetic materials, antibacterial and anticancer medical agents, however there are no data concerning the environmental impact of 2,2'-thiodiacetates derivatives and data definying the potential hazard connected with their use. This study describes the ecotoxicity assessment of seven 2,2'-thiodiacetates with non-metallic, alkyl and aryl ammonium cations, which were obtained in an environmentally friendly, solvent-free syntheses. The ecotoxicity of these water soluble compounds was tested in aquatic and benthic environments using luminescent marine bacteria Vibrio fischeri (Microtox® test) and the crustaceans Heterocypris incongruens (Ostracodtoxkit F™), respectively. The antimicrobial and antifungal activity against Trichoderma viridis, Aspergillus niger, Rhizoctonia solani and Escherichia coli was also investigated. The results showed how structural changes within ammonium cations themselves influence ecotoxicity: the QASs with alkylammonium cations exhibited a similar, rather low toxicity both to Vibrio fischeri and Heterocypris incongruens, and they would not pose a risk to these organisms in case of leakage. Higher toxicity was observed in case of two isoquinolinium salts, however it was rather associated with the heteroaromatic cation, than with the 2,2'-thiodiacetate anion.
Collapse
Affiliation(s)
- R Biczak
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - M Turek
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - B Pawłowska
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - E Różycka-Sokołowska
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - B Marciniak
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - M Deska
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - P Krupa
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - I Jatulewicz
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - J Skalik
- Department of Heteroorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź 90-363, Poland
| | - P Bałczewski
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland; Department of Heteroorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź 90-363, Poland.
| |
Collapse
|
5
|
Tan Y, Li L, Zhang H, Ding D, Dai Z, Xue J, Liu J, Hu N, Wang Y. Adsorption and recovery of U(VI) from actual acid radioactive wastewater with low uranium concentration using thioacetamide modified activated carbon from liquorice residue. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5952-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Ebrahimipour SY, Sheikhshoaie I, Castro J, Dušek M, Tohidiyan Z, Eigner V, Khaleghi M. Synthesis, spectral characterization, structural studies, molecular docking and antimicrobial evaluation of new dioxidouranium(vi) complexes incorporating tetradentate N2O2 Schiff base ligands. RSC Adv 2015. [DOI: 10.1039/c5ra17524k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two new uranyl(vi) Schiff base complexes were synthesized and characterized by physicochemical and spectroscopic methods. The antimicrobial activities of these complexes were also investigated against microorganisms.
Collapse
Affiliation(s)
| | - Iran Sheikhshoaie
- Department of Chemistry
- Faculty of Science
- Shahid Bahonar University of Kerman
- Kerman
- Iran
| | - Jesús Castro
- Departamento de Química Inorgánica
- Universidade de Vigo
- Facultade de Química
- Edificio de Ciencias Experimentais
- 36310 Vigo
| | - Michal Dušek
- Institute of Physics ASCR
- 182 21 Prague
- Czech Republic
| | - Zeinab Tohidiyan
- Department of Chemistry
- Faculty of Science
- Shahid Bahonar University of Kerman
- Kerman
- Iran
| | - Václav Eigner
- Institute of Physics ASCR
- 182 21 Prague
- Czech Republic
| | - Moj Khaleghi
- Department of Biology
- Faculty of Science
- Shahid Bahonar University of Kerman
- Kerman
- Iran
| |
Collapse
|