1
|
Kevlishvili I, St Michel RG, Garrison AG, Toney JW, Adamji H, Jia H, Román-Leshkov Y, Kulik HJ. Leveraging natural language processing to curate the tmCAT, tmPHOTO, tmBIO, and tmSCO datasets of functional transition metal complexes. Faraday Discuss 2025; 256:275-303. [PMID: 39301698 DOI: 10.1039/d4fd00087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The breadth of transition metal chemical space covered by databases such as the Cambridge Structural Database and the derived computational database tmQM is not conducive to application-specific modeling and the development of structure-property relationships. Here, we employ both supervised and unsupervised natural language processing (NLP) techniques to link experimentally synthesized compounds in the tmQM database to their respective applications. Leveraging NLP models, we curate four distinct datasets: tmCAT for catalysis, tmPHOTO for photophysical activity, tmBIO for biological relevance, and tmSCO for magnetism. Analyzing the chemical substructures within each dataset reveals common chemical motifs in each of the designated applications. We then use these common chemical structures to augment our initial datasets for each application, yielding a total of 21 631 compounds in tmCAT, 4599 in tmPHOTO, 2782 in tmBIO, and 983 in tmSCO. These datasets are expected to accelerate the more targeted computational screening and development of refined structure-property relationships with machine learning.
Collapse
Affiliation(s)
- Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Roland G St Michel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron G Garrison
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jacob W Toney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Haojun Jia
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Zhang NN, Liu XT, Xu K, Liu YT, Liu LX, Yan Y. Cuprous Halide Coordination Polymer for Efficient NIR-I Photothermal Effect and Photo-Thermo-Electric Conversion. Molecules 2024; 29:6034. [PMID: 39770121 PMCID: PMC11678656 DOI: 10.3390/molecules29246034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Photo-thermo-electric conversion devices represent a promising technology for converting solar energy into electrical energy. Photothermal materials, as a critical component, play a significant role in efficient conversion from solar energy into thermal energy and subsequently electrical energy, thereby directly influencing the overall system's efficiency in solar energy utilization. However, the application of single-component photothermal materials in photo-thermo-electric conversion systems remains limited. The exploration of novel photothermal materials with broad-spectrum absorption, a high photothermal conversion efficiency (PCE), and a robust output power density is highly desired. In this study, we investigated a black cuprous halide compound, [Cu2Cl2PA]n (1, PA = phenazine), which exhibits broad-spectrum absorption extending into the near-infrared (NIR) region. Compound 1 demonstrated a high NIR-I PCE of 50% under irradiation with an 808 nm laser, attributed to the metal-to-ligand charge transfer (MLCT) from the Cu(I) to the PA ligands and the strong intermolecular π-π interactions among the PA ligands. Furthermore, the photo-thermo-electric conversion device constructed using compound 1 achieved a notable output voltage of 261 mV and an output power density of 0.92 W/m2 under the 1 Sun (1000 W/m2) xenon lamp.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (X.-T.L.); (K.X.); (Y.-T.L.); (L.-X.L.)
| | | | | | | | | | - Yong Yan
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (X.-T.L.); (K.X.); (Y.-T.L.); (L.-X.L.)
| |
Collapse
|
3
|
Khojastegi A, Khosropour A, Auras F, Abbaspourrad A. 3D Interlocking Metallo-COFs as a Visible Light Responsive Photocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408151. [PMID: 39676380 DOI: 10.1002/smll.202408151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Woven covalent organic frameworks (COFs) offer immense potential as photoactive materials because Cu(I) complexes are periodically integrated into the COF structure via a single synthetic step. A photoactive interlocking (woven) COF featuring Cu(I) photosensitizers that are spatially isolated and periodically arranged in three dimensions has been successfully synthesized and characterized. The optoelectronic properties of this COF, such as light absorption and photocatalytic performance toward the degradation of sulfamethoxazole (SMX) under visible light, are investigated. The reusability and stability of this COF are compared with the Cu(PDB)2BF4 complex which displayed rapid deactivation and is not reusable. Conversely, The metallo-COF is stable over several catalytic cycles, highlighting a distinct advantage of the stabilizing effects of the COF over discrete molecules.
Collapse
Affiliation(s)
- Anahita Khojastegi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Florian Auras
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, 01217, Dresden, Germany
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Castellano FN, Rosko MC. Steric and Electronic Influence of Excited-State Decay in Cu(I) MLCT Chromophores. Acc Chem Res 2024; 57:2872-2886. [PMID: 39259501 DOI: 10.1021/acs.accounts.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
ConspectusFor the past 11 years, a dedicated effort in our research group focused on fundamentally advancing the photophysical properties of cuprous bis-phenanthroline-based metal-to-ligand charge transfer (MLCT) excited states. We rationalized that, by gaining control over the numerous factors limiting the more widespread use of CuI MLCT photosensitizers, they would be readily adopted in numerous light-activated applications given the earth-abundance of copper and the extensive library of 1,10-phenanthrolines developed over the last century. Significant progress has been achieved by recognizing valuable structure-property concepts developed by other researchers in tandem with detailed ultrafast and conventional time-scale investigations, in-silico-inspired molecular designs to predict spectroscopic properties, and applying novel synthetic methodologies. Ultimately, we achieved a plateau in exerting cooperative steric influence to control CuI MLCT excited state decay. This led to combining sterics with π-conjugation and/or inductive electronic effects to further exert control over molecular photophysical properties. The lessons gleaned from our studies of homoleptic complexes were recently extended to heteroleptic bis(phenanthrolines) featuring enhanced visible light absorption properties and long-lived room-temperature photoluminescence. This Account navigates the reader through our intellectual journey of decision-making, molecular and experimental design, and data interpretation in parallel with appropriate background information related to the quantitative characterization of molecular photophysics using CuI MLCT chromophores as prototypical examples.Initially, CuI MLCT excited states, their energetics, and relevant structural conformation changes implicated in their photophysical decay processes are described. This is followed by a discussion of the literature that motivated our research in this area. This led to our first molecular design in 2013, achieving a 7-fold increase in excited state lifetime relative to the current state-of-the-art. The lifetime and photophysical property enhancement resulted from using 2,9-branched alkyl groups in conjunction with flanking 3,8-methyl substituents, a strategy we adapted from the McMillin group, which was initially described in the late 1990s. Applications of this newly conceived chromophore are presented in solar hydrogen-producing photocatalysis, photochemical upconversion, and photosensitization of [4 + 4] anthracene dimerization of potential interest in thermal storage of solar energy in metastable intermediates. Ultrafast transient absorption and fluorescence upconversion spectroscopic characterization of this and related CuI molecules inform the resultant photophysical properties and vice versa, so the most comprehensive structure-property understanding becomes realized when these experimental tools are collectively utilized to investigate the same series of molecules. Computationally guided structural designs generated newly conceived molecules featuring visible light-harvesting and 2,9-cycloalkane substituted complexes. The latter eventually produced record-setting excited state lifetimes in molecules leveraging both cooperative steric influence and electronic inductive effects. Using photoluminescence data from structurally homologous CuI MLCT excited states collected over 44 years, an energy gap correlation successfully modeled the data spanning a 0.3 eV emission energy range. Finally, a new research direction is revealed detailing structure-photophysical property relationships in heteroleptic CuI phenanthroline chromophores that are photoluminescent at room temperature.
Collapse
Affiliation(s)
- Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
5
|
Caliskanyürek V, Riabchunova A, Kupfer S, Ma F, Wang JW, Karnahl M. Exploring the Potential of Al(III) Photosensitizers for Energy Transfer Reactions. Inorg Chem 2024; 63:15829-15840. [PMID: 39132844 DOI: 10.1021/acs.inorgchem.4c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Three homoleptic Al(III) complexes (Al1-Al3) with different degrees of methylation at the 2-pyridylpyrrolide ligand were systematically tested for their function as photosensitizers (PS) in two types of energy transfer reactions. First, in the generation of reactive singlet oxygen (1O2), and second, in the isomerization of (E)- to (Z)-stilbene. 1O2 was directly evidenced by its characteristic NIR emission at around 1276 nm and indirectly by the reaction with an organic substrate [e.g. 2,5-diphenylfuran (DPF)] using in situ UV/vis spectroscopy. In a previous study, the presence of additional methyl groups was found to be beneficial for the photocatalytic reduction of CO2 to CO, but here Al1 without any methyl groups exhibits superior performance. To rationalize this behavior, a combination of photophysical experiments (absorption, emission and excited state lifetimes) together with photostability measurements and scalar-relativistic time-dependent density functional theory calculations was applied. As a result, Al1 exhibited the highest emission quantum yield (64%), the longest emission lifetime (8.7 ns) and the best photostability under the reaction conditions required for the energy transfer reactions (e.g. in aerated chloroform). Moreover, Al1 provided the highest rate constant (0.043 min-1) for the photocatalytic oxygenation of DPF, outperforming even noble metal-based competitors such as [Ru(bpy)3]2+. Finally, its superior photostability enabled a long-term test (7 h), in which Al1 was successfully recycled seven times, underlining the high potential of this new class of earth-abundant PSs.
Collapse
Affiliation(s)
- Volkan Caliskanyürek
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Anastasiia Riabchunova
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Fan Ma
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jia-Wei Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Michael Karnahl
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Helweh W, Kim P, Mast ZJ, Phelan BT, Weingartz NP, Zong R, Chaudhuri S, Thummel RP, Schatz GC, Chen LX. Effects of Structural Constraints on Excited-State Properties in Dimeric Cu(I) Diimine Complexes. Inorg Chem 2024; 63:14905-14912. [PMID: 39059019 DOI: 10.1021/acs.inorgchem.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Copper(I) bis-diimine complexes have played important roles in light-activated processes that can lead to their potential applications in photocatalysis and chemical sensing. Their metal-to-ligand charge-transfer (MLCT) excited-state properties are tunable by various structural factors. Dimeric Cu(I) complexes with connecting diimine derivative ligands offer another structural tuning platform for the excited-state properties. Here, we investigate excited-state properties in two covalently connected dimeric Cu(I)'s with varying structural constraints exerted by the number of carbons in the polyethylene bridge (C0 and C4) connecting the two copper(I) diimine moieties. An interesting feature of Cu(I) diimine complexes is their ability to flatten following a photoinduced structural change. Herein, we observe larger structural constraints and more structural rearrangement required upon excitation of the longer bridged complex C4 to achieve a conformation toward a more flattened tetrahedral coordination geometry compared to the shorter bridged C0. Vibrational wavepacket analysis of these complexes further supports the effect of these structural constraints where we observe a more rapid dephasing of the C0 complex, as opposed to the C4 complex, despite similar normal mode vibrations. The experimental results were supplemented by TDDFT calculations. The studies provide insight into using metal-metal interactions through constraints to tune excited-state dynamics and pathways.
Collapse
Affiliation(s)
- Waleed Helweh
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Pyosang Kim
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zachary J Mast
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian T Phelan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Nicholas P Weingartz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ruifa Zong
- Department of Chemistry, 112 Fleming Building, University of Houston, Houston, Texas 77204-5003, United States
| | - Subhajyoti Chaudhuri
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randolph P Thummel
- Department of Chemistry, 112 Fleming Building, University of Houston, Houston, Texas 77204-5003, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
7
|
Kim D, Rosko MC, Castellano FN, Gray TG, Teets TS. Long Excited-State Lifetimes in Three-Coordinate Copper(I) Complexes via Triplet-Triplet Energy Transfer to Pyrene-Decorated Isocyanides. J Am Chem Soc 2024; 146:19193-19204. [PMID: 38956456 DOI: 10.1021/jacs.4c04288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
There has been much effort to improve excited-state lifetimes in photosensitizers based on earth-abundant first-row transition metals. Copper(I) complexes have gained significant attention in this field, and in most cases, sterically driven approaches are used to optimize their lifetimes. This study presents a series of three-coordinate copper(I) complexes (Cu1-Cu3) where the excited-state lifetime is extended by triplet-triplet energy transfer. The heteroleptic compounds feature a cyclohexyl-substituted β-diketiminate (CyNacNacMe) paired with aryl isocyanide ligands, giving the general formula Cu(CyNacNacMe)(CN-Ar) (CN-dmp = 2,6-dimethylphenyl isocyanide for Cu1; CN-pyr = 1-pyrenyl isocyanide for Cu2; CN-dmp-pyr = 2,6-dimethyl-4-(1-pyrenyl)phenyl isocyanide for Cu3). The nature, energies, and dynamics of the low-energy triplet excited states are assessed with a combination of photoluminescence measurements at room temperature and 77 K, ultrafast transient absorption (UFTA) spectroscopy, and DFT calculations. The complexes with the pyrene-decorated isocyanides (Cu2 and Cu3) exhibit extended excited-state lifetimes resulting from triplet-triplet energy transfer (TTET) between the short-lived charge-transfer excited state (3CT) and the long-lived pyrene-centered triplet state (3pyr). This TTET process is irreversible in Cu3, producing exclusively the 3pyr state, and in Cu2, the 3CT and 3pyr states are nearly isoenergetic, enabling reversible TTET and long-lived 3CT luminescence. The improved photophysical properties in Cu2 and Cu3 result in improvements in activity for both photocatalytic stilbene E/Z isomerization via triplet energy transfer and photoredox transformations involving hydrodebromination and C-O bond activation. These results illustrate that the extended excited-state lifetimes achieved through TTET result in newly conceived photosynthetically relevant earth-abundant transition metal complexes.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas G Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
8
|
Queffélec C, Pati PB, Pellegrin Y. Fifty Shades of Phenanthroline: Synthesis Strategies to Functionalize 1,10-Phenanthroline in All Positions. Chem Rev 2024; 124:6700-6902. [PMID: 38747613 DOI: 10.1021/acs.chemrev.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
1,10-Phenanthroline (phen) is one of the most popular ligands ever used in coordination chemistry due to its strong affinity for a wide range of metals with various oxidation states. Its polyaromatic structure provides robustness and rigidity, leading to intriguing features in numerous fields (luminescent coordination scaffolds, catalysis, supramolecular chemistry, sensors, theranostics, etc.). Importantly, phen offers eight distinct positions for functional groups to be attached, showcasing remarkable versatility for such a simple ligand. As a result, phen has become a landmark molecule for coordination chemists, serving as a must-use ligand and a versatile platform for designing polyfunctional arrays. The extensive use of substituted phenanthroline ligands with different metal ions has resulted in a diverse array of complexes tailored for numerous applications. For instance, these complexes have been utilized as sensitizers in dye-sensitized solar cells, as luminescent probes modified with antibodies for biomaterials, and in the creation of elegant supramolecular architectures like rotaxanes and catenanes, exemplified by Sauvage's Nobel Prize-winning work in 2016. In summary, phen has found applications in almost every facet of chemistry. An intriguing aspect of phen is the specific reactivity of each pair of carbon atoms ([2,9], [3,8], [4,7], and [5,6]), enabling the functionalization of each pair with different groups and leading to polyfunctional arrays. Furthermore, it is possible to differentiate each position in these pairs, resulting in non-symmetrical systems with tremendous versatility. In this Review, the authors aim to compile and categorize existing synthetic strategies for the stepwise polyfunctionalization of phen in various positions. This comprehensive toolbox will aid coordination chemists in designing virtually any polyfunctional ligand. The survey will encompass seminal work from the 1950s to the present day. The scope of the Review will be limited to 1,10-phenanthroline, excluding ligands with more intracyclic heteroatoms or fused aromatic cycles. Overall, the primary goal of this Review is to highlight both old and recent synthetic strategies that find applicability in the mentioned applications. By doing so, the authors hope to establish a first reference for phenanthroline synthesis, covering all possible positions on the backbone, and hope to inspire all concerned chemists to devise new strategies that have not yet been explored.
Collapse
Affiliation(s)
| | | | - Yann Pellegrin
- Nantes Université, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
9
|
Kim D, Teets TS. Sterically Encumbered Aryl Isocyanides Extend Excited-State Lifetimes and Improve the Photocatalytic Performance of Three-Coordinate Copper(I) β-Diketiminate Charge-Transfer Chromophores. J Am Chem Soc 2024. [PMID: 38853542 DOI: 10.1021/jacs.4c05180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Copper(I) complexes are prominent candidates to replace noble metal-based photosensitizers. We recently introduced a three-coordinate design for copper(I) charge-transfer chromophores that pair β-diketiminate ligands with aryl isocyanides. The excited-state lifetime in these compounds can be extended using a bichromophoric "triplet reservoir" strategy, which comes at the expense of a decrease in excited-state energy and reducing power. In this work, we introduce a complementary, sterically driven strategy for increasing the excited-state lifetimes of these photosensitizers, which gives a higher-energy, more strongly reducing charge-transfer triplet state than does the bichromophore approach. The compounds presented (Cu1-Cu4) have the general formula Cu(CyNacNacMe)(CN-Ar), where CyNacNacMe is a cyclohexyl-substituted β-diketiminate and CN-Ar is an aryl isocyanide with a variable steric profile. Their structural features and electrochemical and photophysical properties are described. The complexes with sterically encumbered 2,6-diisopropylphenyl or m-terphenyl isocyanide ligands (Cu2-Cu4) exhibit prolonged excited-state lifetimes relative to those of the parent 2,6-dimethylphenyl isocyanide compound Cu1. Specifically, one of the m-terphenyl isocyanide compounds, Cu3, displays an excited-state lifetime of 276 ns, approximately 30 times longer than that of Cu1 (9.3 ns). The photoluminescence quantum yield of Cu3 (0.09) also increases by two orders of magnitude compared to that of Cu1 (0.0008). The strong excited-state reducing power (*Eox = -2.4 V vs Fc+/0) and long lifetime of Cu3 lead to higher yields in photoredox and photocatalytic isomerization reactions, which include dehalogenation and/or hydrodgenation of benzophenone substrates, C-O bond activation of a lignin model substrate, and photocatalytic E/Z isomerization of stilbene.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
10
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Phelan BT, Xie ZL, Liu X, Li X, Mulfort KL, Chen LX. Photodriven electron-transfer dynamics in a series of heteroleptic Cu(I)-anthraquinone dyads. J Chem Phys 2024; 160:144905. [PMID: 38619061 DOI: 10.1063/5.0188245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Solar fuels catalysis is a promising route to efficiently harvesting, storing, and utilizing abundant solar energy. To achieve this promise, however, molecular systems must be designed with sustainable components that can balance numerous photophysical and chemical processes. To that end, we report on the structural and photophysical characterization of a series of Cu(I)-anthraquinone-based electron donor-acceptor dyads. The dyads utilized a heteroleptic Cu(I) bis-diimine architecture with a copper(I) bis-phenanthroline chromophore donor and anthraquinone electron acceptor. We characterized the structures of the complexes using x-ray crystallography and density functional theory calculations and the photophysical properties via resonance Raman and optical transient absorption spectroscopy. The calculations and resonance Raman spectroscopy revealed that excitation of the Cu(I) metal-to-ligand charge-transfer (MLCT) transition transfers the electron to a delocalized ligand orbital. The optical transient absorption spectroscopy demonstrated that each dyad formed the oxidized copper-reduced anthraquinone charge-separated state. Unlike most Cu(I) bis-phenanthroline complexes where increasingly bulky substituents on the phenanthroline ligands lead to longer MLCT excited-state lifetimes, here, we observe a decrease in the long-lived charge-separated state lifetime with increasing steric bulk. The charge-separated state lifetimes were best explained in the context of electron-transfer theory rather than with the energy gap law, which is typical for MLCT excited states, despite the complete conjugation between the phenanthroline and anthraquinone moieties.
Collapse
Affiliation(s)
- Brian T Phelan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Zhu-Lin Xie
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Xiaolin Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Karen L Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
12
|
Wellauer J, Ziereisen F, Sinha N, Prescimone A, Velić A, Meyer F, Wenger OS. Iron(III) Carbene Complexes with Tunable Excited State Energies for Photoredox and Upconversion. J Am Chem Soc 2024; 146. [PMID: 38598280 PMCID: PMC11046485 DOI: 10.1021/jacs.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Substituting precious elements in luminophores and photocatalysts by abundant first-row transition metals remains a significant challenge, and iron continues to be particularly attractive owing to its high natural abundance and low cost. Most iron complexes known to date face severe limitations due to undesirably efficient deactivation of luminescent and photoredox-active excited states. Two new iron(III) complexes with structurally simple chelate ligands enable straightforward tuning of ground and excited state properties, contrasting recent examples, in which chemical modification had a minor impact. Crude samples feature two luminescence bands strongly reminiscent of a recent iron(III) complex, in which this observation was attributed to dual luminescence, but in our case, there is clear-cut evidence that the higher-energy luminescence stems from an impurity and only the red photoluminescence from a doublet ligand-to-metal charge transfer (2LMCT) excited state is genuine. Photoinduced oxidative and reductive electron transfer reactions with methyl viologen and 10-methylphenothiazine occur with nearly diffusion-limited kinetics. Photocatalytic reactions not previously reported for this compound class, in particular the C-H arylation of diazonium salts and the aerobic hydroxylation of boronic acids, were achieved with low-energy red light excitation. Doublet-triplet energy transfer (DTET) from the luminescent 2LMCT state to an anthracene annihilator permits the proof of principle for triplet-triplet annihilation upconversion based on a molecular iron photosensitizer. These findings are relevant for the development of iron complexes featuring photophysical and photochemical properties competitive with noble-metal-based compounds.
Collapse
Affiliation(s)
- Joël Wellauer
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Fabienne Ziereisen
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Ajdin Velić
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
13
|
Jin T, Wagner D, Wenger OS. Luminescent and Photoredox-Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines. Angew Chem Int Ed Engl 2024; 63:e202314475. [PMID: 37885363 DOI: 10.1002/anie.202314475] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
Ruthenium(II) complexes with chelating polypyridine ligands are among the most frequently investigated compounds in photophysics and photochemistry, owing to their favorable luminescence and photoredox properties. Equally good photoluminescence performance and attractive photocatalytic behavior is now achievable with isoelectronic molybdenum(0) complexes. The zero-valent oxidation state of molybdenum is stabilized by carbonyl or isocyanide ligands, and metal-to-ligand charge transfer (MLCT) excited states analogous to those in ruthenium(II) complexes can be established. Microsecond MLCT excited-state lifetimes and photoluminescence quantum yields up to 0.2 have been achieved in solution at room temperature, and the emission wavelength has become tunable over a large range. The molybdenum(0) complexes are stronger photoreductants than ruthenium(II) polypyridines and can therefore perform more challenging chemical reductions. The triplet nature of their luminescent MLCT states allows sensitization of photon upconversion via triplet-triplet annihilation, to convert low-energy input radiation into higher-energy output fluorescence. This review summarizes the current state of the art concerning luminescent molybdenum(0) complexes and highlights their application potential. Molybdenum is roughly 140 times more abundant and far cheaper than ruthenium, hence this research is relevant in the greater context of finding more sustainable alternatives to using precious and rare transition metals in photophysics and photochemistry.
Collapse
Affiliation(s)
- Tao Jin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Dorothee Wagner
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
14
|
Body N, Bevernaegie R, Lefebvre C, Jabin I, Hermans S, Riant O, Troian-Gautier L. Photo-Catalyzed α-Arylation of Enol Acetate Using Recyclable Silica-Supported Heteroleptic and Homoleptic Copper(I) Photosensitizers. Chemistry 2023; 29:e202301212. [PMID: 37582678 DOI: 10.1002/chem.202301212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Earth-abundant photosensitizers are highly sought after for light-mediated applications, such as photoredox catalysis, depollution and energy conversion schemes. Homoleptic and heteroleptic copper(I) complexes are promising candidates in this field, as copper is abundant and the corresponding complexes are easily obtained in smooth conditions. However, some heteroleptic copper(I) complexes suffer from low (photo)stability that leads to the gradual formation of the corresponding homoleptic complex. Such degradation pathways are detrimental, especially when recyclability is desired. This study reports a novel approach for the heterogenization of homoleptic and heteroleptic Cu complexes on silica nanoparticles. In both cases, the photophysical properties upon surface immobilization were only slightly affected. Excited-state quenching with aryl diazonium derivatives occurred efficiently (108 -1010 M-1 s-1 ) with heterogeneous and homogeneous photosensitizers. Moderate but almost identical yields were obtained for the α-arylation of enol acetate using the homoleptic complex in homogeneous or heterogeneous conditions. Importantly, the silica-supported photocatalysts were recycled with moderate loss in photoactivity over multiple experiments. Transient absorption spectroscopy confirmed that excited-state electron transfer occurred from the homogeneous and heterogeneous homoleptic copper(I) complexes to aryl diazonium derivatives, generating the corresponding copper(II) center that persisted for several hundreds of microseconds, compatible with photoredox catalysis applications.
Collapse
Affiliation(s)
- Nathalie Body
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Robin Bevernaegie
- Université libre de Bruxelles (ULB), Service de Chimie et PhysicoChimie Organiques (CPCO), Laboratoire de Chimie Organique (LCO), Avenue F. D. Roosevelt 50, 1050, Bruxelles, Belgium
| | - Corentin Lefebvre
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Ivan Jabin
- Université libre de Bruxelles (ULB), Service de Chimie et PhysicoChimie Organiques (CPCO), Laboratoire de Chimie Organique (LCO), Avenue F. D. Roosevelt 50, 1050, Bruxelles, Belgium
| | - Sophie Hermans
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Olivier Riant
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
15
|
Wang L, Xie ZL, Phelan BT, Lynch VM, Chen LX, Mulfort KL. Changing Directions: Influence of Ligand Electronics on the Directionality and Kinetics of Photoinduced Charge Transfer in Cu(I)Diimine Complexes. Inorg Chem 2023; 62:14368-14376. [PMID: 37620247 DOI: 10.1021/acs.inorgchem.3c02043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
A key challenge to the effective utilization of solar energy is to promote efficient photoinduced charge transfer, specifically avoiding unproductive, circuitous electron-transfer pathways and optimizing the kinetics of charge separation and recombination. We hypothesize that one way to address this challenge is to develop a fundamental understanding of how to initiate and control directional photoinduced charge transfer, particularly for earth-abundant first-row transition-metal coordination complexes, which typically suffer from relatively short excited-state lifetimes. Here, we report a series of functionalized heteroleptic copper(I)bis(phenanthroline) complexes, which have allowed us to investigate the directionality of intramolecular photoinduced metal-to-ligand charge transfer (MLCT) as a function of the substituent Hammett parameter. Ultrafast transient absorption suggests a complicated interplay of MLCT localization and solvent interaction with the Cu(II) center of the MLCT state. This work provides a set of design principles for directional charge transfer in earth-abundant complexes and can be used to efficiently design pathways for connecting the molecular modules to catalysts or electrodes and integration into systems for light-driven catalysis.
Collapse
Affiliation(s)
- Lei Wang
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhu-Lin Xie
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Brian T Phelan
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Vincent M Lynch
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lin X Chen
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
16
|
Muniz CN, Archer CA, Applebaum JS, Alagaratnam A, Schaab J, Djurovich PI, Thompson ME. Two-Coordinate Coinage Metal Complexes as Solar Photosensitizers. J Am Chem Soc 2023. [PMID: 37319428 DOI: 10.1021/jacs.3c02825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Generating sustainable fuel from sunlight plays an important role in meeting the energy demands of the modern age. Herein, we report two-coordinate carbene-metal-amide (cMa, M = Cu(I) and Au(I)) complexes that can be used as sensitizers to promote the light-driven reduction of water to hydrogen. The cMa complexes studied here absorb visible photons (εvis > 103 M-1 cm-1), maintain long excited-state lifetimes (τ ∼ 0.2-1 μs), and perform stable photoinduced charge transfer to a target substrate with high photoreducing potential (E+/* up to -2.33 V vs Fc+/0 based on a Rehm-Weller analysis). We pair these coinage metal complexes with a cobalt-glyoxime electrocatalyst to photocatalytically generate hydrogen and compare the performance of the copper- and gold-based cMa complexes. We also find that the two-coordinate complexes herein can perform photodriven hydrogen production from water without the addition of the cobalt-glyoxime electrocatalyst. In this "catalyst-free" system, the cMa sensitizer partially decomposes to give metal nanoparticles that catalyze water reduction. This work identifies two-coordinate coinage metal complexes as promising abundant metal, solar fuel photosensitizers that offer exceptional tunability and photoredox properties.
Collapse
Affiliation(s)
- Collin N Muniz
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Claire A Archer
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jack S Applebaum
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anushan Alagaratnam
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jonas Schaab
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
17
|
Doettinger F, Yang Y, Karnahl M, Tschierlei S. Bichromophoric Photosensitizers: How and Where to Attach Pyrene Moieties to Phenanthroline to Generate Copper(I) Complexes. Inorg Chem 2023; 62:8166-8178. [PMID: 37200533 DOI: 10.1021/acs.inorgchem.3c00482] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pyrene is a polycyclic aromatic hydrocarbon and organic dye that can form superior bichromophoric systems when combined with a transition metal-based chromophore. However, little is known about the effect of the type of attachment (i.e., 1- vs 2-pyrenyl) and the individual position of the pyrenyl substituents at the ligand. Therefore, a systematic series of three novel diimine ligands and their respective heteroleptic diimine-diphosphine copper(I) complexes has been designed and extensively studied. Special attention was given to two different substitution strategies: (i) attaching pyrene via its 1-position, which occurs most frequently in the literature, or via its 2-position and (ii) targeting two contrasting substitution patterns at the 1,10-phenanthroline ligand, i.e., the 5,6- and the 4,7-position. In the applied spectroscopic, electrochemical, and theoretical methods (UV/vis, emission, time-resolved luminescence and transient absorption, cyclic voltammetry, density functional theory), it has been shown that the precise choice of the derivatization sites is crucial. Substituting the pyridine rings of phenanthroline in the 4,7-position with the 1-pyrenyl moiety has the strongest impact on the bichromophore. This approach results in the most anodically shifted reduction potential and a drastic increase in the excited state lifetime by more than two orders of magnitude. In addition, it enables the highest singlet oxygen quantum yield of 96% and the most beneficial activity in the photocatalytic oxidation of 1,5-dihydroxy-naphthalene.
Collapse
Affiliation(s)
- Florian Doettinger
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Yingya Yang
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Michael Karnahl
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Stefanie Tschierlei
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Rebenring 31, 38106 Braunschweig, Germany
| |
Collapse
|
18
|
Conradie J. DFT study of UV-vis-properties of thiophene-containing Cu(β-diketonato) 2 - Application for DSSC. J Mol Graph Model 2023; 121:108459. [PMID: 36963304 DOI: 10.1016/j.jmgm.2023.108459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Experimental and theoretically calculated UV-vis properties of three Cu(β-diketonato)2 complexes are presented. The Cu(β-diketonato)2 contains β-diketones without (β-diketone = acetylacetone, (CH3)COCH2CO(CH3), complex (1)), with one (β-diketone = thenoyltrifluoroacetone, (CF3)COCH2CO(C4H3S), complex (2)) and with two thiophene (β-diketone = (CF3)COCH2CO(C4H2S) (C4H3S), complex (3)) groups. More thiophenes on the β-diketonato ligand of Cu(β-diketonato)2, lead to a red shift of the experimental absorbance maxima of the UV-vis of the complex, from 295 nm for complex (1), to 340 nm for complex (2) to 390 nm for complex (3). Theoretical time dependant density functional theory calculations indicate that both the two strongest absorbance peaks of the ultraviolet-visible spectrum of Cu(acetylacetonato)2 are mainly ligand-to-metal charge-transfer excitations. However, the absorbance maxima of the UV-vis of thiophene-containing Cu(β-diketonato)2 are mainly ligand-to-ligand charge-transfer excitations. Calculated properties such as light harvesting energy (LHE = 0.47, 0.94 and 0.99 for (1)-(3) respectively), driving force for electron injection (ΔGinject = 1.43, 0.76 and 0.63 for (1)-(3) respectively), and driving force of dye regeneration (ΔGregenerate = 1.85, 2.16 and 1.49 for (1)-(3) respectively), are favourable for (1)-(3) to be considered as dyes in DSSCs. However, some structural modifications are needed to prevent intramolecular charge recombination after excitation.
Collapse
Affiliation(s)
- Jeanet Conradie
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa.
| |
Collapse
|
19
|
Ag2CO3-Based Photocatalyst with Enhanced Photocatalytic Activity for Endocrine-Disrupting Chemicals Degradation: A Review. Catalysts 2023. [DOI: 10.3390/catal13030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) in the aquatic environment have garnered a lot of attention during the past few years. Due to their toxic behavior, which interferes with endocrine functions in both humans and aquatic species, these types of compounds have been recognized as major polluting agents in wastewater effluents. Therefore, the development of efficient and sustainable removal methods for these emerging contaminants is essential. Photocatalytic removal of emerging contaminants using silver carbonate (Ag2CO3)-based photocatalyst is a promising process due to the unique characteristics of this catalyst, such as absorption of a larger fraction of the solar spectrum, wide band gap, non-toxicity, and low cost. The photocatalytic performance of Ag2CO3 has recently been improved through the doping of elements and optimization variation of operational parameters resulting in decreasing the rate of electron–hole pair recombination and an increase in the semiconductor’s excitation state efficiency, which enables the degradation of contaminants under UV or visible light exposure. This review summarized some of the relevant investigations related to Ag2CO3-based photocatalytic materials for EDC removal from water. The inclusion of Ag2CO3-based photocatalytic materials in the water recovery procedure suggests that the creation of a cutting-edge protocol is essential for successfully eliminating EDCs from the ecosystem.
Collapse
|
20
|
Sinha N, Wenger OS. Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d 6 Complexes with Cr 0, Mn I, Fe II, and Co III. J Am Chem Soc 2023; 145:4903-4920. [PMID: 36808978 PMCID: PMC9999427 DOI: 10.1021/jacs.2c13432] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Many coordination complexes and organometallic compounds with the 4d6 and 5d6 valence electron configurations have outstanding photophysical and photochemical properties, which stem from metal-to-ligand charge transfer (MLCT) excited states. This substance class makes extensive use of the most precious and least abundant metal elements, and consequently there has been a long-standing interest in first-row transition metal compounds with photoactive MLCT states. Semiprecious copper(I) with its completely filled 3d subshell is a relatively straightforward and well explored case, but in 3d6 complexes the partially filled d-orbitals lead to energetically low-lying metal-centered (MC) states that can cause undesirably fast MLCT excited state deactivation. Herein, we discuss recent advances made with isoelectronic Cr0, MnI, FeII, and CoIII compounds, for which long-lived MLCT states have become accessible over the past five years. Furthermore, we discuss possible future developments in the search for new first-row transition metal complexes with partially filled 3d subshells and photoactive MLCT states for next-generation applications in photophysics and photochemistry.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
21
|
Rosko MC, Espinoza EM, Arteta S, Kromer S, Wheeler JP, Castellano FN. Employing Long-Range Inductive Effects to Modulate Metal-to-Ligand Charge Transfer Photoluminescence in Homoleptic Cu(I) Complexes. Inorg Chem 2023; 62:3248-3259. [PMID: 36749829 DOI: 10.1021/acs.inorgchem.2c04315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Four Cu(I) bis(phenanthroline) photosensitizers formulated from a new ligand structural motif (Cu1-Cu4) coded according to their 2,9-substituents were synthesized, structurally characterized, and fully evaluated using steady-state and time-resolved absorption and photoluminescence (PL) measurements as well as electrochemistry. The 2,9-disubstituted-3,4,7,8-tetramethyl-1,10-phenanthroline ligands feature the following six-membered ring systems prepared through photochemical synthesis: 4,4-dimethylcyclohexyl (1), tetrahydro-2H-pyran-4-yl (2), tetrahydro-2H-thiopyran-4-yl (3), and 4,4-difluorocyclohexyl (4). Universally, these Cu(I) metal-to-ligand charge transfer (MLCT) chromophores display excited-state lifetimes on the microsecond time scale at room temperature, including the three longest-lived homoleptic cuprous phenanthroline excited states measured to date in de-aerated CH2Cl2, τ = 2.5-4.3 μs. This series of molecules also feature high PL quantum efficiencies (ΦPL = 5.3-12% in CH2Cl2). Temperature-dependent PL lifetime experiments confirmed that all these molecules exhibit reverse intersystem crossing and display thermally activated delayed PL from a 1MLCT excited state lying slightly above the 3MLCT state, 1050-1490 cm-1. Ultrafast and conventional transient absorption measurements confirmed that the PL originates from the MLCT excited state, which remains sterically arrested, preventing an excessive flattening distortion even when dissolved in Lewis basic CH3CN. Combined PL and electrochemical data provided evidence that Cu1-Cu4 are highly potent photoreductants (Eox* = -1.73 to -1.62 V vs Fc+/0 in CH3CN), whose potentials are altered solely based on which heteroatoms or substituents are resident on the 2,9-appended ring derivatives. It is proposed that long-range electronic inductive effects are responsible for the systematic modulation observed in the PL spectra, excited-state lifetimes, and the ground state absorption spectra and redox potentials. Cu1-Cu4 quantitatively follow the energy gap law, correlating well with structurally related cuprous phenanthrolines and are also shown to triplet photosensitize the excited states of 9,10-diphenylanthracene with bimolecular rate constants ranging from 1.61 to 2.82 × 108 M-1 s-1. The ability to tailor both photophysical and electrochemical properties using long-range inductive effects imposed by the 2,9-ring platforms advocates new directions for future MLCT chromophore discovery.
Collapse
Affiliation(s)
- Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Eli M Espinoza
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Sarah Arteta
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Sarah Kromer
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan P Wheeler
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
22
|
Risi G, Devereux M, Prescimone A, Housecroft CE, Constable EC. Back to the future: asymmetrical DπA 2,2'-bipyridine ligands for homoleptic copper(i)-based dyes in dye-sensitised solar cells. RSC Adv 2023; 13:4122-4137. [PMID: 36744279 PMCID: PMC9890583 DOI: 10.1039/d3ra00437f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Metal complexes used as sensitisers in dye-sensitised solar cells (DSCs) are conventionally constructed using a push-pull strategy with electron-releasing and electron-withdrawing (anchoring) ligands. In a new paradigm we have designed new DπA ligands incorporating diarylaminophenyl donor substituents and phosphonic acid anchoring groups. These new ligands function as organic dyes. For two separate classes of DπA ligands with 2,2'-bipyridine metal-binding domains, the DSCs containing the copper(i) complexes [Cu(DπA)2]+ perform better than the push-pull analogues [Cu(DD)(AA)]+. Furthermore, we have shown for the first time that the complexes [Cu(DπA)2]+ perform better than the organic DπA dye in DSCs. The synthetic studies and the device performances are rationalised with the aid of density functional theory (DFT) and time-dependent DFT (TD-DFT) studies.
Collapse
Affiliation(s)
- Guglielmo Risi
- Department of Chemistry, University of BaselBPR 1096, Mattenstrasse 24a4058 BaselSwitzerland
| | - Mike Devereux
- Department of Chemistry, University of BaselKlingelbergstrasse 80CH-4056 BaselSwitzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of BaselBPR 1096, Mattenstrasse 24a4058 BaselSwitzerland
| | - Catherine E. Housecroft
- Department of Chemistry, University of BaselBPR 1096, Mattenstrasse 24a4058 BaselSwitzerland
| | - Edwin C. Constable
- Department of Chemistry, University of BaselBPR 1096, Mattenstrasse 24a4058 BaselSwitzerland
| |
Collapse
|
23
|
Takahashi M, Asatani T, Morimoto T, Kamakura Y, Fujii K, Yashima M, Hosokawa N, Tamaki Y, Ishitani O. Supramolecular multi-electron redox photosensitisers comprising a ring-shaped Re(i) tetranuclear complex and a polyoxometalate. Chem Sci 2023; 14:691-704. [PMID: 36741525 PMCID: PMC9848162 DOI: 10.1039/d2sc04252e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022] Open
Abstract
Redox photosensitisers (PSs) play essential roles in various photocatalytic reactions. Herein, we synthesised new redox PSs of 1 : 1 supramolecules that comprise a ring-shaped Re(i) tetranuclear complex with 4+ charges and a Keggin-type heteropolyoxometalate with 4- charges. These PSs photochemically accumulate multi-electrons in one molecule (three or four electrons) in the presence of an electron donor and can supply electrons with different reduction potentials. PSs were successfully applied in the photocatalytic reduction of CO2 using catalysts (Ru(ii) and Re(i) complexes) and triethanolamine as a reductant. In photocatalytic reactions, these supramolecular PSs supply a different number of electrons to the catalyst depending on the redox potential of the intermediate, which is made from the one-electron-reduced species of the catalyst and CO2. Based on these data, information on the reduction potentials of the intermediates was obtained.
Collapse
Affiliation(s)
- Maria Takahashi
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
| | - Tsuyoshi Asatani
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
| | - Tatsuki Morimoto
- School of Engineering, Tokyo University of Technology 1404-1 Katakura Hachioji Tokyo 192-0982 Japan
| | - Yoshinobu Kamakura
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
| | - Kotaro Fujii
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
| | - Masatomo Yashima
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
| | - Naoki Hosokawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
| | - Yusuke Tamaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama 2-12-1-NE-1 Meguro-ku Tokyo 152-8550 Japan
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739 8526 Japan
| |
Collapse
|
24
|
Cáceres-Vásquez J, Jara DH, Costamagna J, Martínez-Gómez F, Silva CP, Lemus L, Freire E, Baggio R, Vera C, Guerrero J. Effect of non-covalent self-dimerization on the spectroscopic and electrochemical properties of mixed Cu(i) complexes. RSC Adv 2023; 13:825-838. [PMID: 36686905 PMCID: PMC9810106 DOI: 10.1039/d2ra05341a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
A series of six new Cu(i) complexes with ([Cu(N-{4-R}pyridine-2-yl-methanimine)(PPh3)Br]) formulation, where R corresponds to a donor or acceptor p-substituent, have been synthesized and were used to study self-association effects on their structural and electrochemical properties. X-ray diffraction results showed that in all complexes the packing is organized from a dimer generated by supramolecular π stacking and hydrogen bonding. 1H-NMR experiments at several concentrations showed that all complexes undergo a fast-self-association monomer-dimer equilibrium in solution, while changes in resonance frequency towards the high or low field in specific protons of the imine ligand allow establishing that dimers have similar structures to those found in the crystal. The thermodynamic parameters for this self-association process were calculated from dimerization constants determined by VT-1H-NMR experiments for several concentrations at different temperatures. The values for K D (4.0 to 70.0 M-1 range), ΔH (-1.4 to -2.6 kcal mol-1 range), ΔS (-0.2 to 2.1 cal mol-1 K-1 range), and ΔG 298 (-0.8 to -2.0 kcal mol-1 range) are of the same order and indicate that the self-dimerization process is enthalpically driven for all complexes. The electrochemical profile of the complexes shows two redox Cu(ii)/Cu(i) processes whose relative intensities are sensitive to concentration changes, indicating that both species are in chemical equilibrium, with the monomer and the dimer having different electrochemical characteristics. We associate this behaviour with the structural lability of the Cu(i) centre that allows the monomeric molecules to reorder conformationally to achieve a more adequate assembly in the non-covalent dimer. As expected, structural properties in the solid and in solution, as well as their electrochemical properties, are not correlated with the electronic parameters usually used to evaluate R substituent effects. This confirms that the properties of the Cu(i) complexes are usually more influenced by steric effects than by the inductive effects of substituents of the ligands. In fact, the results obtained showed the importance of non-covalent intermolecular interactions in the structuring of the coordination geometry around the Cu centre and in the coordinative stability to avoid dissociative equilibria.
Collapse
Affiliation(s)
- Joaquín Cáceres-Vásquez
- Laboratorio de Compuestos de Coordinación y Química Supramolecular, Facultad de Química y Biología, Universidad de Santiago de ChileAv. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile
| | - Danilo H. Jara
- Facultad de Ingenieria y Ciencias, Universidad Adolfo IbáñezAv. Padre Hurtado 750Viña del MarChile
| | - Juan Costamagna
- Laboratorio de Compuestos de Coordinación y Química Supramolecular, Facultad de Química y Biología, Universidad de Santiago de ChileAv. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile,Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile
| | - Fabián Martínez-Gómez
- Laboratorio de Compuestos de Coordinación y Química Supramolecular, Facultad de Química y Biología, Universidad de Santiago de ChileAv. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile,Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile
| | - Carlos P. Silva
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile
| | - Luis Lemus
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile
| | - Eleonora Freire
- Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía AtómicaAvenida Gral. Paz 1499, 1650, San MartínBuenos AiresArgentina,Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Argentina and Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía AtómicaBuenos AiresArgentina,Member of CONICETArgentina
| | - Ricardo Baggio
- Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía AtómicaAvenida Gral. Paz 1499, 1650, San MartínBuenos AiresArgentina
| | - Cristian Vera
- Laboratorio de Compuestos de Coordinación y Química Supramolecular, Facultad de Química y Biología, Universidad de Santiago de ChileAv. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile
| | - Juan Guerrero
- Laboratorio de Compuestos de Coordinación y Química Supramolecular, Facultad de Química y Biología, Universidad de Santiago de ChileAv. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile
| |
Collapse
|
25
|
Dorn M, East NR, Förster C, Kitzmann WR, Moll J, Reichenauer F, Reuter T, Stein L, Heinze K. d-d and charge transfer photochemistry of 3d metal complexes. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:707-788. [DOI: 10.1016/b978-0-12-823144-9.00063-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Dai ZQ, Song L, Wang YY, Wang JT, Jia YF, Zhang DQ, Yan S, Chai WX. Two Luminescent Materials of CuI Clusters Based on Mono-phosphine Ligands and Their Fluorescence Sensing Properties. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Ogawa T, Sinha N, Pfund B, Prescimone A, Wenger OS. Molecular Design Principles to Elongate the Metal-to-Ligand Charge Transfer Excited-State Lifetimes of Square-Planar Nickel(II) Complexes. J Am Chem Soc 2022; 144:21948-21960. [DOI: 10.1021/jacs.2c08838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Tomohiro Ogawa
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
28
|
Kübler J, Pfund B, Wenger OS. Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion. JACS AU 2022; 2:2367-2380. [PMID: 36311829 PMCID: PMC9597861 DOI: 10.1021/jacsau.2c00442] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/28/2023]
Abstract
Many CuI complexes have luminescent triplet charge-transfer excited states with diverse applications in photophysics and photochemistry, but for isoelectronic ZnII compounds, this behavior is much less common, and they typically only show ligand-based fluorescence from singlet π-π* states. We report two closely related tetrahedral ZnII compounds, in which intersystem crossing occurs with appreciable quantum yields and leads to the population of triplet excited states with intraligand charge-transfer (ILCT) character. In addition to showing fluorescence from their initially excited 1ILCT states, these new compounds therefore undergo triplet-triplet energy transfer (TTET) from their 3ILCT states and consequently can act as sensitizers for photo-isomerization reactions and triplet-triplet annihilation upconversion from the blue to the ultraviolet spectral range. The photoactive 3ILCT state furthermore facilitates photoinduced electron transfer. Collectively, our findings demonstrate that mononuclear ZnII compounds with photophysical and photochemical properties reminiscent of well-known CuI complexes are accessible with suitable ligands and that they are potentially amenable to many different applications. Our insights seem relevant in the greater context of obtaining photoactive compounds based on abundant transition metals, complementing well-known precious-metal-based luminophores and photosensitizers.
Collapse
|
29
|
Spectroscopic Behaviour of Copper(II) Complexes Containing 2-Hydroxyphenones. Molecules 2022; 27:molecules27186033. [PMID: 36144769 PMCID: PMC9503792 DOI: 10.3390/molecules27186033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Theoretical investigations by density functional theory (DFT) and time-dependent DFT (TD-DFT) methods shed light on how the type of ligand or attached groups influence the electronic structure, absorption spectrum, electron excitation, and intramolecular and interfacial electron transfer of the Cu(II) complexes under study. The findings provide new insight into the designing and screening of high-performance dyes for dye-sensitized solar cells (DSSCs).
Collapse
|
30
|
Schiff base-type Cu(I) complexes containing naphthylpyridyl-methanimine ligands featuring higher light-absorption capability: Synthesis, structures, and photophysical properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Rentschler M, Boden PJ, Argüello Cordero MA, Steiger ST, Schmid MA, Yang Y, Niedner-Schatteburg G, Karnahl M, Lochbrunner S, Tschierlei S. Unexpected Boost in Activity of a Cu(I) Photosensitizer by Stabilizing a Transient Excited State. Inorg Chem 2022; 61:12249-12261. [PMID: 35877171 DOI: 10.1021/acs.inorgchem.2c01468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we present a slight but surprisingly successful structural modification of the previously reported heteroleptic Cu(I) photosensitizer Cubiipo ([(xantphos)Cu(biipo)]PF6; biipo = 16H-benzo-[4',5']-isoquinolino-[2',1':1,2]-imidazo-[4,5-f]-[1,10]-phenanthrolin-16-one). As a key feature, biipo bears a naphthalimide unit at the back, which is directly fused to a phenanthroline moiety to extend the conjugated π-system. This ligand was now altered to include two additional methyl groups at the 2,9-positions at the phenanthroline scaffold. Comparing the novel Cudmbiipo complex to its predecessor, ultrafast transient absorption spectroscopy reveals the efficient suppression of a major deactivation pathway by stabilization of a transient triplet state. Furthermore, quantitative measurements of singlet oxygen evolution in solution confirmed that a larger fraction of the excited-state population is transferred to the photocatalytically active ligand-centered triplet 3LC state with a much longer lifetime of ∼30 μs compared to Cubiipo (2.6 μs). In addition, Cudmbiipo was compared with the well-established reference complex Cubcp ([(xantphos)Cu(bathocuproine)]PF6) in terms of its photophysical and photocatalytic properties by applying time-resolved femto- and nanosecond absorption, step-scan Fourier transform infrared (FTIR), and emission spectroscopies. Superior light-harvesting properties and a greatly enhanced excited-state lifetime with respect to Cubcp enable Cudmbiipo to be more active in exemplary photocatalytic applications, i.e., in the formation of singlet oxygen and the isomerization of (E)-stilbene.
Collapse
Affiliation(s)
- Martin Rentschler
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Pit Jean Boden
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Miguel A Argüello Cordero
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 23, 18051 Rostock, Germany
| | - Sophie Theres Steiger
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Marie-Ann Schmid
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Yingya Yang
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Gereon Niedner-Schatteburg
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Michael Karnahl
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 23, 18051 Rostock, Germany
| | - Stefanie Tschierlei
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| |
Collapse
|
32
|
Cadranel A, Gravogl L, Munz D, Meyer K. Intense Photoinduced Intervalence Charge Transfer in High-Valent Iron Mixed Phenolate/Carbene Complexes. Chemistry 2022; 28:e202200269. [PMID: 35302682 PMCID: PMC9401866 DOI: 10.1002/chem.202200269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/09/2022]
Abstract
We report high-valent iron complexes supported by N-heterocyclic carbene (NHC)-anchored, bis-phenolate pincer ligands that undergo ligand-to-metal charge transfer (LMCT) upon photoexcitation. The resulting excited states - with a lifetime in the picosecond range - feature a ligand-based, mixed-valence system and intense intervalence charge transfer bands in the near-infrared region. Upon oxidation of the complex, corresponding intervalence charge transfer absorptions are also observed in the ground state. We suggest that the spectroscopic hallmarks of such LMCT states provide useful tools to decipher excited-state decay mechanisms in high-valent NHC complexes. Our observations further indicate that NHC-anchored, bis-phenolate pincer ligands are not sufficiently strong donors to prevent the population of excited metal-centered states in high-valent iron complexes.
Collapse
Affiliation(s)
- Alejandro Cadranel
- Department Chemie und PharmaziePhysikalische ChemieFriedrich-Alexander-Universität Erlangen–NürnbergEgerlandstraße 391058ErlangenGermany
- Departamento de Química InorgánicaAnalítica y Química FísicaUniversidad de Buenos AiresFacultad de Ciencias Exactas y NaturalesPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
- Instituto de Química Física de MaterialesMedio Ambiente y Energía (INQUIMAE)CONICET–Universidad de Buenos AiresPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
| | - Lisa Gravogl
- Department Chemie und PharmazieAnorganische ChemieFriedrich-Alexander-Universität Erlangen–NürnbergEgerlandstraße 191058ErlangenGermany
| | - Dominik Munz
- Department Chemie und PharmazieAnorganische ChemieFriedrich-Alexander-Universität Erlangen–NürnbergEgerlandstraße 191058ErlangenGermany
- Anorganische Chemie: KoordinationschemieUniversität des SaarlandesCampus C4.166123SaarbrückenGermany
| | - Karsten Meyer
- Department Chemie und PharmazieAnorganische ChemieFriedrich-Alexander-Universität Erlangen–NürnbergEgerlandstraße 191058ErlangenGermany
| |
Collapse
|
33
|
Ossinger S, Prescimone A, Häussinger D, Wenger OS. Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence. Inorg Chem 2022; 61:10533-10547. [PMID: 35768069 PMCID: PMC9377510 DOI: 10.1021/acs.inorgchem.2c01438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently reported manganese(I) complexes with chelating arylisocyanide ligands exhibit luminescent metal-to-ligand charge-transfer (MLCT) excited states, similar to ruthenium(II) polypyridine complexes with the same d6 valence electron configuration used for many different applications in photophysics and photochemistry. However, chelating arylisocyanide ligands require substantial synthetic effort, and therefore it seemed attractive to explore the possibility of using more readily accessible monodentate arylisocyanides instead. Here, we synthesized the new Mn(I) complex [Mn(CNdippPhOMe2)6]PF6 with the known ligand CNdippPhOMe2 = 4-(3,5-dimethoxyphenyl)-2,6-diisopropylphenylisocyanide. This complex was investigated by NMR spectroscopy, single-crystal structure analysis, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) measurements, IR spectroscopy supported by density functional theory (DFT) calculations, cyclic voltammetry, and time-resolved as well as steady-state UV-vis absorption spectroscopy. The key finding is that the new Mn(I) complex is nonluminescent and instead undergoes arylisocyanide ligand loss during continuous visible laser irradiation into ligand-centered and charge-transfer absorption bands, presumably owed to the population of dissociative d-d excited states. Thus, it seems that chelating bi- or tridentate binding motifs are essential for obtaining emissive MLCT excited states in manganese(I) arylisocyanides. Our work contributes to understanding the basic properties of photoactive first-row transition metal complexes and could help advance the search for alternatives to precious metal-based luminophores, photocatalysts, and sensors.
Collapse
Affiliation(s)
- Sascha Ossinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Daniel Häussinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
34
|
Yang Y, Doettinger F, Kleeberg C, Frey W, Karnahl M, Tschierlei S. How the Way a Naphthalimide Unit is Implemented Affects the Photophysical and -catalytic Properties of Cu(I) Photosensitizers. Front Chem 2022; 10:936863. [PMID: 35783217 PMCID: PMC9247301 DOI: 10.3389/fchem.2022.936863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Driven by the great potential of solar energy conversion this study comprises the evaluation and comparison of two different design approaches for the improvement of copper based photosensitizers. In particular, the distinction between the effects of a covalently linked and a directly fused naphthalimide unit was assessed. For this purpose, the two heteroleptic Cu(I) complexes CuNIphen (NIphen = 5-(1,8-naphthalimide)-1,10-phenanthroline) and Cubiipo (biipo = 16H-benzo-[4′,5′]-isoquinolino-[2′,1′,:1,2]-imidazo-[4,5-f]-[1,10]-phenanthroline-16-one) were prepared and compared with the novel unsubstituted reference compound Cuphen (phen = 1,10-phenanthroline). Beside a comprehensive structural characterization, including two-dimensional nuclear magnetic resonance spectroscopy and X-ray analysis, a combination of electrochemistry, steady-state and time-resolved spectroscopy was used to determine the electrochemical and photophysical properties in detail. The nature of the excited states was further examined by (time-dependent) density functional theory (TD-DFT) calculations. It was found that CuNIphen exhibits a greatly enhanced absorption in the visible and a strong dependency of the excited state lifetimes on the chosen solvent. For example, the lifetime of CuNIphen extends from 0.37 µs in CH2Cl2 to 19.24 µs in MeCN, while it decreases from 128.39 to 2.6 µs in Cubiipo. Furthermore, CuNIphen has an exceptional photostability, allowing for an efficient and repetitive production of singlet oxygen with quantum yields of about 32%.
Collapse
Affiliation(s)
- Yingya Yang
- TU Braunschweig, Institute of Physical and Theoretical Chemistry, Department of Energy Conversion, Braunschweig, Germany
| | - Florian Doettinger
- TU Braunschweig, Institute of Physical and Theoretical Chemistry, Department of Energy Conversion, Braunschweig, Germany
| | - Christian Kleeberg
- TU Braunschweig, Institute of Inorganic and Analytical Chemistry, Braunschweig, Germany
| | - Wolfgang Frey
- University of Stuttgart, Institute of Organic Chemistry, Stuttgart, Germany
| | - Michael Karnahl
- TU Braunschweig, Institute of Physical and Theoretical Chemistry, Department of Energy Conversion, Braunschweig, Germany
- *Correspondence: Michael Karnahl, ; Stefanie Tschierlei,
| | - Stefanie Tschierlei
- TU Braunschweig, Institute of Physical and Theoretical Chemistry, Department of Energy Conversion, Braunschweig, Germany
- *Correspondence: Michael Karnahl, ; Stefanie Tschierlei,
| |
Collapse
|
35
|
Sinha N, Pfund B, Wegeberg C, Prescimone A, Wenger OS. Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds. J Am Chem Soc 2022; 144:9859-9873. [PMID: 35623627 PMCID: PMC9490849 DOI: 10.1021/jacs.2c02592] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Many organometallic
iridium(III) complexes have photoactive excited
states with mixed metal-to-ligand and intraligand charge transfer
(MLCT/ILCT) character, which form the basis for numerous applications
in photophysics and photochemistry. Cobalt(III) complexes with analogous
MLCT excited-state properties seem to be unknown yet, despite the
fact that iridium(III) and cobalt(III) can adopt identical low-spin
d6 valence electron configurations due to their close chemical
relationship. Using a rigid tridentate chelate ligand (LCNC), in which a central amido π-donor is flanked by two σ-donating
N-heterocyclic carbene subunits, we obtained a robust homoleptic complex
[Co(LCNC)2](PF6), featuring a photoactive
excited state with substantial MLCT character. Compared to the vast
majority of isoelectronic iron(II) complexes, the MLCT state of [Co(LCNC)2](PF6) is long-lived because it
does not deactivate as efficiently into lower-lying metal-centered
excited states; furthermore, it engages directly in photoinduced electron
transfer reactions. The comparison with [Fe(LCNC)2](PF6), as well as structural, electrochemical, and UV–vis
transient absorption studies, provides insight into new ligand design
principles for first-row transition-metal complexes with photophysical
and photochemical properties reminiscent of those known from the platinum
group metals.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
36
|
Tran JH, Traber P, Seidler B, Görls H, Gräfe S, Schulz M. Ligand‐Induced Donor State Destabilisation – A New Route to Panchromatically Absorbing Cu(I) Complexes. Chemistry 2022; 28:e202200121. [PMID: 35263478 PMCID: PMC9315043 DOI: 10.1002/chem.202200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/16/2022]
Abstract
The intense absorption of light to covering a large part of the visible spectrum is highly desirable for solar energy conversion schemes. To this end, we have developed novel anionic bis(4H‐imidazolato)Cu(I) complexes (cuprates), which feature intense, panchromatic light absorption properties throughout the visible spectrum and into the NIR region with extinction coefficients up to 28,000 M−1 cm−1. Steady‐state absorption, (spectro)electrochemical and theoretical investigations reveal low energy (Vis to NIR) metal‐to‐ligand charge‐transfer absorption bands, which are a consequence of destabilized copper‐based donor states. These high‐lying copper‐based states are induced by the σ‐donation of the chelating anionic ligands, which also feature low energy acceptor states. The optical properties are reflected in very low, copper‐based oxidation potentials and three ligand‐based reduction events. These electronic features reveal a new route to panchromatically absorbing Cu(I) complexes.
Collapse
Affiliation(s)
- Jens H. Tran
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Philipp Traber
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Bianca Seidler
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry Friedrich Schiller University Jena Humboldtstr. 8 07743 Jena Germany
| | - Stefanie Gräfe
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Fraunhofer Institute for Applied Optics and Precision Engineering (Fraunhofer IOF) Albert-Einstein-Str.7 07745 Jena Germany
| | - Martin Schulz
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT) Albert-Einstein-Str. 9 07745 Jena Germany
| |
Collapse
|
37
|
Herr P, Schwab A, Kupfer S, Wenger OS. Deep‐Red Luminescent Molybdenum(0) Complexes with Bi‐ and Tridentate Isocyanide Chelate Ligands. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Patrick Herr
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Alexander Schwab
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institute of Physical Chemistry GERMANY
| | - Stephan Kupfer
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institute of Physical Chemistry GERMANY
| | - Oliver S. Wenger
- Universität Basel Departement für Chemie St. Johanns-Ring 19 4056 Basel SWITZERLAND
| |
Collapse
|
38
|
Housecroft CE, Constable EC. Solar energy conversion using first row d-block metal coordination compound sensitizers and redox mediators. Chem Sci 2022; 13:1225-1262. [PMID: 35222908 PMCID: PMC8809415 DOI: 10.1039/d1sc06828h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
The use of renewable energy is essential for the future of the Earth, and solar photons are the ultimate source of energy to satisfy the ever-increasing global energy demands. Photoconversion using dye-sensitized solar cells (DSCs) is becoming an established technology to contribute to the sustainable energy market, and among state-of-the art DSCs are those which rely on ruthenium(ii) sensitizers and the triiodide/iodide (I3 -/I-) redox mediator. Ruthenium is a critical raw material, and in this review, we focus on the use of coordination complexes of the more abundant first row d-block metals, in particular copper, iron and zinc, as dyes in DSCs. A major challenge in these DSCs is an enhancement of their photoconversion efficiencies (PCEs) which currently lag significantly behind those containing ruthenium-based dyes. The redox mediator in a DSC is responsible for regenerating the ground state of the dye. Although the I3 -/I- couple has become an established redox shuttle, it has disadvantages: its redox potential limits the values of the open-circuit voltage (V OC) in the DSC and its use creates a corrosive chemical environment within the DSC which impacts upon the long-term stability of the cells. First row d-block metal coordination compounds, especially those containing cobalt, and copper, have come to the fore in the development of alternative redox mediators and we detail the progress in this field over the last decade, with particular attention to Cu2+/Cu+ redox mediators which, when coupled with appropriate dyes, have achieved V OC values in excess of 1000 mV. We also draw attention to aspects of the recyclability of DSCs.
Collapse
Affiliation(s)
- Catherine E Housecroft
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Edwin C Constable
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| |
Collapse
|
39
|
Takeda H, Shimo M, Yasuhara G, Kobori K, Asano MS, Amao Y. Heteroleptic Cu(I) Phenanthroline Complexes Bearing Benzoxazole and Benzothiazole Moieties for Visible Light Absorption. CHEM LETT 2022. [DOI: 10.1246/cl.210583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroyuki Takeda
- Research Center for Artificial Photosynthesis, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan
| | - Makoto Shimo
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan
| | - Gai Yasuhara
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan
| | - Ken Kobori
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan
| | - Motoko S. Asano
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan
| | - Yutaka Amao
- Research Center for Artificial Photosynthesis, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
40
|
Polypyridyl copper complexes as dye sensitizer and redox mediator for dye-sensitized solar cells. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2021.107182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
41
|
Castro J, Ferraro V, Bortoluzzi M. Visible-emitting Cu( i) complexes with N-functionalized benzotriazole-based ligands. NEW J CHEM 2022. [DOI: 10.1039/d2nj03165e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bidentate benzotriazole-based N-ligands are suited for the preparation of luminescent heteroleptic copper(i) complexes with noticeable emissions related to 3MLCT transitions.
Collapse
Affiliation(s)
- Jesús Castro
- Departamento de Química Inorgánica, Universidade de Vigo, Facultade de Química, Edificio de Ciencias Experimentais, 36310 Vigo, Galicia, Spain
| | - Valentina Ferraro
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, I-30172 Mestre (VE), Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, I-30172 Mestre (VE), Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
42
|
Argüello Cordero MA, Boden PJ, Rentschler M, Di Martino-Fumo P, Frey W, Yang Y, Gerhards M, Karnahl M, Lochbrunner S, Tschierlei S. Comprehensive Picture of the Excited State Dynamics of Cu(I)- and Ru(II)-Based Photosensitizers with Long-Lived Triplet States. Inorg Chem 2021; 61:214-226. [PMID: 34908410 DOI: 10.1021/acs.inorgchem.1c02771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ru(II)- and Cu(I)-based photosensitizers featuring the recently developed biipo ligand (16H-benzo-[4',5']-isoquinolino-[2',1',:1,2]-imidazo-[4,5-f]-[1,10]-phenanthrolin-16-one) were comprehensively investigated by X-ray crystallography, electrochemistry, and especially several time-resolved spectroscopic methods covering all time scales from femto- to milliseconds. The analysis of the experimental results is supported by density functional theory (DFT) calculations. The biipo ligand consists of a coordinating 1,10-phenanthroline moiety fused with a 1,8-naphthalimide unit, which results in an extended π-system with an incorporated electron acceptor moiety. In a previous study, it was shown that this ligand enabled a Ru(II) complex that is an efficient singlet oxygen producer and of potential use for other light-driven applications due to its long emission lifetime. The goal of our here presented research is to provide a full spectroscopic picture of the processes that follow optical excitation. Interestingly, the Ru(II) and Cu(I) complexes differ in their characteristics even though the lowest electronically excited states involve in both cases the biipo ligand. The combined spectroscopic results indicate that an emissive 3MLCT state and a rather dark 3LC state are populated, each to some extent. For the Cu(I) complex, most of the excited population ends up in the 3LC state with an extraordinary lifetime of 439 μs in the solid state at 20 K, while a significant population of the 3MLCT state causes luminescence for the Ru(II) complex. Hence, there is a balance between these two states, which can be tuned by altering the metal center or even by thermal energy, as suggested by the temperature-dependent experiments.
Collapse
Affiliation(s)
- Miguel A Argüello Cordero
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Pit Jean Boden
- Chemistry Department and Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Martin Rentschler
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.,Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Patrick Di Martino-Fumo
- Chemistry Department and Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Yingya Yang
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Markus Gerhards
- Chemistry Department and Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Michael Karnahl
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.,Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Stefanie Tschierlei
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
43
|
Abstract
In this Frontier article, recently discovered chromium(0) and manganese(i) complexes emitting from metal-to-ligand charge transfer (MLCT) excited states are highlighted. Chelating isocyanide ligands give access to this new class of 3d6 emitters with MLCT lifetimes in (or close to) the nanosecond regime in solution at room temperature. Although the so far achievable luminescence quantum yields in these open-shell complexes are yet comparatively low, the photophysical properties of the new chromium(0) and manganese(i) isocyanides are reminiscent of those of well-known ruthenium(ii) polypyridines. Our findings provide insight into how undesired nonradiative MLCT deactivation in 3d6 complexes can be counteracted, and they seem therefore relevant for the further development of new luminescent first-row transition metal complexes based on iron(ii) and cobalt(iii) in addition to chromium(0) and manganese(i). In this Frontier article, recently discovered chromium(0) and manganese(i) complexes emitting from metal-to-ligand charge transfer (MLCT) excited states are highlighted.![]()
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| |
Collapse
|
44
|
Guda A, Windisch J, Probst B, van Bokhoven JA, Alberto R, Nachtegaal M, Chen LX, Smolentsev G. Excited-state structure of copper phenanthroline-based photosensitizers. Phys Chem Chem Phys 2021; 23:26729-26736. [PMID: 34842872 DOI: 10.1039/d1cp02823e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cu diimine complexes present a noble metal free alternative to classical Ru, Re, Ir and Pt based photosensitizers in solution photochemistry, photoelectrochemical or dye-sensitized solar cells. Optimization of these dyes requires understanding of factors governing the key photochemical properties: excited state lifetime and emission quantum yield. The involvement of exciplex formation in the deactivation of the photoexcited state is a key question. We investigate the excited-state structure of [Cu(dmp)2]+ and [Cu(dsbtmp)2]+ (dmp = 2,9-dimethyl-1,10-phenanthroline, dsbtmp = 2,9-di-sec-butyl-3,4,7,8-tetramethyl-1,10-phenanthroline) using pump-probe X-ray absorption spectroscopy (XAS) and DFT. Features of XAS that distinguish flattened tetrahedral site and 5-coordinated geometry with an additional solvent near Cu(II) center are identified. Pump-probe XAS demonstrates that for both complexes the excited state is 4-coordinated. For [Cu(dmp)2]+ the exciplex is 0.24 eV higher in energy than the flattened triplet state, therefore it can be involved in deactivation pathways as a non-observable state that forms slower than it decays. For [Cu(dsbtmp)2]+ the excited-state structure is characterized by Cu-N distances of 1.98 and 2.07 Å and minor distortions, leading to a 3 orders of magnitude longer excited-state lifetime.
Collapse
Affiliation(s)
- Alexander Guda
- The Smart Materials Research Institute, Southern Federal University Rostov-on-Don, 344090, Russia
| | - Johannes Windisch
- Department of Chemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Benjamin Probst
- Department of Chemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Jeroen A van Bokhoven
- Paul Scherrer Institute, Villigen, 5232, Switzerland. .,Department of Chemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Roger Alberto
- Department of Chemistry, University of Zurich, Zurich, 8057, Switzerland
| | | | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne 60439, IL, USA.,Department of Chemistry, Northwestern University, Evanston 60208, IL, USA
| | | |
Collapse
|
45
|
Wegeberg C, Wenger OS. Luminescent First-Row Transition Metal Complexes. JACS AU 2021; 1:1860-1876. [PMID: 34841405 PMCID: PMC8611671 DOI: 10.1021/jacsau.1c00353] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 05/25/2023]
Abstract
Precious and rare elements have traditionally dominated inorganic photophysics and photochemistry, but now we are witnessing a paradigm shift toward cheaper and more abundant metals. Even though emissive complexes based on selected first-row transition metals have long been known, recent conceptual breakthroughs revealed that a much broader range of elements in different oxidation states are useable for this purpose. Coordination compounds of V, Cr, Mn, Fe, Co, Ni, and Cu now show electronically excited states with unexpected reactivity and photoluminescence behavior. Aside from providing a compact survey of the recent conceptual key advances in this dynamic field, our Perspective identifies the main design strategies that enabled the discovery of fundamentally new types of 3d-metal-based luminophores and photosensitizers operating in solution at room temperature.
Collapse
|
46
|
Bruschi C, Gui X, Salaeh‐arae N, Barchi T, Fuhr O, Lebedkin S, Klopper W, Bizzarri C. Versatile Heteroleptic Cu(I) Complexes Based on Quino(xa)‐line‐Triazole Ligands: from Visible‐Light Absorption and Cooperativity to Luminescence and Photoredox Catalysis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cecilia Bruschi
- Institute of Organic Chemistry Karlsruhe Institute of Technology Fritz-Haber-Weg 6 76137 Karlsruhe Germany
| | - Xin Gui
- Institute of Physical Chemistry-Theoretical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe Germany
| | - Nasrin Salaeh‐arae
- Institute of Organic Chemistry Karlsruhe Institute of Technology Fritz-Haber-Weg 6 76137 Karlsruhe Germany
| | - Tobia Barchi
- Institute of Organic Chemistry Karlsruhe Institute of Technology Fritz-Haber-Weg 6 76137 Karlsruhe Germany
| | - Olaf Fuhr
- Institute of Nanotechnology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Nano MicroFacility (KNMF) Karlsruhe Institute of Technology Hermann-von Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Wim Klopper
- Institute of Physical Chemistry-Theoretical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry Karlsruhe Institute of Technology Fritz-Haber-Weg 6 76137 Karlsruhe Germany
| |
Collapse
|
47
|
Wegeberg C, Häussinger D, Wenger OS. Pyrene-Decoration of a Chromium(0) Tris(diisocyanide) Enhances Excited State Delocalization: A Strategy to Improve the Photoluminescence of 3d 6 Metal Complexes. J Am Chem Soc 2021; 143:15800-15811. [PMID: 34516734 DOI: 10.1021/jacs.1c07345] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is a long-standing interest in iron(II) complexes that emit from metal-to-ligand charge transfer (MLCT) excited states, analogous to ruthenium(II) polypyridines. The 3d6 electrons of iron(II) are exposed to a relatively weak ligand field, rendering nonradiative relaxation of MLCT states via metal-centered excited states undesirably efficient. For isoelectronic chromium(0), chelating diisocyanide ligands recently provided access to very weak MLCT emission in solution at room temperature. Here, we present a concept that boosts the luminescence quantum yield of a chromium(0) isocyanide complex by nearly 2 orders of magnitude, accompanied by a significant increase of the MLCT lifetime. Pyrene units in the diisocyanide ligand backbone lead to an enlarged π-conjugation system and to a strongly delocalized MLCT state, from which nonradiative relaxation is less dominant despite a sizable redshift of the emission. While the pyrene moiety is electronically coupled to the core of the chromium(0) complex in the excited state, UV-vis absorption and 2D NMR spectroscopy show that this is not the case in the ground state. Luminescence lifetimes and quantum yields for our pyrenyl-decorated chromium(0) complex exhibit an unusual bell-shaped dependence on solvent polarity, indicative of two counteracting effects governing the MLCT deactivation. These two effects are identified as predominant deactivation either through an energetically nearby lying metal-centered state in the most apolar solvents, or alternatively via direct nonradiative relaxation to the ground state following the energy gap law in more polar solvents. This is the first example of a 3d6 MLCT emitter to benefit from an increased π-conjugation network.
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
48
|
Ross DAW, Mapley JI, Cording AP, Vasdev RAS, McAdam CJ, Gordon KC, Crowley JD. 6,6'-Ditriphenylamine-2,2'-bipyridine: Coordination Chemistry and Electrochemical and Photophysical Properties. Inorg Chem 2021; 60:11852-11865. [PMID: 34311548 DOI: 10.1021/acs.inorgchem.1c01435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 2,2'-bipyridine with bulky triphenylamine substituents in the 6 and 6' positions of the ligand (6,6'-ditriphenylamine-2,2'-bipyridine, 6,6'-diTPAbpy) was generated. Despite the steric bulk, the ligand readily formed bis(homoleptic) complexes with copper(I) and silver(I) ions. Unfortunately, efforts to use the 6,6'-diTPAbpy system to generate heteroleptic [Cu(6,6'-diTPAbpy)(bpy)]+ complexes were unsuccessful with only the [Cu(6,6'-diTPAbpy)2](PF6) complex observed. The 6,6'-diTPAbpy ligand could also be reacted with 6-coordinate metal ions that featured small ancillary ligands, namely, the [Re(CO)3Cl] and [Ru(CO)2Cl2] fragments. While the complexes could be formed in good yields, the steric bulk of the TPA units does alter the coordination geometry. This is most readily seen in the [(6,6'-diTPAbpy)Re(CO)3Cl] complex where the Re(I) ion is forced to sit 23° out of the plane formed by the bpy unit. The electrochemical and photophysical properties of the family of compounds were also examined. 6,6'-diTPAbpy exhibits a strong ILCT absorption band (356 nm, 50 mM-1 cm-1) which displays a small increase in intensity for the homoleptic complexes ([Cu(6,6'-diTPAbpy)2]+; 353 nm, 72 mM-1 cm-1, [Ag(6,6'-diTPAbpy)2]+; 353 nm, 75 mM-1 cm-1), despite containing 2 equiv of the ligand, attributed to an increased dihedral angle between the TPA and bpy moieties. For the 6-coordinate complexes the ILCT band is further decreased in intensity and overlaps with MLCT bands, consistent with a further increased TPA-bpy dihedral angle. Emission from the 1ILCT state is observed at 436 nm (τ = 4.4 ns) for 6,6'-diTPAbpy and does not shift for the Cu, Ag, and Re complexes, although an additional 3MLCT emission is observed for [Re(6,6'-diTPAbpy)(CO)3Cl] (640 nm, τ = 13.8 ns). No emission was observed for [Ru(6,6'-diTPAbpy)(CO)2Cl2]. Transient absorption measurements revealed the population of a 3ILCT state for the Cu and Ag complexes (τ = 80 ns). All assignments were supported by TD-DFT calculations and resonance Raman spectroscopic measurements.
Collapse
Affiliation(s)
- Daniel A W Ross
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Joseph I Mapley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Andrew P Cording
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Roan A S Vasdev
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - C John McAdam
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Keith C Gordon
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
49
|
Rosko MC, Wells KA, Hauke CE, Castellano FN. Next Generation Cuprous Phenanthroline MLCT Photosensitizer Featuring Cyclohexyl Substituents. Inorg Chem 2021; 60:8394-8403. [PMID: 34097407 DOI: 10.1021/acs.inorgchem.1c01242] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new long-lived, visible-light-absorbing homoleptic Cu(I) metal-to-ligand charge transfer (MLCT) photosensitizer, [Cu(dchtmp)2]PF6 (dchtmp = 2,9-dicyclohexyl-3,4,7,8-tetramethyl-1,10-phenanthroline), has been synthesized, structurally characterized, and evaluated in terms of its molecular photophysics, electrochemistry, and electronic structure. Static and time-resolved transient absorption (TA) and photoluminescence (PL) spectroscopy measured on the title compound in CH2Cl2 (τ = 2.6 μs, ΦPL = 5.5%), CH3CN (τ = 1.5 μs, ΦPL = 2.6%), and THF (τ = 2.0 μs, ΦPL = 3.7%) yielded impressive photophysical metrics even when dissolved in Lewis basic solvents. The combined static spectroscopic data along with ultrafast TA experiments revealed that the pseudo-Jahn-Teller distortion and intersystem crossing dynamics in the MLCT excited state displayed characteristics of being sterically arrested throughout its evolution. Electrochemical and static PL data illustrate that [Cu(dchtmp)2]PF6 is a potent photoreductant (-1.77 V vs Fc+/0 in CH3CN) equal to or greater than all previously investigated homoleptic Cu(I) diimine complexes. Although we successfully prepared the cyclopentyl analog dcptmp (2,9-dicyclopentyl-3,4,7,8-tetramethyl-1,10-phenanthroline) using the same C-C radical coupling photochemistry as dchtmp, the corresponding Cu(I) complex could not be isolated due to the steric hindrance presented at the metal center. Ultimately, the successful preparation of [Cu(dchtmp)2]+ represents a major step forward for the design and discovery of novel earth-abundant photosensitizers made possible through a newly conceived ligand synthetic strategy.
Collapse
Affiliation(s)
- Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Kaylee A Wells
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Cory E Hauke
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
50
|
Electrolyte Tuning in Iron(II)-Based Dye-Sensitized Solar Cells: Different Ionic Liquids and I 2 Concentrations. MATERIALS 2021; 14:ma14113053. [PMID: 34205218 PMCID: PMC8200003 DOI: 10.3390/ma14113053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022]
Abstract
The effects of different I2 concentrations and different ionic liquids (ILs) in the electrolyte on the performances of dye-sensitized solar cells (DSCs) containing an iron(II) N-heterocyclic carbene dye and containing the I–/I3– redox shuttle have been investigated. Either no I2 was added to the electrolyte, or the initial I2 concentrations were 0.02, 0.05, 0.10, and 0.20 M. The short-circuit current density (JSC), open-circuit voltage (VOC), and the fill factor (ff) were influenced by changes in the I2 concentration for all the ILs. For 1-hexyl-3-methylimidazole iodide (HMII), low VOC and low ff values led to poor DSC performances. Electrochemical impedance spectroscopy (EIS) showed the causes to be increased electrolyte diffusion resistance and charge transfer resistance at the counter electrode. DSCs containing 1,3-dimethylimidazole iodide (DMII) and 1-ethyl-3-methylimidazole iodide (EMII) showed the highest JSC values when 0.10 M I2 was present initially. Short alkyl substituents (Me and Et) were more beneficial than longer chains. The lowest values of the transport resistance in the photoanode semiconductor were found for DMII, EMII, and 1-propyl-2,3-dimethylimidazole iodide (PDMII) when no I2 was added to the initial electrolyte, or when [I2] was less than 0.05 M. Higher [I2] led to decreases in the diffusion resistance in the electrolyte and the counter electrode resistance. The electron lifetime and diffusion length depended upon the [I2]. Overall, DMII was the most beneficial IL. A combination of DMII and 0.1 M I2 in the electrolyte produced the best performing DSCs with an average maximum photoconversion efficiency of 0.65% for a series of fully-masked cells.
Collapse
|