1
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
2
|
Seiss M, Schmitz S, Börner M, Monakhov KY. Synthesis and crystal structure of a one-dimensional chain-like strontium(II) coordination polymer built of N-methyldi-ethano-lamine and isobutyrate ligands. Acta Crystallogr E Crystallogr Commun 2021; 77:703-707. [PMID: 34513015 PMCID: PMC8382055 DOI: 10.1107/s2056989021005594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/31/2021] [Indexed: 11/10/2022]
Abstract
The one-dimensional coordination polymer (I) [Sr(ib)2(H2mda)] n (Hib = isobutyric acid, C4H8O2, and H2mda = N-methyldi-ethano-lamine, C5H13NO2), namely, catena-poly[[(N-methyldi-ethano-lamine-κ3 O,N,O')strontium(II)]-di-μ2-isobutyrato-κ3 O,O':O;κ3 O:O,O'], was prepared by the one-pot aerobic reaction of [Zr6O4(OH)4(ib)12(H2O)]·3Hib with Sr(NO3)2 and H2mda in the presence of MnCl2 and Et3N in aceto-nitrile. The use of MnCl2 is key to the isolation of I as high-quality colorless crystals in good yield. The mol-ecular solid-state structure of I was determined by single-crystal X-ray diffraction. Compound I crystallizes in the monoclinic space group P21/c and shows a one-dimensional polymeric chain structure. Each monomeric unit of this coordination polymer consists of a central SrII ion in the NO8 coordination environment of two deprotonated ib- ligands and one fully protonated H2mda ligand. The C and O atoms of the H2mda ligand were refined as disordered over two sets of sites with site occupancies of 0.619 (3) and 0.381 (3). Compound I shows thermal stability up to 130°C in air.
Collapse
Affiliation(s)
- Maximilian Seiss
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Sebastian Schmitz
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin Börner
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Kirill Yu. Monakhov
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
3
|
Kong X, Hu K, Mei L, Wu Q, Huang Z, Liu K, Chai Z, Nie C, Shi W. Construction of Hybrid Bimetallic Uranyl Compounds Based on a Preassembled Terpyridine Metalloligand. Chemistry 2021; 27:2124-2130. [PMID: 33151581 DOI: 10.1002/chem.202004344] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Indexed: 01/04/2023]
Abstract
Six hybrid uranyl-transition metal compounds [UO2 Ni(cptpy)2 (HCOO)2 (DMF)(H2 O)] (1), [UO2 Ni(cptpy)2 (BTPA)2 ] (2), [UO2 Fe(cptpy)2 (HCOO)2 (DMF)(H2 O)] (3), [UO2 Fe(cptpy)2 (BTPA)2 ] (4), [UO2 Co(cptpy)2 (HCOO)2 (DMF)(H2 O)] (5), and [UO2 Co(cptpy)2 (BTPA)2 ] (6), based on bifunctional ligand 4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine (Hcptpy) are reported (H2 BTPA = 4,4'-biphenyldicarboxylic acid). Single-crystal XRD revealed that all six compounds feature similar metalloligands, which consist of two cptpy- anions and one transition metal cation. The metalloligand M(cptpy)2 can be considered to be an extended linear dicarboxylic ligand with length of 22.12 Å. Compounds 1, 3, and 5 are isomers, and all of them feature 1D chain structures. The adjacent 1D chains are connected together by hydrogen bonds and π-π interactions to form a 3D porous structure, which is filled with solvent molecules and can be exchanged with I2 . Compounds 2, 4, and 6 are also isomers, and all of them feature 2D honeycomb (6,3) networks with hexagonal units of dimensions 41.91×26.89 Å, which are the largest among uranyl compounds with honeycomb networks. The large aperture allows two sets of equivalent networks to be entangled together to result in a 2D+2D→3D polycatenated framework. Remarkably, these uranyl compounds exhibit high catalytic activity for cycloaddition of carbon dioxide. Moreover, the geometric and electronic structures of compounds 1 and 2 are systematically discussed on the basis of DFT calculations.
Collapse
Affiliation(s)
- Xianghe Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Resource and Environment and Safety Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qunyan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiwei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhifang Chai
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Changming Nie
- School of Resource and Environment and Safety Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| |
Collapse
|
4
|
Liu J, Wang S, Li W, Dong Y, Wang J, Song Q, Zhang C. A novel imidazole-based tri-nitrogen metal cations probe with better-selectivity in ionic radius and acting as a Zn2+ fluorescence turn-on sensor. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Qu TG, Hao XM, Wang H, Cui XG, Chen F, Wu YB, Yang D, Zhang M, Guo WL. A luminescent 2D zinc(II) metal–organic framework for selective sensing of Fe(III) ions and adsorption of organic dyes. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.09.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|