1
|
Li WL, Shuai Q, Yu J. Recent Advances of Carbon Capture in Metal-Organic Frameworks: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402783. [PMID: 39115100 DOI: 10.1002/smll.202402783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Indexed: 11/08/2024]
Abstract
The excessive emission of greenhouse gases, which leads to global warming and alarms the world, has triggered a global campaign for carbon neutrality. Carbon capture and sequestration (CCS) technology has aroused wide research interest as a versatile emission mitigation technology. Metal-organic frameworks (MOFs), as a new class of high-performance adsorbents, hold great potential for CO2 capture from large point sources and ambient air due to their ultra-high specific surface area as well as pore structure. In recent years, MOFs have made great progress in the field of CO2 capture and separation, and have published a number of important results, which have greatly promoted the development of MOF materials for practical carbon capture applications. This review summarizes the most recent advanced research on MOF materials for carbon capture in various application scenarios over the past six years. The strategies for enhancing CO2 selective adsorption and separation of MOFs are described in detail, along with the development of MOF-based composites. Moreover, this review also systematically summarizes the highly concerned issues of MOF materials in practical applications of carbon capture. Finally, future research on CO2 capture by MOF materials is prospected.
Collapse
Affiliation(s)
- Wen-Liang Li
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Qi Shuai
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jiamei Yu
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
2
|
Tu S, Yu L, Liu J, Lin D, Wu Y, Li Z, Wang H, Xia Q. Efficient CO 2 Capture under Humid Conditions on a Novel Amide-Functionalized Fe- soc Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12240-12247. [PMID: 36821648 DOI: 10.1021/acsami.3c00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
CO2 is the main source of the greenhouse gases, and its capture from flue gas under humid conditions is challenging but important for promoting carbon neutrality. Herein, we report a novel soc topology Fe-based metal-organic framework (Fe-dbai) with highly efficient postcombusion CO2 capture performance by integrating multiple specific functionalities, such as unsaturated metal sites and amide functional groups. The CO2 adsorption capacity and CO2/N2 selectivity of Fe-dbai are high up to 6.4 mmol/g and 64 (298 K, 1 bar), respectively, superior to many other reported MOFs. More importantly, the CO2 working capacity of Fe-dbai under 60% RH conditions preserves 94% of that under dry conditions in the breakthrough experiments of CO2/N2 (15:85, v/v) mixtures. The molecular simulation highlights that the electronegative amide CO- group has a good affinity for CO2 and can improve the interaction between Fe UMS and CO2. Although H2O molecules will occupy a small fraction of the adsorption sites, the confinement effect it produces can enhance the adsorption affinity of the framework for CO2, which results in Fe-dbai retaining most of the CO2 adsorption capacity under humid conditions. The excellent CO2 capture performance makes Fe-dbai a potential candidate for the practical application of CO2 capture.
Collapse
Affiliation(s)
- Shi Tu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
| | - Liang Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
- Shenzhen Polytechnic, Hoffmann Institute of Advanced Materials, 7098 Liuxian Boulevard, Shenzhen 518055, China
| | - Jiaqi Liu
- Shenzhen Polytechnic, Hoffmann Institute of Advanced Materials, 7098 Liuxian Boulevard, Shenzhen 518055, China
| | - Danxia Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
| | - Ying Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
| | - Hao Wang
- Shenzhen Polytechnic, Hoffmann Institute of Advanced Materials, 7098 Liuxian Boulevard, Shenzhen 518055, China
| | - Qibin Xia
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
| |
Collapse
|
3
|
Guo R, Wang S, Shuai Y, Lin Q, Tu Q, Liu H, Wang H. Multi-responsive luminescent sensitivities of two pillared-layer frameworks towards nitroaromatics, Cr 2O 72-, MnO 4- and PO 43- anions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121491. [PMID: 35700611 DOI: 10.1016/j.saa.2022.121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Combining Zn(II) with two dicarboxylic acids of different length and functional groups results in the 2D metal-carboxylate layer of different size and shape, which are further connected by the same bis-pyridyl-bis-amide pillar to afford two 4-fold and 3-fold interpenetrating pillared-layer networks (1 and 2). Luminescent properties of 1 and 2 have been systematically investigated and demonstrated multi-responsive luminescent sensitivities. 1 can be used for highly sensitive detection of nitroaromatics. In particular, 2 can be used turn-off sensing towards Cr2O72- and MnO4- anions as well as turn-on sensing towards PO43- anion in aqueous solution with high sensitivity and remarkable recyclability. The sensing mechanism is also discussed.
Collapse
Affiliation(s)
- Runzhong Guo
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Suhan Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yutian Shuai
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Qin Lin
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Qiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Huiyan Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Haiying Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
4
|
Aliakbari R, Ramakrishna S, Kowsari E, Marfavi Y, Cheshmeh ZA, Ajdari FB, Kiaei Z, Torkzaban H, Ershadi M. Scalable preparation of MOFs and MOF-containing hybrid materials for use in sustainable refrigeration systems for a greener environment: a comprehensive review as well as technical and statistical analysis of patents. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Andreichenko AA, Burlak PV, Kovalenko KA, Samsonenko DG, Fedin VP. ZINC(II) AND CADMIUM(II) METAL-ORGANIC FRAMEWORKS BASED ON THE AMIDE- FUNCTIONALIZED TETRACARBOXYLATE LIGAND: SYNTHESIS, CRYSTAL STRUCTURE, AND LUMINESCENT PROPERTIES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Qiao J, Liu X, Zhang L, Liu Y. Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1406-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Fan SC, Li YT, Wang Y, Wang JW, Xue YY, Li HP, Li SN, Zhai QG. Amide-Functionalized Metal-Organic Frameworks Coupled with Open Fe/Sc Sites for Efficient Acetylene Purification. Inorg Chem 2021; 60:18473-18482. [PMID: 34797628 DOI: 10.1021/acs.inorgchem.1c03044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylene (C2H2) purification is of great importance for many chemical synthesis and processes. Metal-organic frameworks (MOFs) are widely used for gas adsorption and separation due to their variable structure and porosity. However, the exploitation of ideal MOF adsorbents for C2H2 keeps a challenging task. Herein, a combination of open metal sites (OMSs) and Lewis basic sites (LBSs) in robust MOFs is demonstrated to effectively promote the C2H2 purification performance. Accordingly, SNNU-37(Fe/Sc), two isostructural MOFs constituted by [Fe3O(COO)6] or [Sc3O(COO)6] trinuclear clusters and amide-functionalized tricarboxylate linkers, were designed with extra-stable 3,6-connected new architectures. Derived from the coexistence of high-density OMSs and LBSs, the C2H2 adsorption amounts of SNNU-37(Fe/Sc) are much higher than those values for C2H4 and CO2. Theoretical IAST selectivity values of SNNU-37(Fe) are 2.4 for C2H2/C2H4 (50/50, v/v) and 9.9 for C2H2/CO2 (50/50, v/v) at 298 K and 1 bar, indicating an excellent C2H2 separation ability. Experimental breakthrough curves also revealed that SNNU-37(Fe) could effectively separate C2H2/C2H4 and C2H2/CO2 under ambient conditions. GCMC simulations further indicate that open Fe or Sc sites and amide groups mainly contribute to stronger adsorption sites for C2H2 molecules.
Collapse
Affiliation(s)
- Shu-Cong Fan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Yun-Tong Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Ying Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Jia-Wen Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Ying-Ying Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Hai-Peng Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Shu-Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
8
|
Verma G, Forrest K, Carr BA, Vardhan H, Ren J, Pham T, Space B, Kumar S, Ma S. Indium-Organic Framework with soc Topology as a Versatile Catalyst for Highly Efficient One-Pot Strecker Synthesis of α-aminonitriles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52023-52033. [PMID: 34210117 DOI: 10.1021/acsami.1c09074] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An In(III) based metal-organic framework (MOF), In-pbpta, with soc topology was constructed from the trigonal prismatic [In3(μ3-O)(H2O)3(O2C-)6] secondary building unit (SBU) and a custom-designed tetratopic linker H4pbpta (pbpta = 4,4',4″,4‴-(1,4-phenylenbis(pyridine-4,2,6-triyl))-tetrabenzoic acid)). The obtained MOF shows a Brunauer-Emmett-Teller surface area of 1341 m2/g with a pore volume of 0.64 cm3/g, which is the highest among the scarcely reported In-soc-MOFs. The constructed MOF demonstrates excellent performance as a heterogeneous Lewis acid catalyst for highly efficient conversion in a one-pot multicomponent Strecker reaction for the preparation of α-aminonitriles under solvent-free conditions, which can be easy to separate and recycle without significant loss of activity for up to seven cycles. The computational modeling studies suggest the presence of the three substrates in close vicinity to the In-oxo cluster. The strong interactions of the aldehyde/ketone and the amine with the In-oxo cluster together with the readily available cyanide ion around the In-oxo cluster lead to high catalytic conversion within a short period of time for the MOF catalyst. Our work therefore lays a foundation to develop MOF as a new class of efficient heterogeneous catalyst for one-pot Strecker reaction.
Collapse
Affiliation(s)
- Gaurav Verma
- Department of Chemistry, University of North Texas, 1508 West Mulberry Street, Denton, Texas 76201, United States
| | - Katherine Forrest
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Benjamin A Carr
- Department of Chemistry & Biochemistry, University of California San Diego, MC 0332, 9500 Gilman Drive, La Jolla, California 92093-0021, United States
| | - Harsh Vardhan
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Junyu Ren
- Department of Chemistry, University of North Texas, 1508 West Mulberry Street, Denton, Texas 76201, United States
| | - Tony Pham
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Brian Space
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
- Department of Chemistry, North Carolina State University, 2700 Stinson Drive, Raleigh, North Carolina 27607, United States
| | - Sanjay Kumar
- Department of Chemistry, Multani Mal Modi College, Patiala 147001, Punjab, India
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 West Mulberry Street, Denton, Texas 76201, United States
| |
Collapse
|
9
|
A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101715] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Mutyala S, Jonnalagadda M, Ibrahim SM. Effect of modification of UiO-66 for CO2 adsorption and separation of CO2/CH4. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
A copper-based coordination polymer formed through synergistic bridging of 1,2,4-triazole and acetate anions: synthesis, crystal structure and magnetic properties. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Liu HY, Wang K, Sun Y, Wang R, Wang HY. Insight into the Construction of (3,6)-Connected rtl, ant, and Chiral anh Nets Based on Structural Investigation of Several MOFs via Steric Tuning of Linkers. Inorg Chem 2020; 59:9452-9460. [PMID: 32571019 DOI: 10.1021/acs.inorgchem.0c01537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Six cobalt-organic frameworks (1-6) were solvothermally constructed with a tritopic pyridine-carboxylate linker (L-H) and its methyl- and methoxy-functionalized derivatives (L-OCH3 and L-CH3). Due to incorporated multiple substituents with various steric hindrances, the tritopic linkers adopt different molecular configurations, Y-shaped and T-shaped, which further combine octahedral or trigonal-prismatic inorganic nodes to afford diverse (3,6)-connected nets. Consequently, 1 and 2 are rtl nets and 3 and 4 are ant nets. Notably, 5 and 6 present rarely observed chiral anh (flu-3) networks with left-handed double helical chains. The structural investigation indicates that the steric tuning of linkers may essentially dictate the resulting diverse MOF structures. Furthermore, the MOFs presented here can be regarded as an ideal structural platform for a better understanding of the assembly of (3,6)-connected rtl, ant, and chiral anh nets, which are closely related to the shape and geometric configuration/conformation of tridentate organic nodes as well as inorganic building nodes.
Collapse
Affiliation(s)
- Hui-Yan Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Kang Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yi Sun
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Rui Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Hai-Ying Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| |
Collapse
|
13
|
Guo R, Dong H, Li P, Sun Y, Wang H, Liu H. A multifunctional Cd( ii)-based metal–organic framework with amide groups exhibiting luminescence sensing towards multiple substances. CrystEngComm 2020. [DOI: 10.1039/d0ce01061h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By incorporating flexible amide group onto skeleton of a tetracarboxylate linker endows it with potential to serve as tetrahedral node and facilitate the construction of a flu net, which significantly demonstrates multi-responsive behavior.
Collapse
Affiliation(s)
- Runzhong Guo
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Hao Dong
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Peiyuan Li
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Yi Sun
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Haiying Wang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Huiyan Liu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
14
|
Liu J, Wei Y, Bao F, Li G, Liu H, Wang H. Pore-size tuning in pillared-layer metal–organic framework with self-penetrated rob net for selective gas adsorption and efficient dyes adsorption in aqueous solution. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|