1
|
Farrokh M, Hajjami M, Zolfigol MA, Jalali-Mola S. Catalytic Application of Biochar Functionalized Copper-l-histidine for the Chemo and Homoselective Conversion of Cyanides to Amides and Reduction of Nitroarenes to anilines. ACS OMEGA 2024; 9:47811-47821. [PMID: 39651105 PMCID: PMC11618395 DOI: 10.1021/acsomega.4c08465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024]
Abstract
In our study, we aimed to use olive pomace, food industry waste, as biomass to produce biochar nanoparticles. The surface of the biochar was functionalized with the l-histidine ligand, and then cupric acetate was added to prepare Cu-l-histidine@biochar as a final catalyst for the chemo- and homoselective synthesis of amide and aniline derivatives. To characterize the novel catalyst, we employed various techniques. Another notable feature of this catalyst is its reusability, which maintained significant efficiency even after multiple uses in reactions.
Collapse
Affiliation(s)
- Mahrokh Farrokh
- Department of Organic Chemistry,
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Maryam Hajjami
- Department of Organic Chemistry,
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry,
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Sepideh Jalali-Mola
- Department of Organic Chemistry,
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| |
Collapse
|
2
|
Emad-Abbas N, Naji J, Moradi P, Kikhavani T. 3-(Sulfamic acid)-propyltriethoxysilane on biochar nanoparticles as a practical, biocompatible, recyclable and chemoselective nanocatalyst in organic reactions. RSC Adv 2024; 14:22147-22158. [PMID: 39005254 PMCID: PMC11240877 DOI: 10.1039/d4ra02265c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Recyclable and inexpensive catalysts, waste regeneration, use of available and safe solvents are important principles of green chemistry. Therefore, in this project, biochar nanoparticles (BNPs) were synthesized by the pyrolysis method from chicken manure. Then, 3-(sulfamic acid)-propyltriethoxysilane (SAPES) was immobilized on the surface of BNPs (SAPES@BNPs). The prepared catalyst (SAPES@BNPs) was used as a commercial, practical, biocompatible and reusable catalyst in the selective oxidation of sulfides to sulfoxides. Further, the catalytic application of SAPES@BNPs was explored in the multicomponent synthesis of tetrahydrobenzo[b]pyrans under mild and green conditions. BNPs were characterized using SEM, TGA and XRD techniques. SAPES@BNPs were characterized using SEM, FT-IR spectroscopy, WDX, EDS, TGA, and XRD techniques. Particle size distribution was obtained by histogram graph. SAPES@BNPs can be recovered and reused several times. The purity of the products was studied using NMR spectroscopy.
Collapse
Affiliation(s)
| | - Jalil Naji
- Department of Physics, Faculty of Science, Ilam University Ilam Iran
| | - Parisa Moradi
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| | - Tavan Kikhavani
- Department of Chemical Engineering, Faculty of Engineering, Ilam University Ilam Iran
| |
Collapse
|
3
|
Farahmand S, Ayazi-Nasrabadi R, Ali Zolfigol M. Amino-Cobalt(II)phthalocyanine supported on silica chloride as an efficient and reusable heterogeneous photocatalyst for oxidation of alcohols. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Synthesis of pyrimidine-6-carbonitriles, pyrimidin-5-ones, and tetrahydroquinoline-3-carbonitriles by new superb oxovanadium(V)-[5,10,15,20-tetrakis(pyridinium)-porphyrinato]-tetra(tricyanomethanide) catalyst via anomeric based oxidation. Sci Rep 2022; 12:19537. [PMID: 36376379 PMCID: PMC9663709 DOI: 10.1038/s41598-022-23956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Oxovanadium(V)-[5,10,15,20-tetrakis(pyridinium)-porphyrinato]-tetra(tricyanomethanide) [(VO)TPP][(TCM)4] was designed, synthesized and characterized by various techniques such as FT-IR, EDX, SEM equipped with EDX mappings, CHN elemental analysis, ICP-OES, XRD, SEM, TEM, TGA, DTA, DRS, Kubelka-Munk function (Tauc's plot), and UV-Vis analyses. Then, [(VO)TPP][(TCM)4] was used as a benign and expedient catalyst for the synthesis of numerous heterocyclic compounds such as 5-amino-7-(aryl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbonitriles, 5-amino-7-(aryl)-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbonitriles, 7-(aryl)-7,12-dihydro-5H-isochromeno[4,3-d][1,2,4]triazolo[1,5-a]pyrimidin-5-ones, and 4-(aryl)-2-(1H-indol-3-yl)-5,6,7,8-tetrahydroquinoline-3-carbonitriles under solvent-free conditions at 100 °C via a cooperative geminal-vinylogous anomeric based oxidation.
Collapse
|
5
|
Sepehrmansourie H, Zarei M, Zolfigol MA, Kalhor S, Shi H. Catalytic chemo and homoselective ipso-nitration under mild condition. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Synthesis and Characterization of Nickel Metal-Organic Framework Including 4,6-diamino-2-mercaptopyrimidine and its Catalytic Application in Organic Reactions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04135-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Moeinimehr M, Safaiee M, Zolfigol MA, Taherpour AA. Synthesis and Application of Nano Vanadium‐Oxo Pyridiniumporphyrazinato Sulfonic Acid for Synthesizing Pyrazole and Dihydropyrano
[2,3]
pyrazole Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202200849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mahtab Moeinimehr
- Department of Organic Chemistry Faculty of Chemistry Razi University Kermanshah 67149–67346 Iran
| | - Maliheh Safaiee
- Nahavand Higher Education Complex Bu-Ali Sina University, Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry Faculty of Chemistry Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Avat Arman Taherpour
- Department of Organic Chemistry Faculty of Chemistry Razi University Kermanshah 67149–67346 Iran
| |
Collapse
|
8
|
Kesharwani N, Chaudhary N, Haldar C. Synthesis and characterization of Merrifield resin and graphene oxide supported air stable oxidovanadium(IV) radical complexes for the catalytic oxidation of light aliphatic alcohols. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Koolivand M, Nikoorazm M, Ghorbani‐Choghamarani A, Tahmasbi B. Cu–citric acid metal–organic framework: Synthesis, characterization and catalytic application in Suzuki–Miyaura cross‐coupling reaction and oxidation of sulfides. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mostafa Koolivand
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | - Mohsen Nikoorazm
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | | | - Bahman Tahmasbi
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| |
Collapse
|
10
|
Syntheses, characterization, and catalytic potential of novel vanadium and molybdenum Schiff base complexes for the preparation of benzimidazoles, benzoxazoles, and benzothiazoles under thermal and ultrasonic conditions. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02780-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
l-Arginine complex of copper on modified core–shell magnetic nanoparticles as reusable and organic–inorganic hybrid nanocatalyst for the chemoselective oxidation of organosulfur compounds. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02040-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Wang Q, Xiong ZD, Liu L, Cai YJ. Syntheses, X-ray crystal structures and catalytic epoxidation of oxidovanadium(V) and dioxidomolybdenum(VI) complexes derived from N′-(4-Bromo-2-hydroxybenzylidene)benzohydrazide. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1749658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Qian Wang
- Institute of Technology, Wuhan Textile University, Wuhan, People’s Republic of China
| | - Zhong-Duo Xiong
- Institute of Technology, Wuhan Textile University, Wuhan, People’s Republic of China
| | - Liu Liu
- Institute of Technology, Wuhan Textile University, Wuhan, People’s Republic of China
| | - Ya-Jun Cai
- Institute of Technology, Wuhan Textile University, Wuhan, People’s Republic of China
- School of Environmental Engineering, Wuhan Textile University, Wuhan, People’s Republic of China
| |
Collapse
|
13
|
Cu(I)@Isatin-Glycine-Boehmite nanoparticles: as novel heterogeneous catalyst for the synthesis and selective oxidation of sulfides. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02072-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Bujnicki B, Błaszczyk J, Chmielewski M, Drabowicz J. Diastereoisomerically Pure, (S)-O-1,2-O-isopropyli dene-(5-O-α-d-glucofuranosyl) t-butanesulfinate: Synthesis, Crystal Structure, Absolute Configuration and Reactivity. Molecules 2020; 25:molecules25153392. [PMID: 32726982 PMCID: PMC7436146 DOI: 10.3390/molecules25153392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
The reaction of t-butylmagnesium chlorides with diastereomerically pure (R)-1,2-O-isopropylidene-3,5-O-sulfinyl-α-d-glucofuranose (R)-4 was found to be stopped at the stage of the corresponding, diastereoisomerically pure 1,2-O-isopropylidene-(5-O-α-d-glucofuranosyl) t-butanesulfinate (S)-10 for which the crystal structure and the (S)-absolute configuration was determined by X-ray crystallography. Comparison of the absolute configurations of the starting sulfite (R)-4, and t-butanesulfinate (S)-10 (which crystallizes in the orthorhombic system, space group P212121, with the single compound molecule present in the asymmetric unit), clearly indicates that the reaction of nucleophilic substitution at the stereogenic sulfur atom in the sulfite (R)-4 occurs with the full inversion of configuration via the trigonal bipyramidal sulfurane intermediate 4c in which both the entering and leaving groups are located in apical positions.
Collapse
Affiliation(s)
- Bogdan Bujnicki
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Division of Organic Chemistry, Sienkiewicza 112, 90–363 Łódź, Poland;
| | - Jarosław Błaszczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Division of Organic Chemistry, Sienkiewicza 112, 90–363 Łódź, Poland;
- Correspondence: (J.B.); (J.D.); Tel.: +48-(42)-6803319 (J.B.); +48-(42)-6803234 (J.D.)
| | - Marek Chmielewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01–224 Warszawa, Poland;
| | - Józef Drabowicz
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Division of Organic Chemistry, Sienkiewicza 112, 90–363 Łódź, Poland;
- Institute of Chemistry, Jan Długosz University, Aleja Armii Krajowej 13/15, 42–200 Częstochowa, Poland
- Correspondence: (J.B.); (J.D.); Tel.: +48-(42)-6803319 (J.B.); +48-(42)-6803234 (J.D.)
| |
Collapse
|
15
|
Dashteh M, Zolfigol MA, Khazaei A, Baghery S, Yarie M, Makhdoomi S, Safaiee M. Synthesis of cobalt tetra-2,3-pyridiniumporphyrazinato with sulfonic acid tags as an efficient catalyst and its application for the synthesis of bicyclic ortho-aminocarbonitriles, cyclohexa-1,3-dienamines and 2-amino-3-cyanopyridines. RSC Adv 2020; 10:27824-27834. [PMID: 35516925 PMCID: PMC9055596 DOI: 10.1039/d0ra02172e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022] Open
Abstract
Cobalt tetra-2,3-pyridiniumporphyrazinato with sulfonic acid tag [Co(TPPASO3H)]Cl was produced and catalyzed the synthesis of ortho-aminocarbonitriles, cyclohexa-1,3-dienamines and 2-amino-3-cyanopyridines. The synthesis of 2-amino-3-cyanopyridines by using [Co(TPPASO3H)]Cl proceeded via a cooperative vinylogous anomeric based oxidation mechanism. [Co(TPPASO3H)]Cl can be recycled and reused six times with a marginal decreasing of its catalytic activity.
Collapse
Affiliation(s)
- Mohammad Dashteh
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988133493009
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988133493009
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988133493009
| | - Saeed Baghery
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988133493009
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988133493009
| | - Sajjad Makhdoomi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamedan University of Medicinal Science Hamedan Iran
| | - Maliheh Safaiee
- Department of Medicinal Plants Production, University of Nahavand Nahavand 6593139565 Iran
| |
Collapse
|
16
|
Handy and highly efficient oxidation of benzylic alcohols to the benzaldehyde derivatives using heterogeneous Pd/AlO(OH) nanoparticles in solvent-free conditions. Sci Rep 2020; 10:5731. [PMID: 32235857 PMCID: PMC7109032 DOI: 10.1038/s41598-020-62695-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
The selective oxidation of benzylic alcohols was performed by using commercially available aluminum oxy-hydroxide-supported palladium (Pd/AlO(OH)) nanoparticles (0.5 wt.% Pd, about 3 nm size) under mild conditions. The oxidation method comprises the oxidation of benzyl alcohols catalyzed by aluminum oxy-hydroxide-supported palladium under ultrasonic and solvent-free conditions and a continuous stream of O2. The characterization of aluminum oxy-hydroxide-supported palladium nanocatalyst was conducted by several advanced analytical techniques including scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and elemental analysis by ICP-OES. The oxidation of a variety of benzyl alcohol compounds were tested by the aluminum oxy-hydroxide-supported palladium nanoparticles, and all expected oxidation products were obtained by the high conversion yields within 3 hours. The reaction progress was monitored by TLC (Thin-layer chromatography), and the yields of the products were determined by 1H-NMR and 13C NMR analysis.
Collapse
|
17
|
Khazalpour S, Yarie M, Kianpour E, Amani A, Asadabadi S, Seyf JY, Rezaeivala M, Azizian S, Zolfigol MA. Applications of phosphonium-based ionic liquids in chemical processes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01901-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Tahmasbi B, Ghorbani-Choghamarani A, Moradi P. Palladium fabricated on boehmite as an organic–inorganic hybrid nanocatalyst for C–C cross coupling and homoselective cycloaddition reactions. NEW J CHEM 2020. [DOI: 10.1039/c9nj06129k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pd-adenine@boehmite has been prepared and characterized by FT-IR, BET, SEM, EDS, WDX, TGA, XRD and AAS techniques and further was used as catalyst in organic reactions. The reused catalyst was characterized by TEM, EDS, WDX, AAS and FT-IR techniques.
Collapse
|