1
|
Gümüş A, Sadeghian N, Sadeghi M, Taslimi P, Gümüş S. Novel triazole bridged quinoline-anthracene derivatives: synthesis, characterization, molecular docking, evaluation of electronic and enzyme inhibitory properties. J Biomol Struct Dyn 2025; 43:843-858. [PMID: 37982719 DOI: 10.1080/07391102.2023.2283870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Two novel quinoline-anthracene conjugates comprising styrylquinoline and anthracene moieties linked by triazole bridges were designed and synthesized in good yields. These molecules were determined for some metabolic enzymes activities. Results indicated that the synthetic molecules exhibited powerful inhibitory actions against all aims as compared to the control molecules. Ki values of novel compound QA-1 for hCA I, hCA II, AChE, and α-glycosidase enzymes were obtained of 20.18 ± 2.46 µM, 14.63 ± 1.14 µM, 71.48 ± 7.76 nM, 401.35 ± 36.84 nM, respectively. Both compounds showed promising candidate complexes for drug development with considerable in vitro different enzymes inhibitory activities. The binding conformations patterns and interaction of QA-1 and QA-2 compounds with α-glucosidase, acetycholinesterase, carbonic anhydrase-I and carbonic anhydrase-II enzymes were investigated through molecular docking profiles. The docking outputs are consistent with the Ki and IC50 values of novel compounds. Three dimensional geometries and electronic properties of the title compounds were obtained by the applicational computational approach at B3LYP/6-31++G(d,p) level of theory.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ayşegül Gümüş
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Morteza Sadeghi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Selçuk Gümüş
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin, Turkey
| |
Collapse
|
2
|
Navale GR, Ahmed I, Lim MH, Ghosh K. Transition Metal Complexes as Therapeutics: A New Frontier in Combatting Neurodegenerative Disorders through Protein Aggregation Modulation. Adv Healthc Mater 2024; 13:e2401991. [PMID: 39221545 DOI: 10.1002/adhm.202401991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative disorders (NDDs) are a class of debilitating diseases that progressively impair the protein structure and result in neurological dysfunction in the nervous system. Among these disorders, Alzheimer's disease (AD), prion diseases such as Creutzfeldt-Jakob disease (CJD), and Parkinson's disease (PD) are caused by protein misfolding and aggregation at the cellular level. In recent years, transition metal complexes have gained significant attention for their potential applications in diagnosing, imaging, and curing these NDDs. These complexes have intriguing possibilities as therapeutics due to their diverse ligand systems and chemical properties and can interact with biological systems with minimal detrimental effects. This review focuses on the recent progress in transition metal therapeutics as a new era of hope in the battle against AD, CJD, and PD by modulating protein aggregation in vitro and in vivo. It may shed revolutionary insights into unlocking new opportunities for researchers to develop metal-based drugs to combat NDDs.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
3
|
Güleç Ö, Bilgiçli AT, Tüzün B, Taslimi P, Günsel A, Gülçin İ, Arslan M, Yarasir MN. Peripheral (E)-2-[(4-hydroxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one)]-coordinated phthalocyanines with improved enzyme inhibition properties and photophysicochemical behaviors. Arch Pharm (Weinheim) 2024; 357:e2400209. [PMID: 38838335 DOI: 10.1002/ardp.202400209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
In this study, (E)-4-{4-[(1-oxo-3,4-dihydronaphthalen-2(1H)-ylidene)methyl]phenoxy}phthalonitrile (4) and its phthalocyanine derivatives (5-8) were synthesized for the first time. Aggregation behaviors of the novel soluble phthalocyanines in organic solvents were investigated. In addition, the efficiency of 1O2 production of (5) and ZnPc (6) was investigated. The singlet oxygen quantum yields (ΦΔ) for 2HPc (5) and ZnPc (6) were found to be 0.58 and 0.83, respectively. Additionally, novel phthalocyanines (5-8) were investigated for their ability to inhibit enzymes. They exhibited a highly potent inhibition effect on human carbonic anhydrase I and II (hCA I and II) and α-glycosidase (α-Gly) enzymes. Ki values are in the range of 2.60 ± 9.87 to 11.53 ± 6.92 µM, 3.35 ± 0.53 to 15.47 ± 1.20 µM, and 28.60 ± 4.82 to 40.58 ± 7.37 nM, respectively. The calculations of the studied molecule at the B3LYP, HF, and M062X levels in the 6-31G basis sets were made using the Gaussian package program. Afterward, the interactions occurring in the docking calculation against a protein that is the crystal structure of hCA I (PDB ID: 2CAB), the crystal structure of hCA II (PDB ID: 5AML), and the crystal structure of α-Gly (PDB ID: 1R47), were examined. Following that, Protein-Ligand Interaction Profiler (PLIP) analysis was used to look at the interactions that occurred during the docking calculation in further detail.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Sakarya University, Sakarya, Turkey
| | | | - Burak Tüzün
- Sivas Vocational School, Department of Plant and Animal Production, Sivas Cumhuriyet University, Sivas, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Turkey
| | - Armağan Günsel
- Department of Chemistry, Sakarya University, Sakarya, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Sakarya University, Sakarya, Turkey
| | | |
Collapse
|
4
|
Artunç T, Çetinkaya Y, Taslimi P, Menzek A. Investigation of cholinesterase and α-glucosidase enzyme activities, and molecular docking and dft studies for 1,2-disubstituted cyclopentane derivatives with phenyl and benzyl units. Mol Divers 2024:10.1007/s11030-024-10911-y. [PMID: 38976121 DOI: 10.1007/s11030-024-10911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Six known products (4-9) were prepared from reaction of adipoyl chloride with 1,2,3-trimethoxybenzene according to the literature. From (2,3,4-trimethoxyphenyl)(2-(2,3,4-trimethoxyphenyl)cyclopent-1-en-1-yl)methanone (4) of them, four new 1,2-disubstituted cyclopentane derivatives (10-13) with phenyl and benzyl units were synthesized by reactions such as hydrazonation, catalytic hydrogenation and bromination. The obtained compounds 4-13 were examined for their in vitro inhibitory activity against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes. All compounds 4-13 showed inhibition at nanomolar level with Ki values in the range of 45.53 ± 7.35-631.96 ± 18.88 nM for AChE, 84.30 ± 9.92-622.10 ± 35.14 nM for BChE, and 25.47 ± 4.46-48.87 ± 7.33 for α-Glu. In silico molecular docking studies of the potent compounds were performed in the active sites of AChE (PDB: 1E66), BChE (PDB: 1P0I), and α-glucosidase (PDB: 5ZCC) to compare the effect of bromine atom on the inhibition mechanism. The optimized molecular structures, HOMO-LUMO energies and molecular electrostatic potential maps for the compounds were calculated by using density functional theory with B3LYP/6-31 + G(d,p).
Collapse
Affiliation(s)
- Tekin Artunç
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Yasin Çetinkaya
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkey.
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
- Department of Emergency Aid and Disaster Management, Faculty of Health Sciences, Ardahan University, 75002, Ardahan, Turkey.
| |
Collapse
|
5
|
Behçet A, Taslimi P, Şen B, Taskın-Tok T, Aktaş A, Gök Y, Aygün M, Gülçin İ. New palladium complexes with N-heterocyclic carbene and morpholine ligands: Synthesis, characterization, crystal structure, molecular docking, and biological activities. J Biochem Mol Toxicol 2024; 38:e23554. [PMID: 37855258 DOI: 10.1002/jbt.23554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
This work includes the synthesis of a new series of palladium-based complexes containing both morpholine and N-heterocyclic carbene (NHC) ligands. The new complexes were characterized using NMR (1 H and 13 C), FTIR spectroscopic, and elemental analysis techniques. The crystal structure of complex 1b was obtained by utilizing the single-crystal X-ray diffraction method. X-ray studies show that the coordination environment of palladium atom is completed by the carbene carbon atom of the NHC ligand, the nitrogen atom of the morpholine ring, and a pair of bromide ligand, resulting in the formation of slightly distorted square planar geometry. All complexes were determined for some metabolic enzyme activities. Results indicated that all the synthetic complexes exhibited powerful inhibitory actions against all aims as compared to the control molecules. Ki values of new morpholine-liganded complexes bearing 4-hydroxyphenylethyl group 1a-e for hCA I, hCA II, AChE, BChE, and α-glycosidase enzymes were obtained in the ranges 0.93-2.14, 1.01-2.03, 4.58-10.27, 7.02-13.75, and 73.86-102.65 µM, respectively. Designing of reported complexes is impacted by molecular docking study, and interaction with the current enzymes also proclaimed that compounds 1e (-12.25 kcal/mol for AChE and -11.63 kcal/mol for BChE), 1c (-10.77 kcal/mol and -9.26 kcal/mol for α-Gly and hCA II, respectively), and 1a (-8.31 kcal/mol for hCA I) are showing binding affinity and interaction from the synthesized five novel complexes.
Collapse
Affiliation(s)
- Ayten Behçet
- Department of Chemistry, Faculty of Science and Arts, Inonu University, Malatya, Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Türkiye
| | - Betül Şen
- Department of Physics, Faculty of Science, Dokuz Eylül University, Buca, Türkiye
| | - Tuğba Taskın-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Türkiye
- Institute of Health Sciences, Gaziantep University, Gaziantep, Türkiye
| | - Aydın Aktaş
- Vocational School of Health Service, Inonu University, Malatya, Türkiye
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts, Inonu University, Malatya, Türkiye
| | - Muhittin Aygün
- Department of Physics, Faculty of Science, Dokuz Eylül University, Buca, Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
6
|
Alagöz T, Çalişkan FG, Bilgiçli HG, Zengin M, Sadeghi M, Taslimi P, Gulçin İ. Synthesis, characterization, biochemical, and molecular modeling studies of carvacrol-based new thiosemicarbazide and 1,3,4-thiadiazole derivatives. Arch Pharm (Weinheim) 2023; 356:e2300370. [PMID: 37743251 DOI: 10.1002/ardp.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
A series of carvacrol-based thiosemicarbazide (3a-e) and 1,3,4-thiadiazole-2-amine (4a-e) were designed and synthesized for the first time. The structures were characterized by nuclear magnetic resonance and high resolution mass spectroscopy techniques. All compounds were examined for some metabolic enzyme activities. Results indicated that all the synthetic molecules exhibited powerful inhibitory actions against human carbonic anhydrase I and II (hCAI and II), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes compared to the standard molecules. Ki values of five novel thiosemicarbazides and five new 1,3,4-thiadiazole-2-amine derivatives (3a-e and 4a-e) for hCA I, hCA II, AChE, and BChE enzymes were obtained in the ranges 0.73-21.60, 0.42-15.08 µM, 3.48-81.48, 92.61-211.40 nM, respectively. After the experimental undertaking, an extensive molecular docking analysis was conducted to scrutinize the intricate details of interactions between the ligand and the enzyme in question. The principal focus of this investigation was to appraise the potency and efficacy of the most active compound. In this context, the calculated docking scores were noted to be remarkably low, with values of -8.65, -7.97, -8.92, and -8.32 kcal/mol being recorded for hCA I, hCA II, AChE, and BChE, respectively. These observations suggest a high affinity and specificity of the studied compounds toward the enzymes, as mentioned earlier, which may pave the way for novel therapeutic interventions aimed at modulating the activity of these enzymes.
Collapse
Affiliation(s)
- Tenzile Alagöz
- Department of Chemistry, Faculty of Sciences, Sakarya University, Sakarya, Turkiye
| | - Fatma Güneş Çalişkan
- Department of Chemistry, Faculty of Sciences, Sakarya University, Sakarya, Turkiye
| | | | - Mustafa Zengin
- Department of Chemistry, Faculty of Sciences, Sakarya University, Sakarya, Turkiye
| | - Morteza Sadeghi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, Isfahan University, Isfahan, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkiye
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| |
Collapse
|
7
|
Yalazan H, Koç D, Aydın Kose F, Fandaklı S, Tüzün B, Akgül Mİ, Sadeghian N, Taslimi P, Kantekin H. Design, syntheses, theoretical calculations, MM-GBSA, potential anti-cancer and enzyme activities of novel Schiff base compounds. J Biomol Struct Dyn 2023; 42:13100-13113. [PMID: 37921706 DOI: 10.1080/07391102.2023.2274972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
In this study, new Schiff base compounds (SB-F-OH, SB-Cl-OH and SB-Br-OH) were derived from chalcone-derived amine compounds containing halogen groups and 4-hydroxybenzaldehyde. Also, their phthalonitrile compounds (SB-F-CN, SB-Cl-CN and SB-Br-CN) have been synthesized. The structures of these compounds were elucidated by NMR, FT-IR and Mass spectroscopic methods. The quantum chemical parameters were calculated at B3LYP/6-31++g(d,p), HF/6-31++g(d,p) and M062X/6-31++g(d,p) levels. As the biological application of the synthesized compounds, (i) their inhibition properties of the synthesized compounds on Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) metabolic enzymes were investigated, and their potential anticancer activities against neuroblastoma (NB; SH-SY5Y) and healthy fibroblast (NIH-3T3) cell lines were determined by in vitro assays. All compounds showed inhibition at nanomolar level with the Ki values in the range of 97.86 ± 30.51-516.82 ± 31.42 nM for AChE, 33.21 ± 4.45-78.50 ± 8.91 nM for BChE, respectively. It has been determined that all tested compounds have a remarkable cytotoxic effect against SH-SY5Y, and IC50 values were significantly lower than NIH-3T3 cells. The lowest IC50 value was observed in SB-Cl-OH (7.48 ± 0.86 µM) and SB-Cl-CN (7.31 ± 0.69 µM). The molecular docking of the molecules was also investigated using crystal structure of AChE enzyme protein (PDB ID: 4M0E), crystal structure of BChE protein (PDB ID: 6R6V) and SH-SY5Y cancer protein (PDB ID: 2F3F, 3PBL and 5WIV). The ADME properties of the compounds were investigated. MM/GBSA method is calculated binding free energy. Afterwards, ADME/T analysis was performed to examine the some properties of the molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Halise Yalazan
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Damla Koç
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Türkiye
| | - Fadime Aydın Kose
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Seda Fandaklı
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Muhammed İsmail Akgül
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Halit Kantekin
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
8
|
Durmaz L, Kiziltas H, Karagecili H, Alwasel S, Gulcin İ. Potential antioxidant, anticholinergic, antidiabetic and antiglaucoma activities and molecular docking of spiraeoside as a secondary metabolite of onion ( Allium cepa). Saudi Pharm J 2023; 31:101760. [PMID: 37693735 PMCID: PMC10485163 DOI: 10.1016/j.jsps.2023.101760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023] Open
Abstract
Onion contains many dietary and bioactive components including phenolics and flavonoids. Spiraeoside (quercetin-4-O-β-D-glucoside) is one of the most putative flavonoids in onion. Several antioxidant techniques were used in this investigation to assess the antioxidant capabilities of spiraeoside, including 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·) scavenging, N,N-dimethyl-p-phenylenediamine radical (DMPD•+) scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+) scavenging activities, cupric ions (Cu2+) reducing and potassium ferric cyanide reduction abilities. In contrast, the water-soluble α-tocopherol analogue trolox and the conventional antioxidants butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and α-tocopherol were utilized as the standards for evaluation. Spiraeoside scavenged the DPPH radicals an IC50 of 28.51 μg/mL (r2: 0.9705) meanwhile BHA, BHT, trolox, and α-tocopherol displayed IC50 of 10.10 μg/mL (r2: 0.9015), 25.95 μg/mL (r2: 0.9221), 7.059 μg/mL (r2: 0.9614) and 11.31 μg/mL (r2: 0.9642), accordingly. The results exhibited that spiraeoside had effects similar to BHT, but less potent than α-tocopherol, trolox and BHA. Also, inhibitory effects of spiraeoside were evaluated toward some metabolic enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase II (CA II) and α-glycosidase, which are related to a number of illnesses, such as Alzheimer's disease (AD), diabetes mellitus and glaucoma disorder. Spiraeoside exhibited IC50 values of 4.44 nM (r2: 0.9610), 7.88 nM (r2: 0.9784), 19.42 nM (r2: 0.9673) and 29.17 mM (r2: 0.9209), respectively against these enzymes. Enzyme inhibition abilities were compared to clinical used inhibitors including acetazolamide (for CA II), tacrine (for AChE and BChE) and acarbose (for α-glycosidase). Spiraeoside demonstrated effective antioxidant, anticholinergic, antidiabetic and antiglaucoma activities. With these properties, it has shown that Spiraeoside has the potential to be a medicine for some metabolic diseases.
Collapse
Affiliation(s)
- Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, 24500, Cayirli, Erzincan, Turkey
| | - Hatice Kiziltas
- Department of Pharmacy Services, Vocational School of Health Services, Van Yuzuncu Yil University, 65080, Van, Turkey
| | - Hasan Karagecili
- Department of Nursing, Faculty of Health Sciences, Siirt University, 56100, Siirt, Turkey
| | - Saleh Alwasel
- King Saud University, College of Science, Department of Zoology, 11362, Riyadh, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
9
|
Gök Y, Taslimi P, Şen B, Bal S, Aktaş A, Aygün M, Sadeghi M, Gülçin İ. Design, Synthesis, Characterization, Crystal Structure, In silico Studies, and Inhibitory Properties of the PEPPSI Type Pd(II)NHC Complexes Bearing Chloro/Fluorobenzyl Group. Bioorg Chem 2023; 135:106513. [PMID: 37030104 DOI: 10.1016/j.bioorg.2023.106513] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
This work contains synthesis, characterization, crystal structure, and biological activity of a new series of the PEPPSI type Pd(II)NHC complexes [(NHC)Pd(II)(3-Cl-py)]. NMR, FTIR, and elemental analysis techniques were used to characterize all (NHC)Pd(II)(3-Cl-py) complexes. Also, molecular and crystal structures of complex 1c were established by single-crystal X-ray diffraction. Regarding the X-ray studies, the palladium(II) atom has a slightly distorted square-planar coordination environment. Additionally, the enzyme inhibitory effect of new (NHC)Pd(II)(3-Cl-py) complexes (1a-1g) was studied. They exhibited highly potent inhibition effect on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carbonic anhydrases (hCAs) (Ki values are in the range of 0.08 ± 0.01 to 0.65 ± 0.06 µM, 10.43 ± 0.98 to 22.48 ± 2.01 µM, 6.58 ± 0.30 to 10.88 ± 1.01 µM and 6.34 ± 0.37 to 9.02 ± 0.72 µM for AChE, BChE, hCA I, and hCA II, respectively). Based on the molecular docking, among the seven synthesized complexes, 1c, 1b, 1e, and 1a significantly inhibited AChE, BChE, hCA I, and hCA II enzymes, respectively. The findings highpoint that (NHC)Pd(II)(3-Cl-py) complexes can be considered as possible inhibitors via metabolic enzyme inhibition.
Collapse
|
10
|
Synthesis, characterization and inhibitor properties of benzimidazolium salts bearing 4-(methylsulfonyl)benzyl side arms. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Mutlu M, Bingol Z, Uc EM, Köksal E, Goren AC, Alwasel SH, Gulcin İ. Comprehensive Metabolite Profiling of Cinnamon ( Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles. Life (Basel) 2023; 13:136. [PMID: 36676085 PMCID: PMC9865886 DOI: 10.3390/life13010136] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
In this study, for the first time, the antioxidant and antidiabetic properties of the essential oil from cinnamon (Cinnamomum zeylanicum) leaves were evaluated and investigated using various bioanalytical methods. In addition, the inhibitory effects of cinnamon oil on carbonic anhydrase II (hCA II), acetylcholinesterase (AChE), and α-amylase, which are associated with various metabolic diseases, were determined. Further, the phenolic contents of the essential oil were determined using LC-HRMS chromatography. Twenty-seven phenolic molecules were detected in cinnamon oil. Moreover, the amount and chemical profile of the essential oils present in cinnamon oil was determined using GC/MS and GC-FID analyses. (E)-cinnamaldehyde (72.98%), benzyl benzoate (4.01%), and trans-Cinnamyl acetate (3.36%) were the most common essential oils in cinnamon leaf oil. The radical scavenging activities of cinnamon oil were investigated using 1,1-diphenyl-2-picryl-hydrazil (DPPH•), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), and (ABTS•+) bioanalytical scavenging methods, which revealed its strong radical scavenging abilities (DPPH•, IC50: 4.78 μg/mL; and ABTS•+, IC50: 5.21 μg/mL). Similarly, the reducing capacities for iron (Fe3+), copper (Cu2+), and Fe3+-2,4,6-tri(2-pyridyl)-S-triazine (TPTZ) were investigated. Cinnamon oil also exhibited highly effective inhibition against hCA II (IC50: 243.24 μg/mL), AChE (IC50: 16.03 μg/mL), and α-amylase (IC50: 7.54μg/mL). This multidisciplinary study will be useful and pave the way for further studies for the determination of antioxidant properties and enzyme inhibition profiles of medically and industrially important plants and their oils.
Collapse
Affiliation(s)
- Muzaffer Mutlu
- Vocational School of Applied Sciences, Gelişim University, Istanbul 34315, Turkey
| | - Zeynebe Bingol
- Department of Medical Services and Techniques, Tokat Vocational School of Health Services, Gaziosmanpasa University, Tokat 60250, Turkey
| | - Eda Mehtap Uc
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| | - Ekrem Köksal
- Department of Chemistry, Faculty of Science and Arts, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Ahmet C. Goren
- Department Chemistry, Faculty of Sciences, Gebze Technical University, Kocaeli 41400, Turkey
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
12
|
Novel PEPPSI-type N-heterocyclic carbene palladium(II) complexes: Synthesis, characterization, in silico studies and enzyme inhibitory properties against some metabolic enzymes. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Anil DA, Polat MF, Saglamtas R, Tarikogullari AH, Alagoz MA, Gulcin I, Algul O, Burmaoglu S. Exploring enzyme inhibition profiles of novel halogenated chalcone derivatives on some metabolic enzymes: Synthesis, characterization and molecular modeling studies. Comput Biol Chem 2022; 100:107748. [DOI: 10.1016/j.compbiolchem.2022.107748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 12/27/2022]
|
14
|
Hamide M, Gök Y, Demir Y, Yakalı G, Tok TT, Aktaş A, Sevinçek R, Güzel B, Gülçin İ. Pentafluorobenzyl-substituted benzimidazolium salts: Synthesis, characterization, crystal structures, computational studies and inhibitory properties of some metabolic enzymes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Aktaş A, Yakalı G, Demir Y, Gülçin İ, Aygün M, Gök Y. The palladium-based complexes bearing 1,3-dibenzylbenzimidazolium with morpholine, triphenylphosphine, and pyridine derivate ligands: synthesis, characterization, structure and enzyme inhibitions. Heliyon 2022; 8:e10625. [PMID: 36185151 PMCID: PMC9520214 DOI: 10.1016/j.heliyon.2022.e10625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
The palladium-based complexes bearing N-heterocyclic carbene (NHC) ligand have long attracted attention as active catalysts for many catalytic reactions. Recently, the biological activities of these complexes, which are stable to air and moisture, have also been wondered. With the aim, we report the synthesis of a series of (NHC)Pd(Br2)(L) complexes (NHC: 1,3-dibenzylbenzimidazolium, L: morpholine, triphenylphosphine, pyridine, 3-chloropyridine, and 2-aminopyridine). All complexes were characterized by NMR (1H and 13C), FTIR spectroscopic and elemental analysis techniques. In addition, the single crystal structures of the complex 3, 4, and 6 were determined through single crystal x-ray crystallographic method. Furthermore, the carbonic anhydrase I and II isoenzymes (hCAs) and acetylcholinesterase (AChE) inhibition effects of these palladium-based complexes bearing NHC ligand were investigated. They showed highly potent inhibition effect with Ki values are between 10.06 ± 1.49-68.56 ± 11.53 nM for hCA I isoenzyme, 7.74 ± 0.66 to 49.39 ± 6.50 nM for hCA II isoenzyme and 22.83 ± 3.21 to 64.09 ± 9.05 nM for AChE enzyme.
Collapse
Affiliation(s)
- Aydın Aktaş
- Inonu University, Vocational School of Health Service, 44280, Malatya, Turkey
| | - Gül Yakalı
- Department of Engineering Sciences, Faculty of Engineering, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75000, Ardahan, Turkey
| | - İlhami Gülçin
- Atatürk University, Faculty of Science, Department of Chemistry, 25240, Erzurum, Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Arts and Sciences, Dokuz Eylül University, 35150, Izmir, Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
16
|
Şahin N, Çelebi MS, Ayvaz MÇ, Üstün E. Antioxidant Activity, Enzyme Inhibition, Electrochemical and Theoretical Evaluation of Novel PEPPSI Type N-Heterocyclic Carbene Complexes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Behçet A, Taslimi P, Gök Y, Aktaş A, Taskin‐Tok T, Gülçin İ. New PEPPSI‐Pd‐NHC complexes bearing 4‐hydroxyphenylethyl group: Synthesis, characterization, molecular docking, and bioactivity properties. Arch Pharm (Weinheim) 2022; 355:e2200276. [DOI: 10.1002/ardp.202200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ayten Behçet
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Türkiye
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Türkiye
| | - Aydın Aktaş
- Vocational School of Health Service Inonu University Malatya Türkiye
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Türkiye
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences Gaziantep University Gaziantep Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science Atatürk University Erzurum Türkiye
| |
Collapse
|
18
|
Topal M, Gulcin İ. Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Tezcan B, Gök Y, Sevinçek R, Taslimi P, Taskin‐Tok T, Aktaş A, Güzel B, Aygün M, Gülçin I. Benzimidazolium salts bearing the trifluoromethyl group as organofluorine compounds: Synthesis, characterization, crystal structure, in silico study, and inhibitory profiles against acetylcholinesterase and α‐glycosidase. J Biochem Mol Toxicol 2022; 36:e23001. [DOI: 10.1002/jbt.23001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Burcu Tezcan
- Department of Chemistry, Faculty of Arts and Science Cukurova University Adana Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Science Inonu University Malatya Turkey
| | - Resul Sevinçek
- Department of Physics, Faculty of Science Dokuz Eylul University İzmir Buca Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Turkey
- Department of Bioinformatics and Computational Biology Institute of Health Sciences, Gaziantep University Gaziantep Turkey
| | - Aydın Aktaş
- Department of Pathology, Vocational School of Health Service Inonu University Malatya Turkey
| | - Bilgehan Güzel
- Department of Chemistry, Faculty of Arts and Science Cukurova University Adana Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science Dokuz Eylul University İzmir Buca Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science Atatürk University Erzurum Turkey
| |
Collapse
|
20
|
Yiğit M, Celepci DB, Taslimi P, Yiğit B, Çetinkaya E, Özdemir İ, Aygün M, Gülçin İ. Selenourea and thiourea derivatives of chiral and achiral enetetramines: Synthesis, characterization and enzyme inhibitory properties. Bioorg Chem 2021; 120:105566. [PMID: 34974209 DOI: 10.1016/j.bioorg.2021.105566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/03/2023]
Abstract
A series of chiral and achiral cyclic seleno- and thiourea compounds bearing benzyl groups on N-atoms were prepared from enetetramines and appropriate Group VI elements in good yields. All the synthesized compounds were characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR spectroscopy, and the molecular and crystal structures of (R,R)-4b and (R,R)-5b were confirmed by the single-crystal X-ray diffraction method. These assayed for their activities against metabolic enzymes acetylcholinesterase, butyrylcholinesterase, and α-glycosidase. These selenourea and thiourea derivatives of chiral and achiral enetetramines effectively inhibit AChE and BChE with IC50 values in the range of 3.32-11.36 and 1.47-9.73 µM, respectively. Also, these compounds inhibited α-glycosidase enzyme with IC50 values varying between 1.37 and 8.53 µM. The results indicated that all the synthesized compounds exhibited excellent inhibitory activities against mentioned enzymes as compared with standard inhibitors. Representatively, the most potent compound against α-glycosidase enzyme, (S,S)-5b, was 12-times more potent than standard inhibitor acarbose; 7b and 8a as most potent compounds against cholinesterase enzymes, were around 5 and 13-times more potent than standard inhibitor tacrine against achethylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively.
Collapse
Affiliation(s)
- Murat Yiğit
- Department of Chemistry and Chemical Process Technologies, Vocational School of Higher Education, Adiyaman University, 02040 Adıyaman, Turkey.
| | - Duygu Barut Celepci
- Department of Physics, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Beyhan Yiğit
- Department of Chemistry, Faculty of Science and Art, Adiyaman University, 02040 Adıyaman, Turkey
| | - Engin Çetinkaya
- Department of Chemistry, Faculty of Science, Ege University, 35100 Bornova-İzmir, Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey; Catalysis Research and Application Center, İnönü University, 44280 Malatya, Turkey; Drug Application and Research Center, İnönü University, 44280 Malatya, Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
21
|
Synthesis, enzymes inhibitory properties and characterization of 2- (bis (4-aminophenyl) methyl) butan-1-ol compound: Quantum simulations, and in-silico molecular docking studies. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Kumar V, Ramu R, Shirahatti PS, Kumari VBC, Sushma P, Mandal SP, Patil SM. α‐Glucosidase, α‐Amylase Inhibition, Kinetics and Docking Studies of Novel (2‐Chloro‐6‐(trifluoromethyl)benzyloxy)arylidene) Based Rhodanine and Rhodanine Acetic Acid Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202101954] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Vasantha Kumar
- Department of Chemistry Sri Dharmasthala Manjunatheshwara College (Autonomous) Ujire 574240 India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics School of Life Sciences JSS Academy of Higher Education and Research Mysuru 570 015 India
| | | | - V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics School of Life Sciences JSS Academy of Higher Education and Research Mysuru 570 015 India
| | - P. Sushma
- Department of Biotechnology and Bioinformatics School of Life Sciences JSS Academy of Higher Education and Research Mysuru 570 015 India
| | - Subhankar P. Mandal
- Department of Pharmaceutical Chemistry JSS College of Pharmacy JSS Academy of Higher Education and Research Mysuru 570 015 India
| | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics School of Life Sciences JSS Academy of Higher Education and Research Mysuru 570 015 India
| |
Collapse
|
23
|
Bingol Z, Kızıltaş H, Gören AC, Kose LP, Topal M, Durmaz L, Alwasel SH, Gulcin İ. Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed ( Convulvulus betonicifolia Miller subsp.) - profiling of phenolic compounds by LC-HRMS. Heliyon 2021; 7:e06986. [PMID: 34027185 PMCID: PMC8129935 DOI: 10.1016/j.heliyon.2021.e06986] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
In order to evaluate the antioxidant activity of evaporated ethanolic extract (EESB) and lyophilized water extract (WESB) of Shaggy bindweed (Convulvulus betonicifolia Mill. Subs), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging effect, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+) binding activities were separately performed. Also, ascorbic acid, α-tocopherol and BHT were used as the standard compounds. Additionally, some phenolic compounds that responsible for antioxidant abilities of EESB and WESB were screened by liquid chromatography-high resolution mass spectrometry (LC-HRMS). At the same concentration, EESB and WESB demonstrated effective antioxidant abilities when compared to standards. In addition, EESB demonstrated IC50 values of 1.946 μg/mL against acetylcholinesterase (AChE), 0.815 μg/mL against α-glycosidase and 0.675 μg/mL against α-amylase enzymes.
Collapse
Affiliation(s)
- Zeynebe Bingol
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey
| | - Hatice Kızıltaş
- Vocational School of Health Services, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Ahmet C Gören
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul 34093, Turkey.,Drug Application and Research Center, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Leyla Polat Kose
- Vocational School, Department of Pharmacy Services, Beykent University, Buyukcekmece, Istanbul 34500, Turkey
| | - Meryem Topal
- Vocational School of Health Services, Gumushane University, Gumushane 29000, Turkey
| | - Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, Cayirli, Erzincan 24500, Turkey
| | - Saleh H Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey
| |
Collapse
|
24
|
LC-HRMS Profiling and Antidiabetic, Anticholinergic, and Antioxidant Activities of Aerial Parts of Kınkor ( Ferulago stellata). Molecules 2021; 26:molecules26092469. [PMID: 33922645 PMCID: PMC8122897 DOI: 10.3390/molecules26092469] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Kınkor (Ferulago stellata) is Turkish medicinal plant species and used in folk medicine against some diseases. As far as we know, the data are not available on the biological activities and chemical composition of this medicinal plant. In this study, the phytochemical composition; some metabolic enzyme inhibition; and antidiabetic, anticholinergic, and antioxidant activities of this plant were assessed. In order to evaluate the antioxidant activity of evaporated ethanolic extract (EEFS) and lyophilized water extract (WEFS) of kınkor (Ferulago stellata), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging activity, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+)-binding activities were separately performed. Furthermore, ascorbic acid, BHT, and α-tocopherol were used as the standard compounds. Additionally, the main phenolic compounds that are responsible for antioxidant abilities of ethanol and water extracts of kınkor (Ferulago stellata) were determined by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Ethanol and water extracts of kınkor (Ferulago stellata) demonstrated effective antioxidant abilities when compared to standards. Moreover, ethanol extract of kınkor (Ferulago stellata) demonstrated IC50 values of 1.772 μg/mL against acetylcholinesterase (AChE), 33.56 ± 2.96 μg/mL against α-glycosidase, and 0.639 μg/mL against α-amylase enzyme respectively.
Collapse
|