1
|
Talcik J, Serrato MR, Del Vecchio A, Colombel-Rouen S, Morvan J, Roisnel T, Jazzar R, Melaimi M, Bertrand G, Mauduit M. Cyclic (amino)(barrelene)carbene Ru-complexes: synthesis and reactivity in olefin metathesis. Dalton Trans 2024; 53:5346-5350. [PMID: 38450432 DOI: 10.1039/d4dt00102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The synthesis of ruthenium-complexes with cyclic (amino)(barrelene)carbenes (namely CABCs) as ligands is reported. Isolated in moderate to good yields, these new complexes showed impressive thermal stability at 110 °C over several days. Good catalytic performances were demonstrated in various ring-closing metathesis (RCM), macrocyclic-RCM, ring-closing enyne metathesis (RCEYM), cross-metathesis (CM), and ring-opening cross metathesis (ROCM) reactions.
Collapse
Affiliation(s)
- Jakub Talcik
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| | - Melinda R Serrato
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, USA.
| | - Antonio Del Vecchio
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| | - Sophie Colombel-Rouen
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| | - Jennifer Morvan
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| | - Thierry Roisnel
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, USA.
| | - Mohand Melaimi
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, USA.
| | - Guy Bertrand
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, USA.
| | - Marc Mauduit
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
2
|
Ring-Opening Metathesis Polymerization and Related Olefin Metathesis Reactions in Benzotrifluoride as an Environmentally Advantageous Medium. Int J Mol Sci 2022; 24:ijms24010671. [PMID: 36614111 PMCID: PMC9820898 DOI: 10.3390/ijms24010671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
A tremendous number of solvents, either as liquids or vapors, contaminate the environment on a daily basis worldwide. Olefin metathesis, which has been widely used as high-yielding protocols for ring-opening metathesis polymerization (ROMP), ring-closing metathesis (RCM), and isomerization reactions, is typically performed in toxic and volatile solvents such as dichloromethane. In this study, the results of our systematic experiments with the Grubbs G1, G2, and Hoveyda-Grubbs HG2 catalysts proved that benzotrifluoride (BTF) can replace dichloromethane (DCM) in these reactions, providing high yields and similar or even higher reaction rates in certain cases. The ROMP of norbornene resulted not only in high yields but also in polynorbornenes with a high molecular weight at low catalyst loadings. Ring-closing metathesis (RCM) experiments proved that, with the exception of the G1 catalyst, RCM occurs with similar high efficiencies in BTF as in DCM. It was found that isomerization of (Z)-but-2-ene-1,4-diyl diacetate with the G2 and HG2 catalysts proceeds at significantly higher initial rates in BTF than in DCM, leading to rapid isomerization with high yields in a short time. Overall, BTF is a suitable solvent for olefin metathesis, such as polymer syntheses by ROMP and the ring-closing and isomerization reactions.
Collapse
|
3
|
Patra SG, Jha R, Mondal H, Chattaraj PK. Fischer and Schrock carbene complexes in the light of global and local electrophilicity‐based descriptors. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Ruchi Jha
- Advanced Technology Development Centre Indian Institute of Technology Kharagpur India
| | - Himangshu Mondal
- Department of Chemistry Indian Institute of Technology Kharagpur India
| | - Pratim Kumar Chattaraj
- Department of Chemistry Indian Institute of Technology Kharagpur India
- Department of Chemistry Indian Institute of Technology Mumbai India
| |
Collapse
|