1
|
Farzia, Rehman S, Ikram M, Khan A, Khan R, Sinnokrot MO, Khan M, AlAsmari AF, Alasmari F, Alharbi M. Synthesis, characterization, Hirshfeld surface analysis, antioxidant and selective β-glucuronidase inhibitory studies of transition metal complexes of hydrazide based Schiff base ligand. Sci Rep 2024; 14:515. [PMID: 38177189 PMCID: PMC10766943 DOI: 10.1038/s41598-023-49893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
The synthesis of N'-[(4-hydroxy-3-methoxyphenyl)methylidene] 2-aminobenzohydrazide (H-AHMB) was performed by condensing O-vanillin with 2-aminobenzohydrazide and was characterized by FTIR, high resolution ESI(+) mass spectral analysis, 1H and 13C-NMR. The compound H-AHMB was crystallized in orthorhombic Pbca space group and studied for single crystal diffraction analysis. Hirshfeld surface analysis was also carried out for identifying short interatomic interactions. The major interactions H…H, O…H and C…H cover the Hirshfeld surface of H-AHMB. The metal complexes [M(AHMB)n] where M = Co(II), Ni(II), Cu(II) and Zn(II) were prepared from metal chlorides and H-AHMB ligand. The bonding was unambigously assigned using FTIR and UV/vis analysis. The synthesized ligand H-AHMB and its metal complexes were studied for β-glucuronidase enzyme inhibition. Surprisingly the metal complexes were found more active than the parent ligand and even the standard drug. Zn-AHMB shown IC50 = 17.3 ± 0.68 µM compared to IC50 = 45.75 ± 2.16 µM shown by D-saccharic acid-1,4-lactone used as standard. The better activity by Zn-AHMB implying zinc based metallodrug for the treatment of diseases associated with β-glucuronidase enzyme. The DPPH radical scavenging activities were also studied for all the synthesized compounds. The Co-AHMB complex with IC50 = 98.2 ± 1.78 µM was the only candidate to scavenge the DPPH free radicals.
Collapse
Affiliation(s)
- Farzia
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Sadia Rehman
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan.
| | - Muhammad Ikram
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan.
| | - Adnan Khan
- School of Physics & the Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Rizwan Khan
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Mutasem Omar Sinnokrot
- College of Arts and Sciences, American University of Iraq-Baghdad, Airport Road Baghdad, Baghdad, Iraq
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Kumar B, Devi J, Dubey A, Tufail A, Taxak B. Investigation of antituberculosis, antimicrobial, anti-inflammatory efficacies of newly synthesized transition metal(II) complexes of hydrazone ligands: structural elucidation and theoretical studies. Sci Rep 2023; 13:15906. [PMID: 37741819 PMCID: PMC10517985 DOI: 10.1038/s41598-023-42180-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
Tuberculosis disease is a serious threat to humans and spreading quickly worldwide, therefore, to find a potent drug, the synthesis of hydrazone ligands endowed Co(II), Ni(II), Cu(II), Zn(II) metal complexes were carried out and well characterized by numerous spectral and analytical techniques. The octahedral geometry of the complexes was confirmed by spectral analysis. Further, in vitro antituberculosis efficacy of the compounds (1-10) revealed that complexes (6), (9), (10) have highest potency to control TB malformation with 0.0028 ± 0.0013-0.0063 ± 0.0013 µmol/mL MIC value while Zn(II) complex (10) (0.0028 ± 0.0013 µmol/mL) has nearly four time potent to suppress TB disease in comparison of streptomycin (0.0107 ± 0.0011 µmol/mL). The antimicrobial and anti-inflammatory evaluations revealed that the complex (10) is more active with lowest MIC (0.0057-0.0114 µmol/mL) and IC50 (7.14 ± 0.05 µM) values, correspondingly which are comparable with their respective standard drugs. Furthermore, the theoretical studies such as molecular docking, DFT, MESP and ADMET were employed to authenticate the potency of HL2 hydrazone ligand (2) and its metal complexes (7-10) which revealed that the zinc(II) complex (10) might be utilized as novel drug candidate for tuberculosis dysfunctions. So, the present research gives a new insight for in vivo investigation of the compounds.
Collapse
Affiliation(s)
- Binesh Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Jai Devi
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India
- Department of Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Aisha Tufail
- Department of Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Bharti Taxak
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| |
Collapse
|
3
|
Efficient Epoxidation of Olefins by Silica Supported Dioxidomolybdenum(VI) Coordination Compounds. Catal Letters 2023. [DOI: 10.1007/s10562-023-04300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
4
|
Schiff Bases and Their Metal Complexes: A review on the history, synthesis, and applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Comprehensive catalytic and biological studies on new designed oxo- and dioxo-metal (IV/VI) organic arylhydrazone frameworks. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Adam MSS, Abdel-Rahman OS, Makhlouf MM. Metal ion induced changes in the structure of Schiff base hydrazone chelates and their reactivity effect on catalytic benzyl alcohol oxidation and biological assays. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Green and efficient removal of sulfides using oxo-peroxo tungsten(VI)-MIL-101(Cr) nanoreactor as heterogeneous recyclable catalyst. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Structural and computational analysis, spectroscopic and electrochemical elucidation of a Schiff base. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02571-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Ashfaq M, Nawaz Tahir M, Munawar KS, Behjatmanesh-Ardakani R, Kargar H. Single crystal exploration, supramolecular behaviour, Hirshfeld surface analysis, linear and non-linear theoretical optical properties of Schiff bases derived from Benzene sulfonamides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Lei Y, Yang Q, Bai Y, Tan Y. Synthesis, characterization and X-ray crystal structures of oxidovanadium(V) and dioxidomolybdenum(VI) complexes derived from 2-bromo- N'-(3,5-dichloro-2-hydroxybenzylidene)benzohydrazide. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2095907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yan Lei
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, P.R. China
| | - Qiwen Yang
- Eternal Estat Engineering Design Co., Ltd, Chengdu, P.R. China
| | - Yang Bai
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, P.R. China
| | - Yao Tan
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, P.R. China
| |
Collapse
|
11
|
Comparable catalytic and biological behavior of alternative polar dioxo-molybdenum (VI) Schiff base hydrazone chelates. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Single crystal inspection, Hirshfeld surface investigation and DFT study of a novel derivative of 4-fluoroaniline: 4-((4-fluorophenyl)amino)-4-oxobutanoic acid (BFAOB). JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02432-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Counter Anion Effects on the Formation and Structural Transformations of Mo(vi)-Hydrazone Coordination Assemblies: Salts, Solvates, Co-Crystals, and Neutral Complexes. CRYSTALS 2022. [DOI: 10.3390/cryst12040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Complex salts [1H]X and [1H](XA)0.5·2MeOH, and co-crystals [1H]X·0.5VA (X = chloride or bromide, XA = chloranilate or bromanilate, VA = o-vanillin azine), comprising [MoO2(HL)(MeOH)]+ ([1H]+) cation (H2L = 3-methoxysalicylaldehyde isonicotinoyl hydrazone), were prepared either by solution-based synthesis or by mechanochemical synthesis. Whereas [1H]X salts were extremely sensitive to humidity, their stability could be reinforced by the azine incorporation into the complex network. Solvent-mediated transformations of [1H]X led to methanol co-ligand replacement and afforded complexes [MoO2(HL)X] (2Cl·MeOH, 2Cl, and 2Br·0.5MeCN). However, solvates [1H](XA)0.5·2MeOH, under the same conditions, gave stable complexes [1H](XA)0.5 in which methanol remained coordinated. The differences in the assembly’s behavior were attributed to the packing arrangements, the relative orientation of cations and anions, and interactions between them. Polymorph [MoO2(L)(MeOH)] (1), not attainable by other routes, was the only product when compounds [MoO2(HL)X] were treated with a weak base at low temperatures. Tetranuclear [MoO2(L)]4 and polynuclear [MoO2(L)]n (2) supramolecular isomers, concomitantly crystallized when the reaction was conducted solvothermally. All of the complexes were characterized using X-ray diffraction methods (SCXRD and PXRD), spectroscopic methods (ATR-IR and solution-state and solid-state MAS NMR), and elemental and thermal analyses. The cytotoxicity of the different types of compounds against THP-1 and HepG2 cells was also evaluated.
Collapse
|