1
|
Hagar FF, Abbas SH, Atef E, Abdelhamid D, Abdel-Aziz M. Benzimidazole scaffold as a potent anticancer agent with different mechanisms of action (2016-2023). Mol Divers 2024:10.1007/s11030-024-10907-8. [PMID: 39031290 DOI: 10.1007/s11030-024-10907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/30/2024] [Indexed: 07/22/2024]
Abstract
Benzimidazole scaffolds have potent anticancer activity due to their structure similarity to nucleoside. In addition, benzimidazoles could function as hydrogen donors or acceptors and bind to different drug targets that participate in cancer progression. The literature had many anticancer agents containing benzimidazole cores that gained much interest. Provoked by our endless interest in benzimidazoles as anticancer agents, we summarized the successful trials of the benzimidazole scaffolds in this concern. Moreover, we discuss the substantial opportunities in cancer treatment using benzimidazole-based drugs that may direct medicinal chemists for a compelling future design of more active chemotherapeutic agents with potential clinical applications. The uniqueness of this work lies in the highlighted benzimidazole scaffold hybridization with different molecules and benzimidazole-metal complexes, detailed mechanisms of action, and the IC50 of the developed compounds determined by different laboratories after 2015.
Collapse
Affiliation(s)
- Fatma Fouad Hagar
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Eman Atef
- College of Pharmacy, West Coast University, Los Angeles, CA, USA
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
- Raabe College of Pharmacy, Ohio Northern University, Ohio, USA.
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
2
|
Patel M, Avashthi G, Gacem A, Alqahtani MS, Park HK, Jeon BH. A Review of Approaches to the Metallic and Non-Metallic Synthesis of Benzimidazole (BnZ) and Their Derivatives for Biological Efficacy. Molecules 2023; 28:5490. [PMID: 37513362 PMCID: PMC10384041 DOI: 10.3390/molecules28145490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Heterocyclic compounds are significant lead drug candidates based on their various structure-activity relationships (SAR), and their use in pharmaceutics is constantly developing. Benzimidazole (BnZ) is synthesized by a condensation reaction between benzene and imidazole. The BnZ structure consists of two nitrogen atoms embedded in a five-membered imide ring which is fused with a benzene ring. This review examines the conventional and green synthesis of metallic and non-metallic BnZ and their derivatives, which have several potential SARs, along with a wide range of pharmacological properties, including anti-cancer, anti-inflammatory, anti-microbial, anti-tubercular, and anti-protozoal properties. These compounds have been proven by pharmacological investigations to be efficient against different strains of microbes. Therefore, in this review, the structural variations of BnZ are listed along with various applications, predominantly related to their biological activities.
Collapse
Affiliation(s)
- Muhammad Patel
- School of Sciences, P P Savani University, NH 8, GETCO, Near Biltech, Dhamdod, Kosamba, Surat 394125, Gujarat, India
| | - Gopal Avashthi
- School of Sciences, P P Savani University, NH 8, GETCO, Near Biltech, Dhamdod, Kosamba, Surat 394125, Gujarat, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955 Skikda, Skikda 21000, Algeria;
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
- Bioimaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea;
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Rationally constructed imidazole derivatized Schiff-base based fluorescent sensor for reversible identification of copper ions and its applications in fingerprint imaging. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Msimango N, Welsh A, Prince S, Smith GS. Synthesis and anticancer evaluation of trinuclear N^N quinolinyl-benzimidazole-based PGM complexes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Liu QY, Qi YY, Cai DH, Liu YJ, He L, Le XY. Sparfloxacin - Cu(II) - aromatic heterocyclic complexes: synthesis, characterization and in vitro anticancer evaluation. Dalton Trans 2022; 51:9878-9887. [PMID: 35713093 DOI: 10.1039/d2dt00077f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two new copper(II) complexes of sparfloxacin (sf), [Cu(Hsf)(HPB)(H2O)](ClO4)2 (1) and [Cu(Hsf)(PBT)(H2O)](ClO4)2 (2) (where HPB = 2-(2'-pyridyl)benzimidazole and PBT = 2-(4'-pyridyl) benzothiazole), have been synthesized and characterized by physicochemical and spectroscopic techniques. The oil-water partition coefficient (log P) values of complexes 1 and 2 were 1.47 and 1.71, respectively. By studying the interaction between the complexes and DNA, it was found that the complexes could bind to DNA through an intercalation mode. Moreover, both complexes were evaluated for antitumor activity, revealing that the complexes displayed good inhibitory activity toward the tested cancer cell lines (human lung carcinoma A549 cells, human hepatocellular carcinoma Bel-7402 cells and human esophageal carcinoma Eca-109 cells), but showed relatively low toxicity against normal human hepatic LO2 cells. In particular, the antitumor mechanism of the complexes on Eca-109 cells was investigated by morphological analysis, apoptosis analysis and determination of cell cycle arrest, mitochondrial membrane potential, reactive oxygen species (ROS) levels, and release of cytochrome c and Ca2+. The results demonstrated that the complexes could induce loss of intracellular mitochondrial functions and increase of ROS levels, which led to an increase of Ca2+ levels and the release of cytochrome c into the cytoplasm. In addition, the cell cycle was arrested in the G2/M phase, and western blot analysis showed that the caspase family was activated. These results fully proved that the complexes could induce apoptosis through DNA damage and loss of mitochondrial functions, accompanied by the regulation of endogenous proteins.
Collapse
Affiliation(s)
- Qi-Yan Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China. .,Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yong-Yu Qi
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Dai-Hong Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Yun-Jun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China. .,Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xue-Yi Le
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China. .,Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| |
Collapse
|