1
|
Mormile C, Opriș O, Bellucci S, Lung I, Kacso I, Turza A, La Pietra M, Vacacela Gomez C, Stegarescu A, Soran ML. Enhanced Stability of Dopamine Delivery via Hydrogel with Integrated Graphene. J Funct Biomater 2023; 14:558. [PMID: 38132812 PMCID: PMC10744308 DOI: 10.3390/jfb14120558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The synthesis of graphene-based materials for drug delivery represents an area of active research, and the use of graphene in drug delivery systems is promising due to its unique properties. Thus, in the present work, we discuss the potential of few-layer graphene in a hydrogel system for dopamine release. The hydrogels are frequently used for these systems for their special physico-chemical properties, which can ensure that the drug is effectively released in time. However, the release from such structures is mostly determined by diffusion alone, and to overcome this restriction, the hydrogel can be "improved" with nanoscale fillers like graphene. The release kinetics of the composite obtained were analyzed to better understand how the use of graphene, instead of the more common graphene oxide (GO) and reduced graphene oxide (rGO), affects the characteristics of the system. Thus, the systems developed in this study consist of three main components: biopolymer, graphene, and dopamine. The hydrogels with graphene were prepared by combining two different solutions, one with polyacrylic acid and agarose and one with graphene prepared by the exfoliation method with microwave irradiation. The drug delivery systems were developed by adding dopamine to the obtained hydrogels. After 24 h of release, the presence of dopamine was observed, demonstrating that the system developed can slow down the drug's degradation because of the interactions with the graphene nanoplates and the polymer matrix.
Collapse
Affiliation(s)
- Cristina Mormile
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
- Faculty of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
| | - Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Stefano Bellucci
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Alexandru Turza
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Matteo La Pietra
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
- Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
| | - Cristian Vacacela Gomez
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| |
Collapse
|
2
|
Li C, Zheng C, Huang H, Su H, Huang C. Preparation and plasticizing mechanism of deep eutectic solvent/lignin plasticized chitosan films. Int J Biol Macromol 2023; 240:124473. [PMID: 37072057 DOI: 10.1016/j.ijbiomac.2023.124473] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
Chitosan (CS) is a natural biopolymer from crab shells known for its biocompatibility and biodegradability; however, CS films are extremely rigid, limiting their applications. In this study, CS composite films were prepared based on the selective dissolution of lignin by deep eutectic solvents (DES), and the toughening effect of this DES/lignin on a CS film substrate was examined, along with its corresponding mechanism. The addition of DES/lignin effectively increased the plasticity of the CS film, giving a maximum elongation at break of 62.6 % for the plasticized film, which is 12.5 times that of the CS film. Fourier transform infrared spectroscopy and nuclear magnetic resonance analyses showed that molecules in the DES/lignin complex interacted with CS to break the hydrogen bonds between the CS molecules; simultaneously, each molecule recombined with the CS molecules via hydrogen bonding. Thus, the rigidity of the CS molecular chain was weakened to achieve a plasticized CS film, thereby demonstrating the ability of DES/regenerated lignin to improve the toughness of CS films, which provides a reference for modifying plasticity and could lead to the broader utilization of CS films.
Collapse
Affiliation(s)
- Cuicui Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chaojian Zheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Haohe Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hongxia Su
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chongxing Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| |
Collapse
|
3
|
de Araújo MJG, Barbosa FC, Fook MVL, Silva SML, Leite IF. Influence of Quaternary Ammonium Salt Functionalized Chitosan Additive as Sustainable Filler for High-Density Polyethylene Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7418. [PMID: 36363010 PMCID: PMC9657044 DOI: 10.3390/ma15217418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 06/16/2023]
Abstract
In this study, an antimicrobial packaging material was successfully developed with blends of high-density polyethylene (HDPE) and chitosan (CS) made by melt processing. In the different HDPE/CS composites, the CS content effect (up to 40%), and the addition of quaternary ammonium salt functionalized chitosan (CS-CTAB) as an additive were evaluated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analyses (TG), tensile strength, scanning electron microscopy (SEM) and antimicrobial activity. When analyzing the effect of the additive in the different HDPE/CS composites, it was observed that the compositions with 10 and 20 %wt of chitosan showed better elongation values (~13% and 10%) as well as a higher decomposition temperature at 20% mass loss (T20) varying from (321-332 °C and 302-312 °C), respectively, in relation to the other compositions, regardless of the type of additive used, it acted as an antimicrobial agent, promoting inhibition of microbial growth against the strains gram-positive and gram-negative used in this work, making the different HDPE/CS composites suitable candidates for use in food packaging.
Collapse
Affiliation(s)
- Maria José G. de Araújo
- Graduate Program in Science and Materials Engineering, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Francivandi C. Barbosa
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Marcus Vinícius L. Fook
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Suédina Maria L. Silva
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Itamara F. Leite
- Department of Materials Engineering, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| |
Collapse
|
4
|
Escamilla-García M, García-García MC, Gracida J, Hernández-Hernández HM, Granados-Arvizu JÁ, Di Pierro P, Regalado-González C. Properties and Biodegradability of Films Based on Cellulose and Cellulose Nanocrystals from Corn Cob in Mixture with Chitosan. Int J Mol Sci 2022; 23:ijms231810560. [PMID: 36142471 PMCID: PMC9503148 DOI: 10.3390/ijms231810560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
The increase in consumer demand for more sustainable packaging materials represents an opportunity for biopolymers utilization as an alternative to reduce the environmental impact of plastics. Cellulose (C) and chitosan (CH) are attractive biopolymers for film production due to their high abundance, biodegradability and low toxicity. The objective of this work was to incorporate cellulose nanocrystals (NC) and C extracted from corn cobs in films added with chitosan and to evaluate their properties and biodegradability. The physicochemical (water vapor barrier, moisture content, water solubility and color) and mechanical properties of the films were evaluated. Component interactions using Fourier-transform infrared (FTIR) spectroscopy, surface topography by means of atomic force microscopy (AFM), biodegradability utilizing a fungal mixture and compostability by burying film discs in compost were also determined. The C-NC-CH compared to C-CH films presented a lower moisture content (17.19 ± 1.11% and 20.07 ± 1.01%; w/w, respectively) and water vapor permeability (g m−1 s−1 Pa−1 × 10−12: 1.05 ± 0.15 and 1.57 ± 0.10; w/w, respectively) associated with the NC addition. Significantly high roughness (Rq = 4.90 ± 0.98 nm) was observed in films added to NC, suggesting a decreased homogeneity. The biodegradability test showed larger fungal growth on C-CH films than on CH films (>60% and <10%, respectively) due to the antifungal properties of CH. C extracted from corn cobs resulted in a good option as an alternative packaging material, while the use of NC improved the luminosity and water barrier properties of C-CH films, promoting strong interactions due to hydrogen bonds.
Collapse
Affiliation(s)
- Monserrat Escamilla-García
- Faculty of Chemistry, Autonomous University of Querétaro, Cerro de las Campanas S/N, Las Campanas, Santiago de Querétaro 76010, Mexico
| | - Mónica Citlali García-García
- Faculty of Chemistry, Autonomous University of Querétaro, Cerro de las Campanas S/N, Las Campanas, Santiago de Querétaro 76010, Mexico
| | - Jorge Gracida
- Faculty of Chemistry, Autonomous University of Querétaro, Cerro de las Campanas S/N, Las Campanas, Santiago de Querétaro 76010, Mexico
| | - Hilda María Hernández-Hernández
- CONACYT—Center for Research and Assistance in Technology and Design of the Jalisco State, A.C. (CIATEJ), Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico
| | - José Ángel Granados-Arvizu
- Faculty of Chemistry, Autonomous University of Querétaro, Cerro de las Campanas S/N, Las Campanas, Santiago de Querétaro 76010, Mexico
| | - Próspero Di Pierro
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 80055 Naples, Italy
| | - Carlos Regalado-González
- Faculty of Chemistry, Autonomous University of Querétaro, Cerro de las Campanas S/N, Las Campanas, Santiago de Querétaro 76010, Mexico
- Correspondence: ; Tel.: +52-442-123-8332
| |
Collapse
|
5
|
Ferroferric oxide loaded near-infrared triggered photothermal microneedle patch for controlled drug release. J Colloid Interface Sci 2022; 617:718-729. [DOI: 10.1016/j.jcis.2022.03.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
|
6
|
Palechor-Trochez JJ, Ramírez-Gonzales G, Villada-Castillo HS, Solanilla-Duque JF. A review of trends in the development of bionanocomposites from lignocellulosic and polyacids biomolecules as packing material making alternative: A bibliometric analysis. Int J Biol Macromol 2021; 192:832-868. [PMID: 34634331 DOI: 10.1016/j.ijbiomac.2021.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
Contamination caused by the accumulation of petrochemical-based plastics has reached worrying magnitudes and led to the development of biopolymers as an option to mitigate the problem. This work thus presents a bibliometric analysis of all that concerns the development of such bionanocomposite materials, using ScientoPy and SciMAT software to establish associations between the number of published documents, countries, institutions and most relevant topics. The bionanocomposites topic was found to throw up the biggest number of documents associated (2008) with the different types of raw materials and methods used to obtain nanoparticles and their combination with biopolymeric materials, the result known as a "bionancomposite*". Analysis of the documents related to the application for development of packaging materials from biological molecules, carbohydrate polymers, compounds, conjugates, gels, glucans, hydrogels, membranes, mucilage (source unspecified), mucoadhesives, paper, polymers, polysaccharide, saccharides etc, is also presented, emphasizing mechanical, thermal and barrier properties, which, due to the inclusion of nanoparticles mainly from natural sources of cellulose, show increases of up to 30%. The inclusion of nanoparticles, especially those derived from cellulose sources, generally seeks to increase the properties of bionanocomposite materials. Regarding an increase in mechanical properties, specifically tensile strength, inclusions at percentages not exceeding 10 wt% can register increases that exceed 30% were reported.
Collapse
|
7
|
Effect of sonication time and heat treatment on the structural and physical properties of chitosan/graphene oxide nanocomposite films. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Alvarado N, Abarca RL, Linares-Flores C. Two Fascinating Polysaccharides: Chitosan and Starch. Some Prominent Characterizations for Applying as Eco-Friendly Food Packaging and Pollutant Remover in Aqueous Medium. Progress in Recent Years: A Review. Polymers (Basel) 2021; 13:1737. [PMID: 34073343 PMCID: PMC8198307 DOI: 10.3390/polym13111737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
The call to use biodegradable, eco-friendly materials is urgent. The use of biopolymers as a replacement for the classic petroleum-based materials is increasing. Chitosan and starch have been widely studied with this purpose: to be part of this replacement. The importance of proper physical characterization of these biopolymers is essential for the intended application. This review focuses on characterizations of chitosan and starch, approximately from 2017 to date, in one of their most-used applications: food packaging for chitosan and as an adsorbent agent of pollutants in aqueous medium for starch.
Collapse
Affiliation(s)
- Nancy Alvarado
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel 8900000, Chile
| | - Romina L. Abarca
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile;
| | - Cristian Linares-Flores
- Grupo de Investigación en Energía y Procesos Sustentables, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel 8900000, Chile;
| |
Collapse
|
9
|
Lee W, Choi JH, Lee J, Youn J, Kim W, Jeon G, Lee SW, Song JE, Khang G. Dopamine-Functionalized Gellan Gum Hydrogel as a Candidate Biomaterial for a Retinal Pigment Epithelium Cell Delivery System. ACS APPLIED BIO MATERIALS 2021; 4:1771-1782. [PMID: 35014523 DOI: 10.1021/acsabm.0c01516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, dopamine-functionalized gellan gum (DFG) hydrogel was prepared as a carrier for retinal pigment epithelium (RPE) cell delivery via a carbodiimide reaction. The carboxylic acid of gellan gum (GG) was replaced with catechol in a 21.3% yield, which was confirmed by NMR. Sol fraction and weight loss measurements revealed that dopamine improved degradability in the GG hydrogel. Measurements of the viscosity, injection force, and compressibility also showed that dopamine-functionalized GG hydrogels had more desirable rheological/mechanical properties for improving injectability. These characteristics were confirmed to arise from the GG's helix structure loosened by the dopamine's bulky nature. Moreover, dopamine's hydrophilic characteristics were confirmed to create a more favorable microenvironment for cell growth by promoting swelling capability and cell attachment. This improved biocompatibility became more pronounced when the hydrophilicity of dopamine was combined with a larger specific surface area stemming from the less porous structure of the dopamine-grafted hydrogels. This effect was apparent from the live/dead staining images of the as-prepared hydrogels. Meanwhile, the nonionic cross-linked DFG (DG) hydrogel showed the lowest protein expression in the immunofluorescence staining images obtained after 28 days of culture, supporting that it had the highest degradability and associated cell-releasing ability. That tendency was also observed in the gene expression data acquired by real-time polymerase chain reaction (RT-PCR) analysis. RT-PCR analysis also revealed that the DG hydrogel carrier could upregulate the visual function-related gene of RPE. Overall, the DG hydrogel system demonstrated its feasibility as a carrier of RPE cells and its potential as a means of improving visual function.
Collapse
Affiliation(s)
- Wonchan Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jaewoo Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.,Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jina Youn
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Wooyoup Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Gayeong Jeon
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Sung Won Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.,Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| |
Collapse
|
10
|
Vedaiyan RK, Thyriyalakshmi P. Utilization of biodegradable chitosan-derived sponges as oil retainers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28123-28131. [PMID: 32410191 DOI: 10.1007/s11356-020-09162-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
An innovative approach of chitosan-derived biodegradable sponges with high sorption capacity, excellent recyclability, and inherent oleophilic properties have been developed for the first time to remove the crude oil polluting the environment. Chitosan-nitrogen mustard ionic carbonate-β-cyclodextrin (CH-NMIC-CD), chitosan-nitrogen mustard ionic carbonate (CH-NMIC), and chitosan (CH) sponges with macropores were prepared using tripolylphosphate (TPP) by adopting subsequent lyophilization. Detailed characterization such as FTIR, TGA, XRD, and SEM has been done to confirm the formation, stability, crystalline nature, and morphology of the prepared sponges. The FTIR spectra confirmed the successful incorporation of NMIC in CH-NMIC-CD and CH-NMIC and the presence of β-CD in the (CH-NMIC-CD). It was found from the TGA results that the presence of β-CD makes the sponge CH-NMIC-CD stable. SEM analysis showed the morphology of the sponges found to be highly porous with interconnected macropores. The oil absorption capacity was 12.30 goil/gns higher for the sponge CH-NMIC-CD followed by CH-NMIC and CH. The sponges showed reusability excellently even after consecutive sorption-desorption separation cycles for five times. Moreover, the sponges were completely biodegraded within 25 days. The finding holds a promising future to use CH-NMIC-CD sponges in pollutant entrapment particularly in the removal of crude oil and allied area.
Collapse
Affiliation(s)
- Radha Kuravappullam Vedaiyan
- Bio-products Laboratory, Department of Chemical Engineering, A.C. College of Technology, Anna University, Chennai, Tamilnadu, Chennai-25, India.
| | - Palanivel Thyriyalakshmi
- Bio-products Laboratory, Department of Chemical Engineering, A.C. College of Technology, Anna University, Chennai, Tamilnadu, Chennai-25, India
| |
Collapse
|
11
|
Biological properties of novel polysuccinimide derivatives synthesized via quaternary ammonium grafting. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Effect of oxidation degrees of graphene oxide (GO) on the structure and physical properties of chitosan/GO composite films. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100373] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Oyervides‐Muñoz E, Avérous L, Sosa‐Santillán GDJ, Pollet E, Pérez‐Aguilar NV, Rojas‐Caldera CM, Fuentes‐Avilés JG, García‐Astrain C. EDC‐Mediated Grafting of Quaternary Ammonium Salts onto Chitosan for Antibacterial and Thermal Properties Improvement. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ernesto Oyervides‐Muñoz
- Facultad de Ciencias QuímicasUniversidad Autónoma de Coahuila Blvd. V. Carranza y J. Cárdenas V. SaltilloCoahuila Z. C. 25280 México
| | - Luc Avérous
- BioTeam/ICPEES—ECPMUMR CNRS 7515, Université de Strasbourg 25 rue Becquerel, Cedex 2 Strasbourg 67087 France
| | - Gerardo de Jesús Sosa‐Santillán
- Facultad de Ciencias QuímicasUniversidad Autónoma de Coahuila Blvd. V. Carranza y J. Cárdenas V. SaltilloCoahuila Z. C. 25280 México
| | - Eric Pollet
- BioTeam/ICPEES—ECPMUMR CNRS 7515, Université de Strasbourg 25 rue Becquerel, Cedex 2 Strasbourg 67087 France
| | - Nancy Verónica Pérez‐Aguilar
- Facultad de Ciencias QuímicasUniversidad Autónoma de Coahuila Blvd. V. Carranza y J. Cárdenas V. SaltilloCoahuila Z. C. 25280 México
| | - Claudia Maribel Rojas‐Caldera
- Facultad de Ciencias QuímicasUniversidad Autónoma de Coahuila Blvd. V. Carranza y J. Cárdenas V. SaltilloCoahuila Z. C. 25280 México
| | - José Guadalupe Fuentes‐Avilés
- Facultad de Ciencias QuímicasUniversidad Autónoma de Coahuila Blvd. V. Carranza y J. Cárdenas V. SaltilloCoahuila Z. C. 25280 México
| | - Clara García‐Astrain
- BioTeam/ICPEES—ECPMUMR CNRS 7515, Université de Strasbourg 25 rue Becquerel, Cedex 2 Strasbourg 67087 France
| |
Collapse
|
14
|
Shang X, Jiang H, Wang Q, Liu P, Xie F. Cellulose-starch Hybrid Films Plasticized by Aqueous ZnCl₂ Solution. Int J Mol Sci 2019; 20:E474. [PMID: 30678311 PMCID: PMC6386833 DOI: 10.3390/ijms20030474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/13/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Starch and cellulose are two typical natural polymers from plants that have similar chemical structures. The blending of these two biopolymers for materials development is an interesting topic, although how their molecular interactions could influence the conformation and properties of the resultant materials has not been studied extensively. Herein, the rheological properties of cellulose/starch/ZnCl₂ solutions were studied, and the structures and properties of cellulose-starch hybrid films were characterized. The rheological study shows that compared with starch (containing mostly amylose), cellulose contributed more to the solution's viscosity and has a stronger shear-thinning behavior. A comparison between the experimental and calculated zero-shear-rate viscosities indicates that compact complexes (interfacial interactions) formed between cellulose and starch with ≤50 wt % cellulose content, whereas a loose structure (phase separation) existed with ≥70 wt % cellulose content. For starch-rich hybrid films prepared by compression molding, less than 7 wt % of cellulose was found to improve the mechanical properties despite the reduced crystallinity of the starch; for cellulose-rich hybrid films, a higher content of starch reduced the material properties, although the chemical interactions were not apparently influenced. It is concluded that the mechanical properties of biopolymer films were mainly affected by the structural conformation, as indicated by the rheological results.
Collapse
Affiliation(s)
- Xiaoqin Shang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
- Fine Chemical Research Institute, Guangzhou University, Guangzhou 510006, China.
| | - Huihua Jiang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
- Fine Chemical Research Institute, Guangzhou University, Guangzhou 510006, China.
| | - Qingling Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
- Fine Chemical Research Institute, Guangzhou University, Guangzhou 510006, China.
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
- Fine Chemical Research Institute, Guangzhou University, Guangzhou 510006, China.
| | - Fengwei Xie
- Institute of Advanced Study, University of Warwick, Coventry CV4 7HS, UK.
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, UK.
- School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
15
|
de Araújo MJG, Barbosa RC, Fook MVL, Canedo EL, Silva SML, Medeiros ES, Leite IF. HDPE/Chitosan Blends Modified with Organobentonite Synthesized with Quaternary Ammonium Salt Impregnated Chitosan. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E291. [PMID: 29438286 PMCID: PMC5848988 DOI: 10.3390/ma11020291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/20/2017] [Accepted: 12/25/2017] [Indexed: 12/02/2022]
Abstract
In this study, blends based on a high density polyethylene (HDPE) and chitosan (CS) were successfully prepared by melt processing, in a laboratory internal mixer. The CS biopolymer content effect (up to maximum of 40%), and, the addition of bentonite clay modified with quaternary ammonium salt (CTAB) impregnated chitosan as a compatibilizing agent, on the properties of the blends was analyzed by Fourier transform-infrared spectroscopy (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analyses (TG), tensile strength, and scanning electron microscopy (SEM). The use of clay modified with CTAB impregnated chitosan, employing a method developed here, improved the compatibility of HDPE with chitosan, and therefore the thermal and some of the mechanical properties were enhanced, making HDPE/chitosan blends suitable candidates for food packaging. It was possible to obtain products of synthetic polymer, HDPE, with natural polymer, chitosan, using a method very used industrially, with acceptable and more friendly properties to the environment, when compared to conventional synthetic polymers. In addition, due to the possibility of impregnated chitosan with quaternary ammonium salt exhibit higher antibacterial activity than neat chitosan, the HDPE/chitosan/organobentonite blends may be potentially applied in food containers to favor the preservation of food for a longer time in comparison to conventional materials.
Collapse
Affiliation(s)
- Maria José G de Araújo
- Graduate Program in Science and Materials Engineering, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil.
| | - Rossemberg C Barbosa
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| | - Marcus Vinícius L Fook
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| | - Eduardo L Canedo
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| | - Suédina M L Silva
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| | - Eliton S Medeiros
- Department of Materials Engineering, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil.
| | - Itamara F Leite
- Department of Materials Engineering, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil.
| |
Collapse
|
16
|
Ren Y, Zhao X, Liang X, Ma PX, Guo B. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease. Int J Biol Macromol 2017; 105:1079-1087. [DOI: 10.1016/j.ijbiomac.2017.07.130] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022]
|
17
|
Oyervides-Muñoz E, Pollet E, Ulrich G, de Jesús Sosa-Santillán G, Avérous L. Original method for synthesis of chitosan-based antimicrobial agent by quaternary ammonium grafting. Carbohydr Polym 2017; 157:1922-1932. [DOI: 10.1016/j.carbpol.2016.11.081] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/10/2023]
|
18
|
de F. Silva M, Lopes PS, da Silva CF, Yoshida CMP. Active packaging material based on buriti oil- Mauritia flexuosaL.f. (Arecaceae) incorporated into chitosan films. J Appl Polym Sci 2015. [DOI: 10.1002/app.43210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mariangela de F. Silva
- Mato Grosso Do Sul Federal Institute of Education, Science and Technology; Coxim - MS Brazil
| | - Patrícia S. Lopes
- Department of Exact Science and Earth; Federal University of São Paulo; Diadema - SP Brazil
| | - Classius F. da Silva
- Department of Exact Science and Earth; Federal University of São Paulo; Diadema - SP Brazil
| | | |
Collapse
|
19
|
Ruka DR, Sangwan P, Garvey CJ, Simon GP, Dean KM. Biodegradability of Poly-3-hydroxybutyrate/Bacterial Cellulose Composites under Aerobic Conditions, Measured via Evolution of Carbon Dioxide and Spectroscopic and Diffraction Methods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9979-9986. [PMID: 25763925 DOI: 10.1021/es5044485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Poly-3-hydroxybutyrate (PHB) and bacterial cellulose (BC) are both natural polymeric materials that have the potential to replace traditional, nonrenewable polymers. In particular, the nanofibrillar form of bacterial cellulose makes it an effective reinforcement for PHB. Neat PHB, bacterial cellulose, and a composite of PHB/BC produced with 10 wt % cellulose were composted under accelerated aerobic test conditions, with biodegradability measured by the carbon dioxide evolution method, in conjunction with spectroscopic and diffraction methods to assess crystallinity changes during the biodegradation process. The PHB/BC composite biodegraded at a greater rate and extent than that of PHB alone, reaching 80% degradation after 30 days, whereas PHB did not reach this level of degradation until close to 50 days of composting. The relative crystallinity of PHB and PHB in the PHB/BC composite was found to increase in the initial weeks of degradation, with degradation occurring primarily in the amorphous region of the material and some recrystallization of the amorphous PHB. Small angle X-ray scattering indicates that the change in PHB crystallinity is accompanied by a change in morphology of semicrystalline lamellae. The increased rate of biodegradability suggests that these materials could be applicable to single-use applications and could rapidly biodegrade in compost on disposal.
Collapse
Affiliation(s)
- Dianne R Ruka
- ‡Department of Materials Engineering, Monash University, Clayton, Victoria 3800 Australia
| | | | - Christopher J Garvey
- §Australian Nuclear Science and Technology Organisation, Kirrawee, New South Wales 2232, Australia
| | - George P Simon
- ‡Department of Materials Engineering, Monash University, Clayton, Victoria 3800 Australia
| | - Katherine M Dean
- ‡Department of Materials Engineering, Monash University, Clayton, Victoria 3800 Australia
- ∥D3 Consulting Group Pty Ltd., Fitzroy North, Victoria 3068, Australia
| |
Collapse
|