1
|
Shao M, Shi Y, Liu J, Xue B, Niu M. Cooperative Effect of Ni-Decorated Monolayer WS 2, NiO, and AC on Improving the Flame Retardancy and Mechanical Property of Polypropylene Blends. Polymers (Basel) 2023; 15:2791. [PMID: 37447438 DOI: 10.3390/polym15132791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Improving the residual char of polypropylene (PP) is difficult due to the preferential complete combustion. Here, we designed a combination catalyst that not only provides physical barrier effects, but also dramatically promotes catalytic charring activity. We successfully synthesized WS2 monolayer sheets decorated with isolated Ni atoms that bond covalently to sulfur vacancies on the basal planes via thiourea. Subsequently, PP blends composed of 8 wt.% Ni-decorated WS2, NiO, and activated carbon (AC) were obtained (ENi-SWS2-AC-PP). Combining the physical barrier effects of WS2 monolayer sheets with the excellent catalytic carbonization ability of the ENi-SWS2-AC combination catalyst, the PP blends showed a remarkable improvement in flame retardancy, with the yield of residual char reaching as high as 41.6 wt.%. According to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations, it was revealed that the microstructure of residual char contained a large number of carbon nanotubes. The production of a large amount of residual char not only reduced the release of pyrolytic products, but also formed a thermal shield preventing oxygen and heat transport. Compared to pure PP, the peak heat release rate (pHRR) and total heat release rate (THR) of ENi-SWS2-AC-PP were reduced by 46.32% and 26.03%, respectively. Furthermore, benefiting from the highly dispersed WS2, the tensile strength and Young's modulus of ENi-SWS2-AC-PP showed similar values to pure PP, without sacrificing the toughness.
Collapse
Affiliation(s)
- Mingqiang Shao
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yiran Shi
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiangtao Liu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Baoxia Xue
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Mei Niu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
2
|
Shao M, Li Y, Shi Y, Liu J, Xue B, Niu M. Synergistic Effect of Activated Carbon, NiO and Al 2O 3 on Improving the Thermal Stability and Flame Retardancy of Polypropylene Composites. Polymers (Basel) 2023; 15:polym15092135. [PMID: 37177281 PMCID: PMC10180888 DOI: 10.3390/polym15092135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
It is difficult to enhance the char yields of polypropylene (PP) due to the preferential complete combustion. Successful formation of abundant char layer structure of PP upon flammability was obtained due to the synergistic effect of NiO, Al2O3 and activated carbon (AC). From characterization of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), it was revealed that the microstructure of residual char contained large amount of carbon nanotubes. Compared to the modification of AC, NiO and Al2O3 alone, the combination of AC, NiO and Al2O3 dramatically promotes the charring ability of PP. In the case of AC and NiO, NiO plays a role of dehydrogenation, resulting in the degradation product, while AC mainly acts as carbonization promoter. The addition of Al2O3 results in higher dispersion and smaller particle size of NiO, leading to greater exposure of active sites of NiO and higher dehydrogenation and carbonization activity. Compared to the neat PP, the decomposition temperature of the PP modified by combined AC, NiO and Al2O3 was increased by 90 ℃. The yield of residual char of AC-5Ni-Al-PP reached as high as 44.6%. From the cone calorimeter test, the heat release rate per unit area (HRR) and total heat release per unit area (THR) of PP composite follows the order AC-5Ni-Al-PP < AC-10Ni-Al-PP < AC-Ni-PP < AC-15Ni-Al-PP < AC-1Ni-Al-PP. Compared to the neat PP, the peak of HRR declined by 73.8%, 72.7%, 71.3%, 67.6% and 62.5%, respectively.
Collapse
Affiliation(s)
- Mingqiang Shao
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030600, China
| | - Ying Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yiran Shi
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030600, China
| | - Jiangtao Liu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030600, China
| | - Baoxia Xue
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030600, China
| | - Mei Niu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030600, China
| |
Collapse
|
3
|
Cao X, Huang J, Tang Z, Tong Y, Yuen ACY, Zhao W, Huang Q, Li RKY, Wu W. Self-assembled biobased chitosan hybrid carrying N/P/B elements for polylactide with enhanced fire safety and mechanical properties. Int J Biol Macromol 2023; 236:123947. [PMID: 36898460 DOI: 10.1016/j.ijbiomac.2023.123947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023]
Abstract
The inherent shortcomings such as flammability, brittleness, and low crystallinity limit the broad applications of poly(lactic acid) (PLA). To improve the fire resistance and mechanical properties of PLA, a chitosan-based core-shell flame retardant additive (APBA@PA@CS) was prepared for PLA via the self-assembly of interionic interactions among chitosan (CS), phytic acid (PA), and 3-aminophenyl boronic acid (APBA). The peak heat release rate (pHRR) and total heat release rate (THR) of PLA composite containing 3 wt% APBA@PA@CS decreased from 460.1 kW/m2 and 75.8 MJ/m2 to 419.0 kW/m2 and 53.1 MJ/m2, respectively. The presence of APBA@PA@CS contributed to the formation of a high-quality char layer rich in phosphorus and boron in the condensed phase and released non-flammable gases in the gas phase to hinder the exchange of heat and O2, thereby having a synergistic flame retardant effect. Meanwhile, the tensile strength, elongation at break, impact strength, and crystallinity of PLA/APBA@PA@CS were increased by 3.7 %, 17.4 %, 5.3 %, and 55.2 %, respectively. This study provides a feasible route to construct a chitosan-based N/B/P tri-element hybrid to improve the fire safety performance and mechanical properties of PLA biocomposites.
Collapse
Affiliation(s)
- Xianwu Cao
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jingshu Huang
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | | | - Yizhang Tong
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Anthony Chun Yin Yuen
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Wanjing Zhao
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qilong Huang
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Robert Kwok Yiu Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Wu
- Jihua Laboraory, Foshan 528200, China..
| |
Collapse
|
4
|
Construction of a binary architecture of flower-like nickel phyllosilicate@zinc sulfide towards the robust, wear-resistant and thermal-stable epoxy nanocomposites. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Liu BW, Zhao HB, Wang YZ. Advanced Flame-Retardant Methods for Polymeric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107905. [PMID: 34837231 DOI: 10.1002/adma.202107905] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Most organic polymeric materials have high flammability, for which the large amounts of smoke, toxic gases, heat, and melt drips produced during their burning cause immeasurable damages to human life and property every year. Despite some desirable results having been achieved by conventional flame-retardant methods, their application is encountering more and more difficulties with the ever-increasing high flame-retardant requirements such as high flame-retardant efficiency, great persistence, low release of heat, smoke, and toxic gases, and more importantly not deteriorating or even enhancing the overall properties of polymers. Under such condition, some advanced flame-retardant methods have been developed in the past years based on "all-in-one" intumescence, nanotechnology, in situ reinforcement, intrinsic char formation, plasma treatment, biomimetic coatings, etc., which have provided potential solutions to the dilemma of conventional flame-retardant methods. This review briefly outlines the development, application, and problems of conventional flame-retardant methods, including bulk-additive, bulk-copolymerization, and surface treatment, and focuses on the raise, development, and potential application of advanced flame-retardant methods. The future development of flame-retardant methods is further discussed.
Collapse
Affiliation(s)
- Bo-Wen Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
6
|
Kaseem M, Ur Rehman Z, Hossain S, Singh AK, Dikici B. A Review on Synthesis, Properties, and Applications of Polylactic Acid/Silica Composites. Polymers (Basel) 2021; 13:polym13183036. [PMID: 34577936 PMCID: PMC8467350 DOI: 10.3390/polym13183036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Polylactic acid (PLA)/silica composites as multifunctional high-performance materials have been extensively examined in the past few years by virtue of their outstanding properties relative to neat PLA. The fabrication methods, such as melt-mixing, sol–gel, and in situ polymerization, as well as the surface functionalization of silica, used to improve the dispersion of silica in the polymer matrix are outlined. The rheological, thermal, mechanical, and biodegradation properties of PLA/silica nanocomposites are highlighted. The potential applications arising from the addition of silica nanoparticles into the PLA matrix are also described. Finally, we believe that a better understanding of the role of silica additive with current improvement strategies in the dispersion of this additive in the polymer matrix is the key for successful utilization of PLA/silica nanocomposites and to maximize their fit with industrial applications needs.
Collapse
Affiliation(s)
- Mosab Kaseem
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (M.K.); (B.D.)
| | - Zeeshan Ur Rehman
- School of Materials Science & Engineering, Changwon National University, Changwon 641-773, Korea;
| | - Shakhawat Hossain
- Department of Industrial and Production Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Ashish Kumar Singh
- Department of Applied Sciences, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India;
| | - Burak Dikici
- Department of Metallurgical and Materials Engineering, Ataturk University, Erzurum 25240, Turkey
- Correspondence: (M.K.); (B.D.)
| |
Collapse
|
7
|
Peng H, Yang Q. Investigation on the effect of supported synergistic catalyst with intumescent flame retardant in polypropylene. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this paper, cerium nitrate supported silica was prepared as a new type of catalytic synergist to improve the flame retardancy in polypropylene. When 1% of Ce(NO3)2 supported SiO2 was added, the vertical combustion performance of UL-94 of polypropylene composites was improved to V-0, the limiting oxygen index (LOI) was increased to 33.5. From the thermogravimetric analysis (TGA), the residual carbon of C and D was increased by about 6% at high temperature compared with B. When adding supported catalyst, the heat release rate (HRR) and total heat release (THR) were significantly reduced according to the microscale combustion calorimetry (MCC), the HRR of sample E with 2% synergist was the lowest. The combustion behaviors of intumescent flame retardant sample B and sample D were analyzed by cone calorimeter test (CCT), the HRR of sample D with supported synergist was significantly reduced, and the PHRR decreased from 323 kW/m2 to 264 kW/m2. The morphologies of the residue chars after vertical combustion of polypropylene composites observed by scanning electron microscopy (SEM) gave positive evidence that the supported synergist could catalyze the decomposition of intumescent flame retardants into carbon, which was the main reason for improving the flame retardancy of materials.
Collapse
Affiliation(s)
- Hongmei Peng
- College of Polymer Science and Engineering, The State Key Laboratory for Polymer Materials Engineering, Sichuan University , Chengdu 610000 , Sichuan , China
- Chengdu Textile College , Chengdu , China
| | - Qi Yang
- College of Polymer Science and Engineering, The State Key Laboratory for Polymer Materials Engineering, Sichuan University , Chengdu 610000 , Sichuan , China
| |
Collapse
|
8
|
Huang C, Chen X, Yuan B, Zhang H, Shang S, Zhao Q, Dai H, He S, Zhang Y, Niu Y. Insight into suppression performance and mechanisms of ultrafine powders on wood dust deflagration under equivalent concentration. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122584. [PMID: 32299041 DOI: 10.1016/j.jhazmat.2020.122584] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Flame propagation characteristics of wood dust deflagration and suppression mechanism of ultrafine powders are investigated systematically. The deflagration reaction intensity of wood dust increases firstly and then decreases with the increase in dust cloud concentration. This is due to factors such as oxygen supply, positive feedback among flame characteristic parameters. Thus, there is an equivalent dust concentration for greatest deflagration intensity. Nano-sized ultrafine zirconium hydroxide (Zr(OH)4) and silicon dioxide (SiO2) powder are introduced to suppress wood dust deflagration at the equivalent concentration. It is found that Zr(OH)4 has a suppression effect of endothermic decomposition to generate zirconia (ZrO2), dilution of oxygen and absorption of free radicals; while SiO2 exerts suppression effect due to its high melting point and heat absorption. The suppression performance of Zr(OH)4 is better than that of SiO2. This is because that Zr(OH)4 and ZrO2 have a catalytic carbonization effect. It can not only improve thermal stability of wood particles by catalyzing production of high-temperature resistant residuals, but also promote the formation of catalytic sites to reduce crystallite size of carbon layer on wood particles surface, weakening heat and mass transfer between particles.
Collapse
Affiliation(s)
- Chuyuan Huang
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Xianfeng Chen
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China.
| | - Bihe Yuan
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China.
| | - Hongming Zhang
- School of Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Sheng Shang
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Qi Zhao
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Huaming Dai
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Song He
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Ying Zhang
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Niu
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
9
|
|
10
|
Sepiolite hybridized commercial fillers, and their effects on curing process, mechanical properties, thermal stability, and flammability of ethylene propylene diene monomer rubber composites. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-018-0643-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Zaini NAM, Ismail H, Rusli A. Tensile, thermal, flammability and morphological properties of sepiolite filled ethylene propylene diene monomer (EDPM) rubber composites. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-018-0609-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Zhou K, Tang G, Gao R, Jiang S. In situ growth of 0D silica nanospheres on 2D molybdenum disulfide nanosheets: Towards reducing fire hazards of epoxy resin. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1078-1089. [PMID: 30216967 DOI: 10.1016/j.jhazmat.2017.11.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 05/24/2023]
Abstract
This report described a facile process for the preparation of 2D/0D MoS2-SiO2 hybrids using a simple in situ growth method, with the purpose of promoting the dispersion of MoS2 in polymer matrices and improving the properties of polymer materials. FTIR, XPS, TGA and TEM measurements were performed to characterize the structure and morphology of the synthesized hybrids which were then introduced into epoxy to reduce flammability. The hybrids dispersed well in the epoxy matrix. No obvious agglomerations were observed. In comparison with those of neat epoxy, the incorporation of a low loading of MoS2-SiO2 hybrids resulted in significant decrements in heat release rate, total heat release and volume of toxic effluents released during combustion, which indicated that the fire hazards of epoxy composites were strongly reduced. The good dispersion, labyrinth barrier effect and the catalytic effect of MoS2-SiO2 hybrids on char formation may contribute to the observed decrease in the flammability of epoxy resin.
Collapse
Affiliation(s)
- Keqing Zhou
- Faculty of Engineering, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan, Hubei 430074, PR China; Key Laboratory of Polymer Processing Engineering, South China University of Technology, Ministry of Education, Guangzhou 510640, Guangdong, PR China.
| | - Gang Tang
- School of Architecture and Civil Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan, Anhui 243002, PR China
| | - Rui Gao
- Faculty of Engineering, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan, Hubei 430074, PR China
| | - Shudong Jiang
- Department of Fire Protection Engineering, Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, The Western Park of the Hi-Tech Industrial Development Zone, Chengdu, Sichuan 611756, PR China
| |
Collapse
|
13
|
Yin X, Yu Z, Zhang G, Yang Z, Xu B. Effect of convergent-divergent flow on thermal and crystallization properties of PP/MWCNTs nanocomposites. J Appl Polym Sci 2015. [DOI: 10.1002/app.42330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaochun Yin
- Key Laboratory of Polymer Processing Engineering of Ministry of Education; South China University of Technology; Guangzhou China 510640
| | - Zhongwei Yu
- Key Laboratory of Polymer Processing Engineering of Ministry of Education; South China University of Technology; Guangzhou China 510640
| | - Guizhen Zhang
- Key Laboratory of Polymer Processing Engineering of Ministry of Education; South China University of Technology; Guangzhou China 510640
| | - Zhitao Yang
- Key Laboratory of Polymer Processing Engineering of Ministry of Education; South China University of Technology; Guangzhou China 510640
| | - Baiping Xu
- Department of Light Industry and Chemical; Guangdong Industry Technology College; Guangzhou China 510300
| |
Collapse
|
14
|
Gong J, Niu R, Wen X, Yang H, Liu J, Chen X, Sun ZY, Mijowska E, Tang T. Synergistic effect of carbon fibers and carbon nanotubes on improving thermal stability and flame retardancy of polypropylene: a combination of a physical network and chemical crosslinking. RSC Adv 2015. [DOI: 10.1039/c4ra11591k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CFs and CNTs showed a synergistic effect on significantly improving the thermal stability and flame retardancy of PP.
Collapse
Affiliation(s)
- Jiang Gong
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Ran Niu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xin Wen
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Hongfan Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Jie Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xuecheng Chen
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Ewa Mijowska
- Institute of Chemical and Environment Engineering
- West Pomeranian University of Technology
- 70-322 Szczecin
- Poland
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
15
|
Gong J, Niu R, Liu J, Chen X, Wen X, Mijowska E, Sun Z, Tang T. Simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene by the combination of graphene with carbon black. RSC Adv 2014. [DOI: 10.1039/c4ra04623d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel combination of GNS with CB was demonstrated to improve thermal stability, flame retardancy and mechanical properties of LLDPE.
Collapse
Affiliation(s)
- Jiang Gong
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
- University of Chinese Academy of Sciences
| | - Ran Niu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
- University of Chinese Academy of Sciences
| | - Jie Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
| | - Xuecheng Chen
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
- Institute of Chemical and Environment Engineering
| | - Xin Wen
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
| | - Ewa Mijowska
- Institute of Chemical and Environment Engineering
- West Pomeranian University of Technology
- 70-322 Szczecin, Poland
| | - Zhaoyan Sun
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
| |
Collapse
|