1
|
Won S, Jung M, Bang J, Cho SY, Choi IG, Kwak HW. Lignin-based flame retardant via sequential purification-nanoparticle formation, and NP coupled chemical modification. Int J Biol Macromol 2024; 281:136499. [PMID: 39414190 DOI: 10.1016/j.ijbiomac.2024.136499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
A nonhalogenated and ecofriendly flame-retarding material was developed using lignin, one of the main components of lignocellulosic biopolymers. Lignin was purified, dissolved, and formulated as nanoparticles and implemented after processing in an ecofriendly water-based γ-valerolactone (GVL) system at different concentrations. Nitrogen‑phosphorus sequential chemical modification was performed using polyethyleneimine (PEI) and phytic acid (PA), The char residue increased by ≥10 % compared with lignin nanoparticles (LNPs). A 10 wt% lignin-based flame retardant (L-FR) based on the weight of cotton fabric was introduced using a simple dipping method. Compared to existing cotton fabrics, the combustion time of L-FR treated cotton fabrics was reduced by 6.8 s. The maximum flame height was reduced by 5.4 cm, and the charcoal residue increased by 25 %. The flame-retarding mechanism of L-FR involved low-temperature dehydration, thermal decomposition of cellulose by the phosphorus component of PA and generation of expansive gas by the nitrogen component of PEI. These results showed that lignin-based raw material processing, polymer processing, and chemical modification were biomass-based, suggesting that lignin could be converted into an ecofriendly flame retardant, highlighting the feasibility of high-value-added lignin.
Collapse
Affiliation(s)
- Sungwook Won
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minjung Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Se Youn Cho
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Wanju-gun 55324, Republic of Korea
| | - In-Gyu Choi
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Ye Z, Yu Z, Zeng Y, Deng P, Peng B, Kuang Y, Wu K, Qiao D, Jiang F. Superior flame retardancy, thermal insulation, and mechanical properties of konjac glucomannan/sodium alginate biomass aerogel modified by supramolecular assembled phytic acid-melamine nanosheet. Int J Biol Macromol 2024; 282:137026. [PMID: 39486713 DOI: 10.1016/j.ijbiomac.2024.137026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
The development of biomass-based eco-friendly aerogel with superior flame retardancy, thermal insulation, and mechanical properties at the same time has long been a tough challenge. In this study, the polysaccharide-based aerogels composed of konjac glucomannan, sodium alginate, and supramolecular assembled melamine phytate (MPA) nanosheets were successfully fabricated through the freeze-drying method. Owing to the excellent charcoal-forming and non-combustible gas-releasing effect of MPA nanosheets, the thermal stability and flame retardancy properties of the aerogels were both significantly enhanced, with the highest limiting oxygen index value reaching 42.4 %. Meanwhile, appropriate MPA embedded in the pore walls greatly enhanced the compressive strength of the aerogel (364.9 kPa) and can withstand >7100 times its weight without visual deformation. Moreover, the thermal insulation effect was quite attractive with a thermal conductivity of 0.0385-0.0420 W/mK. The present work provided an environmentally friendly method for the fabrication of multifunctional sustainable fire-resistant aerogels, which showed promising prospects in the future.
Collapse
Affiliation(s)
- Zijian Ye
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Zihan Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yang Zeng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Pengpeng Deng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Bo Peng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ying Kuang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Kao Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Fatang Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Architecture and Built Environment, Faculty of Engineering, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
3
|
Ma C, Su M, Zhu Z. Composite Flame Retardants Based on Conjugated Microporous Polymer Hollow Nanospheres with Excellent Flame Retardancy. ACS OMEGA 2024; 9:10478-10487. [PMID: 38463341 PMCID: PMC10918670 DOI: 10.1021/acsomega.3c08597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 03/12/2024]
Abstract
The development of polymer materials with excellent flame retardancy has been paid increasing attention for their valuable applications in saving energy in modern architecture. Herein, conjugated microporous polymers hollow nanospheres (CMPs-HNS) were prepared by Sonogashira-Hagihara cross-coupling reaction with 1,3,5-triacetylenebenzene, 3-amino-2,6-dibromopyridine, and 2,4,6-tribromoaniline as building blocks using SiO2 nanoparticles as hard templates. To enhance the flame-retardant performance of the CMPs-HNS, antimony pentoxide solution (Sb2O5) and bisphenol A-bis (diphenyl phosphate) (BDP) were coated onto the as-prepared CMP-HNS (CMPs-HNS-BSb) by a simple immersion method. The peak heat release (pHRR) from microscale combustion colorimeter (MCC) of CMPs-HNS-BSb was 76.5 and 73.05 W g-1, respectively. By introducing CMPs-HNS-BSb into the epoxy resin (EP) matrix, the CMP2-HNS-BSb/EP (0.5) composites show that the pHRR values were 809.3 and 645.2 kW m-2, reduced by 21% as measured by conical calorimetry (CC), and total heat release (THR) reduced by 29.7%, going from 101 to 70.8 MJ/m2 when compared to the pure sample. Besides, total smoke production (TSP) reduced about 23.7%. The hollow structure can enhance the thermal insulation performance. As measured, the thermal conductivity of CMP1-HNS-BSb and CMP2-HNS-BSb is 0.044 and 0.048 W m-1 K-1. Based on the advantages of simple manufacture, superior thermal insulation, and flame retardancy, our CMPs-HNS-BSb/EP composites may find useful applications in various aspects such as building energy saving in future development.
Collapse
Affiliation(s)
- Chonghua Ma
- College of Petrochemical
Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Min Su
- College of Petrochemical
Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Zhaoqi Zhu
- College of Petrochemical
Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| |
Collapse
|
4
|
Yuan R, He X, Zhu C, Tao L. Recent Developments in Functional Polymers via the Kabachnik-Fields Reaction: The State of the Art. Molecules 2024; 29:727. [PMID: 38338468 PMCID: PMC10856324 DOI: 10.3390/molecules29030727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Recently, multicomponent reactions (MCRs) have attracted much attention in polymer synthesis. As one of the most well-known MCRs, the Kabachnik-Fields (KF) reaction has been widely used in the development of new functional polymers. The KF reaction can efficiently introduce functional groups into polymer structures; thus, polymers prepared via the KF reaction have unique α-aminophosphonates and show important bioactivity, metal chelating abilities, and flame-retardant properties. In this mini-review, we mainly summarize the latest advances in the KF reaction to synthesize functional polymers for the preparation of heavy metal adsorbents, multifunctional hydrogels, flame retardants, and bioimaging probes. We also discuss some emerging applications of functional polymers prepared by means of the KF reaction. Finally, we put forward our perspectives on the further development of the KF reaction in polymer chemistry.
Collapse
Affiliation(s)
- Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| | - Chongyu Zhu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China;
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| |
Collapse
|
5
|
Huang Z, Li F, Huang M, Meng W, Rao W, Lei Y, Yu C. Preparation of Naphthalene-Based Flame Retardant for High Fire Safety and Smoke Suppression of Epoxy Resin. Molecules 2023; 28:molecules28114287. [PMID: 37298763 DOI: 10.3390/molecules28114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
One of the current challenges in the development of flame retardants is the preparation of an environmentally friendly multi-element synergistic flame retardant to improve the flame retardancy, mechanical performance, and thermal performance of composites. This study synthesized an organic flame retardant (APH) using (3-aminopropyl) triethoxysilane (KH-550), 1,4-phthalaadehyde, 1,5-diaminonaphthalene, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) as raw materials, through the Kabachnik-Fields reaction. Adding APH to epoxy resin (EP) composites could greatly improve their flame retardancy. For instance, UL-94 with 4 wt% APH/EP reached the V-0 rating and had an LOI as high as 31.2%. Additionally, the peak heat release rate (PHRR), average heat release rate (AvHRR), total heat release (THR), and total smoke produced (TSP) of 4% APH/EP were 34.1%, 31.8%, 15.2%, and 38.4% lower than EP, respectively. The addition of APH improved the mechanical performance and thermal performance of the composites. After adding 1% APH, the impact strength increased by 15.0%, which was attributed to the good compatibility between APH and EP. The TG and DSC analyses revealed that the APH/EP composites that incorporated rigid naphthalene ring groups had higher glass transition temperatures (Tg) and a higher amount of char residue (C700). The pyrolysis products of APH/EP were systematically investigated, and the results revealed that flame retardancy of APH was realized by the condensed-phase mechanism. APH has good compatibility with EP, excellent thermal performance, enhanced mechanical performance and rational flame retardancy, and the combustion products of the as-prepared composites complied with the green and environmental protection standards which are also broadly applied in industry.
Collapse
Affiliation(s)
- Ziqin Huang
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Fangli Li
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Mingyan Huang
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Wenqiao Meng
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Wenhui Rao
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Yuan Lei
- China Antimony Corporation, Nanning 530001, China
| | - Chuanbai Yu
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| |
Collapse
|
6
|
Yao T, Yang R, Sun C, Lin Y, Liu R, Yang H, Chen J, Gu X. Pyrolysis Kinetics of Lignin-Based Flame Retardants Containing MOFs Structure for Epoxy Resins. Molecules 2023; 28:molecules28062699. [PMID: 36985674 PMCID: PMC10051363 DOI: 10.3390/molecules28062699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
This study describes the preparation of a lignin-based expandable flame retardant (Lignin-N-DOPO) using grafting melamine and covering 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) using the Mannich reaction. Then, through in situ growth, a metal-organic framework (MOF) HKUST-1 (e.g., Cu3(BTC)2, BTC = benzene-1,3,5-tricarboxylate)/lignin-based expandable flame retardant (F-lignin@HKUST-1) was created. Before that, lignin epoxy resin containing phosphorus (P) and nitrogen (N) components had been created by combining epoxy resin (EP) with F-lignin@HKUST-1. Thermogravimetric analysis was used to examine the thermal characteristics of epoxy resin (EP) composite. The findings indicate that the thermal stability of EP is significantly affected by the presence of F-lignin@HKUST-1. Last but not least, the activation energy (E) of EP/15% F-lignin@HKUST-1 was examined using four different techniques, including the Kissinger-SY iteration method, the Ozawa-SY iteration method, the Lee-Beck approximation-iteration method, and the Gorbatchev approximation-iteration method. It was discovered that the activation energy was significantly higher than that of lignin. Higher activation energy suggests that F-lignin@HKUST-1 pyrolysis requires more energy from the environment, which will be significant about the application of lignin-based flame retardants.
Collapse
|
7
|
Ääritalo T, Tirri T, Aubert M, Wilen CE. Synthesis of Silylamine and Siloxyamine Compounds: A Novel Approach to Flame Retardancy of Polypropylene and Epoxy resins. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
8
|
Wu Y, Yang T, Cheng Y, Huang T, Yu B, Wu Q, Zhu M, Yu H. Flame Retardancy and Mechanical Properties of Melt-Spun PA66 Fibers Prepared by End-Group Blocking Technology. Polymers (Basel) 2023; 15:polym15051183. [PMID: 36904424 PMCID: PMC10007604 DOI: 10.3390/polym15051183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Preparing flame-retardant polyamide 66 (PA66) fibers through melt spinning remains one of the biggest challenges nowadays. In this work, dipentaerythritol (Di-PE), an eco-friendly flame retardant, was blended into PA66 to prepare PA66/Di-PE composites and fibers. It was confirmed that Di-PE could significantly improve the flame-retardant properties of PA66 by blocking the terminal carboxyl groups, which was conducive to the formation of a continuous and compact char layer and the reduced production of combustible gas. The combustion results of the composites showed that the limiting oxygen index (LOI) increased from 23.5% to 29.4%, and underwriter laboratories 94 (UL-94) passed the V-0 grade. The peak of heat release rate (PHRR), total heat release (THR), and total smoke production (TSP) decreased by 47.3%, 47.8%, and 44.8%, respectively, for the PA66/6 wt% Di-PE composite compared to those recorded for pure PA66. More importantly, the PA66/Di-PE composites possessed excellent spinnability. The prepared fibers still had good mechanical properties (tensile strength: 5.7 ± 0.2 cN/dtex), while maintaining good flame-retardant properties (LOI: 28.6%). This study provides an outstanding industrial production strategy for fabricating flame-retardant PA66 plastics and fibers.
Collapse
Affiliation(s)
| | | | | | - Tao Huang
- Correspondence: (T.H.); (B.Y.); (Q.W.)
| | - Bin Yu
- Correspondence: (T.H.); (B.Y.); (Q.W.)
| | - Qilin Wu
- Correspondence: (T.H.); (B.Y.); (Q.W.)
| | | | | |
Collapse
|
9
|
Rao W, Tao J, Yang F, Wu T, Yu C, Zhao HB. Growth of copper organophosphate nanosheets on graphene oxide to improve fire safety and mechanical strength of epoxy resins. CHEMOSPHERE 2023; 311:137047. [PMID: 36336017 DOI: 10.1016/j.chemosphere.2022.137047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/04/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
With the high integration of electronic products in our daily life, high-performance epoxy resins (EP) with excellent flame retardancy, smoke suppression, and mechanical strength are highly desired for applications. In this study, copper organophosphate nanosheets were evenly grown on the surface of graphene oxide (GO) via a self-assembly process based on coordination bonding and electrostatic interactions. The resultant nanohybrid endowed EP with satisfactory flame retardant effect and improved mechanical properties. Incorporating functionalized nanosheets of merely 1 wt% loading, the impact strength of the EP nanocomposites improved by 147% when compared to 1% EP-GO. Additionally, the nanosheets inhibited the smoke and heat release of EP, and the limiting oxygen value of EP-EGOPC reached ∼29%. The mechanism analysis verified that the existence of organophosphate and copper-containing components associated with the physical barrier of GO promoted the hybrid aromatization of the char layer, thereby improving the fire safety of epoxy matrix. This research offers a new interfacial method for designing functional nanosheets with good interface compatibility and high flame-retardant efficiency in polymers.
Collapse
Affiliation(s)
- Wenhui Rao
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin, 541004, China
| | - Jie Tao
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin, 541004, China
| | - Feihao Yang
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin, 541004, China
| | - Tao Wu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin, 541004, China
| | - Chuanbai Yu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin, 541004, China.
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
10
|
Liang F, Xu Y, Chen S, Zhu Y, Huang Y, Fei B, Guo W. Fabrication of Highly Efficient Flame-Retardant and Fluorine-Free Superhydrophobic Cotton Fabric by Constructing Multielement-Containing POSS@ZIF-67@PDMS Micro-Nano Hierarchical Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56027-56045. [PMID: 36490381 DOI: 10.1021/acsami.2c14709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The facile construction of a cotton fabric with excellent flame-retardant and water-proof abilities is of great interest for multitask requirements. Herein, a nonfluorine, highly efficient, and cost-effective multifunctional cotton fabric was fabricated via sequentially depositing a novel multielement-containing flame-retardant phosphorylated octa-aminopropyl POSS (PPA-POSS) and a fluorine-free superhydrophobic coating of zeolitic imidazolate framework-67@poly(dimethylsiloxane) (ZIF-67@PDMS). Influences of the PPA-POSS concentration and ZIF-67@PDMS formula on the fire retardancy and water repellency of treated cotton were systematically investigated. The optimized flame-retardant sample CTF3 with 6.2 wt % PPA-POSS exhibited a high limiting oxygen index (LOI) of 34% and self-extinguishing ability. CTF3 was further modified with a properly formulated superhydrophobic ZIF-67@PDMS coating. CTF3-PHB2 displayed enhanced thermal stability, flame retardancy, and outstanding superhydrophobicity. Thermogravimetric analysis (TGA) results demonstrated that CTF3-PHB2 presented a high char residue of 35.9%, which was 220.5% higher than that of the control cotton (11.2%). More importantly, the heat release rate (HRR), total heat release (THR), and average effective heat of combustion (av-EHC) values of CTF3-PHB2 were significantly reduced by 51.4, 56.2, and 68.4%, respectively, compared with those of a pure cotton fabric. Moreover, CTF3-PHB2 showed superhydrophobicity (WCA > 159.3°) and good mechanical abrasion resistance. In addition, CTF3-PHB2 also showed protective abilities such as antifouling, self-cleaning, and water/oil separation performances even for strong acid/alkali mixtures. Thereby, it is believed that the PPA-POSS@ZIF-67@PDMS coating is promising for application in multifunctional textile materials.
Collapse
Affiliation(s)
- Fuwei Liang
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu214122, China
| | - Yang Xu
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu214122, China
| | - Shun Chen
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu214122, China
| | - Yalin Zhu
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu214122, China
| | - Yaxun Huang
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu214122, China
| | - Bin Fei
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong999077, China
| | - Wenwen Guo
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu214122, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong999077, China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui230026, China
| |
Collapse
|
11
|
Wang Y, Piao J, Ren J, Feng T, Wang Y, Liu W, Dong H, Chen W, Jiao C, Chen X. Simultaneously improving the hydrophobic property and flame retardancy of aluminum hypophosphite using rare earth based coupling agent for epoxy composites. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yaofei Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Junxiu Piao
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Jinyong Ren
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Tingting Feng
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Yaxuan Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Wei Liu
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Huixin Dong
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Wenjiao Chen
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Chuanmei Jiao
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| | - Xilei Chen
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao Shandong People's Republic of China
| |
Collapse
|
12
|
Gullifa G, Barone L, Papa E, Materazzi S, Risoluti R. On-Line Thermally Induced Evolved Gas Analysis: An Update-Part 2: EGA-FTIR. Molecules 2022; 27:8926. [PMID: 36558054 PMCID: PMC9788466 DOI: 10.3390/molecules27248926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The on-line thermally induced evolved gas analysis (OLTI-EGA) is widely applied in many different fields. Aimed to update the applications, our group has systematically collected and published examples of EGA characterizations. Following the recently published review on EGA-MS applications, this second part reviews the latest applications of Evolved Gas Analysis performed by on-line coupling heating devices to infrared spectrometers (EGA-FTIR). The selected 2019, 2020, 2021 and early 2022 references are collected and briefly described in this review; these are useful to help researchers to easily find applications that are sometimes difficult to locate.
Collapse
Affiliation(s)
| | | | | | - Stefano Materazzi
- Department of Chemistry, “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Roberta Risoluti
- Department of Chemistry, “Sapienza” Università di Roma, 00185 Rome, Italy
| |
Collapse
|
13
|
Wang X, Wang J, Zhao W, Liu J, Long S, Wang D. Effects of flame retardants containing
POC
and
PC
structures on the flame retardant properties of epoxy resin. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoyang Wang
- School of Chemical Engineering and Technology Hainan University Haikou Hainan People's Republic of China
| | - Jingming Wang
- School of Chemical Engineering and Technology Hainan University Haikou Hainan People's Republic of China
| | - Wei Zhao
- School of Chemical Engineering and Technology Hainan University Haikou Hainan People's Republic of China
| | - Jia Liu
- School of Chemical Engineering and Technology Hainan University Haikou Hainan People's Republic of China
| | - Shijie Long
- School of Chemical Engineering and Technology Hainan University Haikou Hainan People's Republic of China
| | - Dun Wang
- School of Chemical Engineering and Technology Hainan University Haikou Hainan People's Republic of China
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou Hainan People's Republic of China
| |
Collapse
|
14
|
Wu Q, Xiao L, Chen J, Peng Z. Facile fabrication of high‐performance epoxy systems with superior mechanical properties, flame retardancy, and smoke suppression. J Appl Polym Sci 2022. [DOI: 10.1002/app.53480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Qilei Wu
- Science and Technology on Electromagnetic Compatibility Laboratory China Ship Development and Design Center Wuhan China
| | - Long Xiao
- Science and Technology on Electromagnetic Compatibility Laboratory China Ship Development and Design Center Wuhan China
| | - Junfeng Chen
- Science and Technology on Electromagnetic Compatibility Laboratory China Ship Development and Design Center Wuhan China
| | - Zhihe Peng
- Science and Technology on Electromagnetic Compatibility Laboratory China Ship Development and Design Center Wuhan China
| |
Collapse
|
15
|
Synthesis of a phosphorus-based epoxy reactive flame retardant analog to diglycidyl ether of bisphenol A (DGEBA) and its behavior as a matrix in a carbon fiber composite. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Preparation of BMI monomers containing phosphate and phosphonate structure to enhance the flame retardant and toughness of BMI. J Colloid Interface Sci 2022; 625:903-914. [DOI: 10.1016/j.jcis.2022.06.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
|
17
|
A phosphaphenanthrene-based derivative as multifunctional flame retardant for epoxy resins. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Varganici CD, Rosu L, Bifulco A, Rosu D, Mustata F, Gaan S. Recent advances in flame retardant epoxy systems from reactive DOPO–based phosphorus additives. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Huang Z, Drigo N, Wang Z, Zhao R, Lehner S, Jovic M, Gaan S. Fire safe epoxy composite with low dielectric properties from a combination of fluoro-phosphonium salt, melamine and copper hydroxystannate. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Li C, Wang B, Zhou L, Hou X, Su S. Effects of lignin-based flame retardants on flame-retardancy and insulation performances of epoxy resin composites. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-022-01052-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
A novel polyaromatic ring phosphor-nitrogen imidazole derivative endowing epoxy resin with remarkable flame retardancy and mechanical properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03161-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Suo Y, Gao W, Chen Z, Yu Y, Chen T, Li C, Zhang Q, Jiang J. Surface modification of cellulose nanocrystal and its applications in flame retardant epoxy resin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yifan Suo
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Wei Gao
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Zhongwei Chen
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Yuan Yu
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Tingting Chen
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Changxin Li
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Qingwu Zhang
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Juncheng Jiang
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control Nanjing Tech University Nanjing China
| |
Collapse
|
23
|
Synthesis of magnolol-derived bisphosphate for fabrication of bismaleimide resins with intrinsic anti-flammability and smoke suppression. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Wang H, Yuan J, Wang Y, Ma Y, Lyu S, Zhu Z. A nitrogen heterocyclic/phosphaphenanthrene derivative as a reactive additive for simultaneous improvement of flame retardancy, mechanical and dielectric properties of epoxy resins. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Wang ZH, Zhang AN, Liu BW, Wang XL, Zhao HB, Wang YZ. Durable flame-retardant cotton fabrics with tannic acid complexed by various metal ions. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Zhi M, Yang X, Fan R, Yue S, Zheng L, Liu Q, He Y. A comprehensive review of reactive flame-retardant epoxy resin: fundamentals, recent developments, and perspectives. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Facile Preparation of a Novel Vanillin-Containing DOPO Derivate as a Flame Retardant for Epoxy Resins. MATERIALS 2022; 15:ma15093155. [PMID: 35591489 PMCID: PMC9099695 DOI: 10.3390/ma15093155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 12/10/2022]
Abstract
A novel bio-based flame retardant designated AVD has been synthesized in a one-pot process via the reaction of 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide (DOPO), vanillin (VN), and 2- aminobenzothiazole (ABT). The structure of AVD was confirmed using Fourier transform infrared spectroscopy (FTIR), and 1H and 31P nuclear magnetic resonance spectroscopy (NMR). The curing process, thermal stability, flame retardancy, and mechanical properties of the epoxy resin (EP) modified with AVD have been investigated comprehensively. The extent of curing, the glass transition temperature and the crosslinking density of the blend decreased gradually with increasing AVD content. The thermogravimetric analysis (TGA) was used to demonstrate that the presence of AVD reduced the thermal decomposition rate for EP and enhanced the formation of carbon residue during resin decomposition. A blend of 7.5 wt% AVD (0.52% phosphorus) displays a UL-94V-0 rating and a LOI of 31.1%. Reduction of the peak heat release rate, total heat release rate and total smoke production was 41.26%, 35.70%, and 24.03%, respectively, as compared to the values for pure EP. The improved flame retardancy of the flame retardant epoxy (FREP) may be attributed to the formation of a compact and continuous protective char layer into the condensed phase as well as the release of non-combustible gases and phosphorus-containing radicals from the decomposition of AVD in the gas phase. AVD is a new and efficient biobased flame retardant for epoxy with great prospects for industrial applications.
Collapse
|
28
|
Yang Y, Xiao D. Fabrication of two multifunctional phosphorus–nitrogen flame retardants toward improving the fire safety of epoxy resin. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
To improve the fire safety of epoxy resin (EP), two novel phosphorus–nitrogen flame retardants, which named as diphenyl allylphosphoramidate (DPCA) and N-allyl-P, P-diphenylphosphinic amide (DCA), were synthesized by acyl chloride reaction and introduced into EP for fabricating EP composites. The combustion tests showed that incorporation of 5 wt% DPCA or 5 wt% DCA into EP led to the exceptional limited oxygen index (LOI) value (27.1% or 31.6%). Besides, the peak of heat release rate of EP-5 wt% DPCA and EP-5 wt% DCA was reduced by 40.69% and 36.69%, respectively, compared to pure EP. The enhanced fire resistance of EP was ascribed to the trapping effect of fillers in the gas phase and the charring effect in the condensed phase. Furthermore, ultraviolet-visible spectra revealed that both EP-5 wt% DPCA and EP-5 wt% DCA have considerable transparency. This study is expected to broaden the application of EP in the industrial area.
Collapse
Affiliation(s)
- Yunxia Yang
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology , Fuzhou , Fujian , 350108 , China
| | - Dan Xiao
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology , Fuzhou , Fujian , 350108 , China
| |
Collapse
|
29
|
Construction of hetero-structured nanohybrid relying on reactive phosphazene towards flame retardation and mechanical enhancement of epoxy resins. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Phytic acid doped polyaniline-coupled g-C3N4 nanosheets for synergizing with APP promoting fire safety and waterproof performance of epoxy composites. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Lu X, Gu X. Fabrication of a bi-hydroxyl-bi-DOPO compound with excellent quenching and charring capacities for lignin-based epoxy resin. Int J Biol Macromol 2022; 205:539-552. [PMID: 35217079 DOI: 10.1016/j.ijbiomac.2022.02.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 11/27/2022]
Abstract
In this study, lignin-based epoxy resins (EP) were fabricated using lignin, phenol and glyoxal as crosslinking reagents. For improving the flame retardancy, a bi-DOPO compound with bi-hydroxyl structure was successfully synthesized, containing excellent quenching and charring capacities. Good pyrolysis behaviors of as-synthesized flame retardant resulted in significant quenching effect via structure decomposition to release PO and PO2 free radicals for capturing reactive H and OH radicals produced from epoxy combustion. With addition of 0.18 wt% phosphorus, epoxy composite (10% LPG-ER-4) passed V-0 rating with high limited oxygen index (LOI) value of 35.2%. Cone calorimeter tests showed that heat release (including heat release rate (HRR) and total heat release (THR)) from combustion was reduced with assistance of flame retardant. Char residue analyses illustrated that bi-hydroxyl structure in DOPO-based flame retardant benefited the formation of char layer with higher compactness and integrity to serve as a protective shell of interior epoxy matrix. Furthermore, exterior pore size of char residue was narrowed or blocked to avoid the release of heat and volatiles generated from combustion. This study provided a feasible method to improve flame retardancy of lignin-based EP and proposed flame-retardant mechanism both in gaseous and solid phases.
Collapse
Affiliation(s)
- Xinyu Lu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| | - Xiaoli Gu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China.
| |
Collapse
|
32
|
Qiao H, Su L, Liu C, Zhang H, Chen M. From laboratory to industrialization: Eco‐friendly flame retardant endowing epoxy resin with excellent flame retardancy, transparency, and mechanical properties. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huawei Qiao
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Liping Su
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Canpei Liu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Huagui Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Mingfeng Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| |
Collapse
|
33
|
Mei F, Tian C, Li H, Huang S, Yu Q, Han Y, Wang Z. A novel nitrogen-containing DPO derivative as flame retardant and co-curing agent for epoxy resin. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2012472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fengce Mei
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Chong Tian
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Hubo Li
- Qingdao Park Management Service Center, Qingdao, China
| | - Shan Huang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Qing Yu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Yuxi Han
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Zhongwei Wang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| |
Collapse
|
34
|
Wang J, Zhou H, Pan Z, Wu H, Wang D. Synthesis of low phosphorus flame retardant containing benzimidazole and hydroxyl and its application in reducing combustion smoke for epoxy resin. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junjie Wang
- College of Chemistry and Environmental Technology Wuhan Institute of Technology Wuhan China
| | - Hong Zhou
- College of Chemistry and Environmental Technology Wuhan Institute of Technology Wuhan China
| | - Zhiquan Pan
- College of Chemistry and Environmental Technology Wuhan Institute of Technology Wuhan China
| | - Hanjun Wu
- College of Chemistry and Environmental Technology Wuhan Institute of Technology Wuhan China
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
| |
Collapse
|
35
|
Mingfeng C, Huawei Q, Shanshan L, Wei Z, Jiashui L, Canpei L, Huagui Z. Novel Si/N/P‐Containing Flame Retardant for Epoxy Resin with Excellent Comprehensive Performance. ChemistrySelect 2021. [DOI: 10.1002/slct.202103753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chen Mingfeng
- Fujian Key Laboratory of Polymer Materials Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 China
| | - Qiao Huawei
- Fujian Key Laboratory of Polymer Materials Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 China
| | - Li Shanshan
- Fujian Key Laboratory of Polymer Materials Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 China
| | - Zhong Wei
- Research and Development Department Xiamen Waexim Rubber Co., LTD. Xiamen 361023 China
| | - Lan Jiashui
- Research and Development Department Xiamen Waexim Rubber Co., LTD. Xiamen 361023 China
| | - Liu Canpei
- Fujian Key Laboratory of Polymer Materials Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 China
| | - Zhang Huagui
- Fujian Key Laboratory of Polymer Materials Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 China
| |
Collapse
|
36
|
Zhu K, Jiang Z, Xu X, Zhang Y, Zhu M, Wang J, Ren A. Preparation and thermal cross-linking mechanism of co-polyester fiber with flame retardancy and anti-dripping by in situ polymerization. RSC Adv 2021; 12:168-180. [PMID: 35424466 PMCID: PMC8978624 DOI: 10.1039/d1ra07410e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
Extensive research has been conducted on polyester flame retardants and anti-droplet modifications in recent years. The conventional methods used to improve the effectiveness of the anti-droplet modifications usually involve improving the melt fluidity and the combustion char formation through reactive cross-linking. However, these methods, while reducing the droplets, may produce more smoke. This study proposes a combustion cross-linking method which avoids the droplet and flame retardancy synergistic modification problem. Based on the flame retardancy of polyester, anti-droplet properties were realized using a collaborative cross – linking structure formed by a phosphorus – containing flame – retardant group and acid silicon solvent to achieve a flame retardant and anti-droplets result. The results show that the phosphorus–silicon copolyester presents an enhancement effect for flame retardancy, confirmed by obvious reductions in the peak value of heat release rate (78.4%) and total heat release (44.2%). Meanwhile, the total smoke release and smoke product rate of phosphorus–silicon copolyester are decreased by 45.1% and 41.5%, respectively. And the phosphorus–silicon copolyester has a high LOI value of 34.8 ± 0.1% and UL-94 is V-0 rating with superior anti-dripping performance. Flame retardancy index (FRI) of the copolyesters containing phosphorus–silica are up to 4.3093 (good flame retardancy). Nonisothermal differential scanning calorimetry (DSC) was performed for qualitative analysis of network formation by the aid of Cure Index (CI) dimensionless criterion. It was observed that the acidic silica led to Excellent cure situation. The TG-DSC, XPS, and FTIR results validate the thermal cross-linking ability of the copolymer due to the synergistic cross-linking effect between the self-cross-linking characteristic of the catalysed acidic silica sol containing the phosphorus flame retardant. The SEM-EDX and Raman results further verify the effectiveness of the condensed-phase flame-retardant mechanism. Phosphorus–silicon copolyester has good spinnability, flame retardancy and anti-droplets properties. Which provides a simple method for preparing polyester by using this combustion synergistic crosslinking effect to achieve flame retardant and anti-dripping modification of copolymers. Scheme of proposed thermal cross-linking mechanism.![]()
Collapse
Affiliation(s)
- Keyu Zhu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Sciences Shanghai 201620 PR China
| | - Zhenlin Jiang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Sciences Shanghai 201620 PR China .,Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology Changsha 410073 PR China
| | - Xiaotong Xu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Sciences Shanghai 201620 PR China
| | - Yun Zhang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Sciences Shanghai 201620 PR China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Sciences Shanghai 201620 PR China
| | - Jianghua Wang
- Jiangsu Guowanggaoke Fiber Co., Ltd Suzhou 215228 PR China
| | - Alex Ren
- Shanghai Rongteng Packing Service Co., Ltd Shanghai 201620 PR China
| |
Collapse
|
37
|
Effect of phosphorus-modified nickel phyllosilicates on the thermal stability, flame retardancy and mechanical property of epoxy composites. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02843-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
|
39
|
Zhang W, Chen Z, Yu Y, Chen T, Zhang Q, Li C, Chen Z, Gao W, Jiang J. Synthesis of phosphorus and silicon co‐doped graphitic carbon nitride and its combination with ammonium polyphosphate to enhance the flame retardancy of epoxy resin. J Appl Polym Sci 2021. [DOI: 10.1002/app.51614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wenyi Zhang
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Zhongwei Chen
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Yuan Yu
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control Nanjing Tech University Nanjing China
| | - Tingting Chen
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Qingwu Zhang
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Changxin Li
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Zhiquan Chen
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Wei Gao
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Juncheng Jiang
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control Nanjing Tech University Nanjing China
| |
Collapse
|
40
|
Wang L, Liu M, Yang F, Wu T, Rao W, Liu Y, Wei C, Yu C. Comparative Study on the Structure, Mechanical, Thermal, and Tribological Properties of PF Composites Reinforced by Different Kinds of Mesoporous Silicas. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Pang F, Liu X, Zheng X, Lin Y, Jian R. An intrinsic flame retardant epoxy resin with high transparency and strengthened mechanical property. J Appl Polym Sci 2021. [DOI: 10.1002/app.51230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fu‐Qu Pang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Xin‐Duo Liu
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Xian‐Ting Zheng
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Yu‐Cai Lin
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Rong‐Kun Jian
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
- Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering Fujian Normal University Fuzhou China
| |
Collapse
|
42
|
Zhao P, Zeng W, Yang Z, Yang Y, Li J, Shi J, Wen N, Li H, Guan J, Lei Z, Chen D. Preparation of a novel functionalized magnesium-based curing agent as an intrinsic flame retardant for epoxy resin. CHEMOSPHERE 2021; 273:129658. [PMID: 33529798 DOI: 10.1016/j.chemosphere.2021.129658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
In this study, a novel organic-inorganic hybrid flame retardant 10-(1,4-dicarboxylic acid magnesium salt)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DMMH) was synthesized via neutralization and addition reaction of maleic acid, magnesium hydroxide and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), and subsequently used in an intrinsic flame retardant epoxy resin. The chemical structure and morphology of DMMH were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Further, the prepared DMMH was combined with ammonium polyphosphate (APP) to form an intumescent flame retardant system. The thermal stability and flame retardance were evaluated by thermogravimetric analysis (TG), UL-94 vertical burning test, limiting oxygen index (LOI) and cone calorimetry. It was observed that the addition of 1.7% DMMH and 5.3% APP led EP-7 to acquire UL-94 V-0 rating, with the limiting oxygen index of 26.0%. As compared with pure EP, the peak heat release rate, total heat release, smoke production rate and total smoke production of the sample was noted to decrease by 54.5%, 35.1%, 43.6% and 38.1%, respectively. In addition, the introduction of DMMH did not negatively impact the mechanical properties of the epoxy resin.
Collapse
Affiliation(s)
- Pufang Zhao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China
| | - Wei Zeng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China
| | - Zhiwang Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China
| | - Yaoxia Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China
| | - Ju Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China
| | - Jianping Shi
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China
| | - Na Wen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China
| | - Hongtao Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China
| | - Jie Guan
- Lanzhou Fire and Rescue Division, Lanzhou, Gansu, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning Road, Lanzhou, Gansu, 730070, China.
| | - Denglong Chen
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, 362801, China
| |
Collapse
|
43
|
|
44
|
Chen Y, Li J, Lai X, Li H, Zeng X. N
‐alkoxyamine‐containing macromolecular intumescent flame‐retardant‐decorated ZrP nanosheet and their synergism in flame‐retarding polypropylene. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yishen Chen
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| | - Jiaxin Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| |
Collapse
|
45
|
|
46
|
Xu YJ, Qu LY, Liu Y, Zhu P. An overview of alginates as flame-retardant materials: Pyrolysis behaviors, flame retardancy, and applications. Carbohydr Polym 2021; 260:117827. [DOI: 10.1016/j.carbpol.2021.117827] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
|
47
|
Fang M, Qian J, Wang X, Chen Z, Guo R, Shi Y. Synthesis of a Novel Flame Retardant Containing Phosphorus, Nitrogen, and Silicon and Its Application in Epoxy Resin. ACS OMEGA 2021; 6:7094-7105. [PMID: 33748623 PMCID: PMC7970578 DOI: 10.1021/acsomega.1c00076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
A novel flame retardant (TDA) containing phosphorus, nitrogen, and silicon was synthesized successfully via a controllable ring-opening addition reaction between 1,3,5-triglycidyl isocyanurate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and 3-aminopropyltriethoxysilane, and TDA was then blended with diglycidyl ether of bisphenol A to prepare flame-retardant epoxy resins (EPs). The chemical structure and components of TDA were confirmed by Fourier transform infrared (FTIR) spectra, 31P nuclear magnetic resonance, and X-ray photoelectron spectroscopy. Thermogravimetric analysis results indicated that after the introduction of TDA, cured EP maintained good thermal stability with a minimum initial decomposition temperature of 337.6 °C, and the char yields of a EP/TDA-5 sample significantly increased by 76.2% compared with that of the neat EP thermoset. Additionally, with the addition of 25.0 wt % TDA (1.05 wt % phosphorus loading), the limited oxygen index value of cured EP increased from 22.5% of pure EP to 33.4%, and vertical burning V-0 rating was easily achieved. Meanwhile, after the incorporation of TDA, the total heat release and total smoke production of the EP/TDA-5 sample obviously reduced by 28.9 and 27.7% in the cone calorimeter test, respectively. Flame-retardant performances and flame-retardant mechanisms were further analyzed by scanning electron microscopy, FTIR, energy-dispersive spectrometry, and pyrolysis gas chromatography/mass spectrometry. The results reveal that the synergistic effect of phosphorus, nitrogen, and silicon plays an excellent flame-retardant role in both gaseous and condensed phases. In addition, the mechanical and dynamic mechanical properties of cured EP thermosets are well maintained rather than destroyed. All the results demonstrate that TDA endows epoxy resin with excellent flame retardancy and possesses great promise in the industrial field.
Collapse
Affiliation(s)
- Minghui Fang
- Key
Laboratory of Specially Functional Polymeric Materials and Related
Technology of the Ministry of Education, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Jun Qian
- Key
Laboratory of Specially Functional Polymeric Materials and Related
Technology of the Ministry of Education, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Xuezhi Wang
- Key
Laboratory of Specially Functional Polymeric Materials and Related
Technology of the Ministry of Education, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Zhong Chen
- Key
Laboratory of Specially Functional Polymeric Materials and Related
Technology of the Ministry of Education, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Ruilin Guo
- Key
Laboratory of Specially Functional Polymeric Materials and Related
Technology of the Ministry of Education, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Yifeng Shi
- Hangzhou
Rongfang Pressure Sensitive New Material Co., Ltd, Shanghai 200237, China
| |
Collapse
|
48
|
Dong X, Zhou Q, Li L, Li Y, Zhu M. Flame retardance enhancement of polyacrylonitrile with dimethyl vinylphosphonate. J Appl Polym Sci 2021. [DOI: 10.1002/app.50718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xue Dong
- R&D Division for Synthetic Polymers SINOPEC Shanghai Research Institute of Petrochemical Technology Shanghai China
| | - Qin‐Zhuo Zhou
- R&D Division for Synthetic Polymers SINOPEC Shanghai Research Institute of Petrochemical Technology Shanghai China
| | - Lei Li
- R&D Division for Synthetic Polymers SINOPEC Shanghai Research Institute of Petrochemical Technology Shanghai China
| | - Ying‐Cheng Li
- R&D Division for Synthetic Polymers SINOPEC Shanghai Research Institute of Petrochemical Technology Shanghai China
| | - Mei‐Fang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| |
Collapse
|
49
|
A phosphaphenanthrene-containing vanillin derivative as co-curing agent for flame-retardant and antibacterial epoxy thermoset. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Bo G, Xu X, Tian X, Wu J, He X, Xu L, Yan Y. Synthesis and characterization of flame-retardant rigid polyurethane foams derived from gutter oil biodiesel. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|