1
|
Lee JE, Lee D, Lee J, Park YK. Current methods for plastic waste recycling: Challenges and opportunities. CHEMOSPHERE 2025; 370:143978. [PMID: 39701312 DOI: 10.1016/j.chemosphere.2024.143978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The practical use of plastics has rapidly increased owing to their superior physicochemical properties. Despite their excellent physicochemical properties, the short lifespan of plastics has inevitably led to a substantial generation of plastic waste. As such, strategic mitigation of the hazardous potential of plastic waste has been regarded as significant in waste management. In particular, establishing a reliable recycling platform for packaging plastic waste is of great importance considering its massive generation. To identify a strategic means of abating the hazardous potential of plastic waste, legislative enactment for their legal management must also be implemented. This review emphasizes the mechanical and chemical recycling methods for polyethylene, polypropylene, polyethylene terephthalate, polystyrene, and polyvinyl chloride, and discusses a technical platform for converting plastic waste into value-added chemical products. This study also offers a perspective on sustainable valorization as a practical alternative to circular resources.
Collapse
Affiliation(s)
- Jung Eun Lee
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Doyeon Lee
- Department of Civil and Environmental Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
2
|
Thbayh DK, Mentes D, Boros ZR, Palusiak M, Farkas L, Viskolcz B, Fiser B. α-Tocopherol and Trolox as Effective Natural Additives for Polyurethane Foams: A DFT and Experimental Study. Molecules 2024; 29:6037. [PMID: 39770125 PMCID: PMC11678614 DOI: 10.3390/molecules29246037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
In this work, α-tocopherol and trolox were studied as compounds that have high biological activity. α-Tocopherol is considered a food additive because the refining process of vegetable oils causes the depletion of this vitamin, and thus, its inclusion is required to keep them from oxidizing. Computational tools have determined the antioxidant activity of these additives. The geometries of the studied molecules were optimized using two density functional methods, including M05-2X and M06-2X, in combination with the 6-311++G(2d,2p) basis set. The results indicated that when comparing the antioxidant activity of α-tocopherol and trolox, they were very similar to each other, but α-tocopherol had an antioxidant activity slightly higher, around 1.2 kJ/mol, than trolox. Thus, these additives can be used as polymer additives to protect materials from free-radical-induced stress. To test their applicability in polymeric formulations, flexible polyurethane foams were prepared with varying α-tocopherol ratios and NCO indices (1.0 and 1.1). Increasing the α-tocopherol content reduced the compressive force and altered the mechanical properties, likely due to its presence in the foam structure. This additive not only fine-tuned the mechanical properties but also provided antioxidant effects, enabling multiple enhancements in polymeric products with a single additive.
Collapse
Affiliation(s)
- Dalal K. Thbayh
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (D.K.T.); (B.V.)
- Polymer Research Center, University of Basrah, Basrah 61004, Iraq
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary;
| | - Dóra Mentes
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary;
| | - Zsanett R. Boros
- Wanhua-BorsodChem Zrt, Bolyai tér 1., 3700 Kazincbarcika, Hungary; (Z.R.B.); (L.F.)
| | - Marcin Palusiak
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland;
| | - László Farkas
- Wanhua-BorsodChem Zrt, Bolyai tér 1., 3700 Kazincbarcika, Hungary; (Z.R.B.); (L.F.)
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (D.K.T.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary;
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (D.K.T.); (B.V.)
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland;
- Department of Biology and Chemistry, Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Ukraine
| |
Collapse
|
3
|
Sun H, Liu X, Huang Y, Leng X. Incorporating functional colorants in whey protein isolate-cellulose nanocrystal-blended edible films for pork freshness prediction. Int J Biol Macromol 2024; 283:137276. [PMID: 39510473 DOI: 10.1016/j.ijbiomac.2024.137276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/07/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
In this study, intelligent pH- and ammonia-sensing edible films are designed based on whey protein isolate (WPI)-cellulose nanocrystal-based biopolymers by incorporating different functional colorants (curcumin, phycocyanin, and modified lycopene), alone and paired, to promote food freshness and monitoring efforts. Incorporating the colorants endowed the films were endowed with pH- and ammonia-responsiveness and enhanced UV-blocking, antioxidant, and antibacterial capabilities. Phycocyanin induces WPI unfolding, increasing the accessibility of curcumin; hence, combining curcumin with phycocyanin promotes the sensitivity of films to pH and NH3 compared with those containing a single colorant. In the pork freshness monitoring analysis, the combined-colorants film underwent a noticeable color change as the meat spoiled. Moreover, the meat packaged with the combined film exhibited lower levels of lipid oxidation than those packaged in single-colorant films. These results suggest that curcumin-phycocyanin-containing films have multifunctional potential in intelligent food packaging.
Collapse
Affiliation(s)
- Hongbo Sun
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xinnan Liu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yue Huang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaojing Leng
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Pei J, Palanisamy CP, Natarajan PM, Umapathy VR, Roy JR, Srinivasan GP, Panagal M, Jayaraman S. Curcumin-loaded polymeric nanomaterials as a novel therapeutic strategy for Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102393. [PMID: 38925479 DOI: 10.1016/j.arr.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) stands as a formidable challenge in modern medicine, characterized by progressive neurodegeneration, cognitive decline, and memory impairment. Despite extensive research, effective therapeutic strategies remain elusive. The antioxidant, anti-inflammatory, and neuroprotective properties of curcumin, found in turmeric, have demonstrated promise. The poor bioavailability and rapid systemic clearance of this drug limit its clinical application. This comprehensive review explores the potential of curcumin-loaded polymeric nanomaterials as an innovative therapeutic avenue for AD. It delves into the preparation and characteristics of diverse polymeric nanomaterial platforms, including liposomes, micelles, dendrimers, and polymeric nanoparticles. Emphasis is placed on how these platforms enhance curcumin's bioavailability and enable targeted delivery to the brain, addressing critical challenges in AD treatment. Mechanistic insights reveal how these nanomaterials modulate key AD pathological processes, including amyloid-beta aggregation, tau phosphorylation, oxidative stress, and neuroinflammation. The review also highlighted the preclinical studies demonstrate reduced amyloid-beta plaques and neuroinflammation, alongside improved cognitive function, while clinical trials show promise in enhancing curcumin's bioavailability and efficacy in AD. Additionally, it addresses the challenges of clinical translation, such as regulatory issues, large-scale production, and long-term stability. By synthesizing recent advancements, this review underscores the potential of curcumin-loaded polymeric nanomaterials to offer a novel and effective therapeutic approach for AD, aiming to guide future research and development in this field.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600 107, Tamil Nadu, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
5
|
Mosavi SZ, Colagar AH, Zahedi T, Seyedalipour B. 1,4-Diol Hq (TBHQ) vs 1,4-dithiol (TBDT); simulation of safe antioxidant with a lower carcinogenic activity. Sci Prog 2024; 107:368504241280869. [PMID: 39314158 PMCID: PMC11445769 DOI: 10.1177/00368504241280869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
OBJECTIVES tert-Butylhydroquinone (TBHQ) is an antioxidant and preservative used in unsaturated vegetable oils and processed foods. However, when consumed in higher doses daily, it may pose a threat to public health by potentially increasing the risk of cancer, as it has an affinity with both the aryl hydrocarbon receptor (AhR) and the estrogen receptor alpha (ERα). METHODS This study aimed to examine the impact of substituting the 1,4-diol of TBHQ with 1,4-dithiol, referred to as TBDT, on the carcinogenic and antioxidant systems using computational methods. The binding affinity of TBHQ and TBDT to the two carcinogenic receptors, AhR and ERα, as well as to the antioxidant receptor Keap1 alone and in connection with Nrf2 (Nrf2-Keap1) was investigated through docking analysis. RESULTS The results indicated a decrease in TBDT's binding strength to ERα and AhR when assessed using Molegro Virtual Docker (P-value: 0.0001 and 0.00001, respectively), AutoDock Vina (P-value: 0.0001 and 0.0001), and the online server Fast DRH (P-value: 0.0001 and 0.0001). However, TBDT's binding affinity to Keap1 was predicted to be significantly stronger than TBHQ's by both MVD and AutoDock Vina (P-value: 0.0001 and 0.04), while its binding to Nrf2-Keap1 assessed to be stronger only by MVD (P-value: 0.0001). CONCLUSION These findings suggest that TBDT not only exhibits higher antioxidant activity as a better ligand for the antioxidant system but also shows lower affinity with the AhR and ERα receptors. Therefore, TBDT can be considered a safer compound than TBHQ.
Collapse
Affiliation(s)
- Seyed Zahra Mosavi
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Tahereh Zahedi
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, Mazandaran, Iran
| |
Collapse
|
6
|
Naik YK, Sharma V, Arora S, Seth R. Development and application of DPPH impregnated paper based color sensor disc to detect vegetable oils addition in cow ghee. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:3014-3023. [PMID: 37786594 PMCID: PMC10542030 DOI: 10.1007/s13197-023-05830-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 10/04/2023]
Abstract
Ghee is a premium product in Southeast Asia and is prone to adulteration with vegetable oils/ fats. The main aim of the study was to develop an easy-to-use paper-based sensor to detect this adulteration. Hence, a protocol involving hexane and acetonitrile for the extraction of synthetic antioxidants from adulterated ghee and its rapid detection using DPPH was standardized. Paper-based discs impregnated with 4 mM DPPH were developed. The developed paper-based disc sensors worked well and their response time was indirectly proportional to the antioxidant concentration (0.0025-0.02%). Using the developed disc sensors, the palm oil, and sunflower oil added to cow ghee @2.5% or more, and 1% or more, respectively could be detected. The shelf life of the developed sensors was 30 and 90 days at 30 °C and 4-6 °C, respectively. In stored cow ghee samples, the response time of the sensors increased as the storage period of ghee samples increased. The cutoff limit to declare the sample of cow ghee as unadulterated was fixed to 60 min. Based on the response time of the sensor, the level of detection of vegetable oils in stored cow ghee was found to be 2.5%.
Collapse
Affiliation(s)
- Yugal Kishor Naik
- Division of Dairy Chemistry, National Dairy Research Institute, Karnal, Haryana India
| | - Vivek Sharma
- Division of Dairy Chemistry, National Dairy Research Institute, Karnal, Haryana India
| | - Sumit Arora
- Division of Dairy Chemistry, National Dairy Research Institute, Karnal, Haryana India
| | - Raman Seth
- Division of Dairy Chemistry, National Dairy Research Institute, Karnal, Haryana India
| |
Collapse
|
7
|
Feng J, Li C, Liu WNY, Min X, Lin X. Co-MOF@MWCNTs/GCE for the sensitive detection of TBHQ in food samples. Dalton Trans 2023; 52:16754-16766. [PMID: 37902558 DOI: 10.1039/d3dt03158f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
tert-Butylhydroquinone (TBHQ) is a novel synthetic antioxidant with a higher safety profile and antioxidant effect that is more excellent than other synthetic antioxidants and is internationally recognized as one of the best food antioxidants. However, its excessive use in food can have unfavorable effects on the human body. Thus, it is critical to establish a rapid method for the detection of TBHQ in food samples. In this study, a cobalt-based metal-organic framework (Co-MOF) was fabricated by a one-pot hydrothermal method and embedded in multi-walled carbon nanotubes (MWCNTs) to construct an economical and sensitive electrochemical sensor for TBHQ. The results showed that this sensor possessed a wide linear range (0.004-20 μM and 20-300 μM), a low limit of detection (LOD = 2.5 nM, S/N = 3) as well as an ultra-high sensitivity (43.19 μA μM-1 cm-2). Moreover, the sensor also has superior selectivity, repeatability, reproducibility and anti-interference ability and can be successfully applied for the detection of TBHQ in samples of instant noodles and potato chips.
Collapse
Affiliation(s)
- Junhui Feng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Chenxin Li
- School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Wan-Nai-Yi Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Xiaoqin Min
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Xiaoyun Lin
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
8
|
Xu Y, Luo Y, Weng Z, Xu H, Zhang W, Li Q, Liu H, Liu L, Wang Y, Liu X, Liao L, Wang X. Microenvironment-Responsive Metal-Phenolic Nanozyme Release Platform with Antibacterial, ROS Scavenging, and Osteogenesis for Periodontitis. ACS NANO 2023; 17:18732-18746. [PMID: 37768714 DOI: 10.1021/acsnano.3c01940] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Periodontitis is a chronic inflammatory disease deriving from dental plaque, characterized by the excessive accumulation of reactive oxygen species (ROS), matrix metalloproteinase (MMP) and other substances, resulting in the destruction of periodontal tissues. At present, the main therapeutic modalities, such as local mechanical debridement and antibiotic delivery, are not only difficult to solve the intractable bacterial biofilm effectively but also tricky to ameliorate the excessive inflammatory response as well as regenerate the impaired periodontal tissues. Herein, we have proposed the TM/BHT/CuTA hydrogel system formed by the self-assembly of the copper-based nanozyme (copper tannic acid coordination nanosheets, CuTA NSs) and the triglycerol monostearate/2,6-di-tert-butyl-4-methylphenol (TM/BHT) hydrogel. The negatively charged TM/BHT/CuTA can retain at the inflammation sites with a positive charge through electrostatic adsorption and hydrolyze in response to the increasing MMP of periodontitis, realizing the on-demand release of the CuTA nanozyme. The released CuTA nanozyme has antibacterial and antiplaque properties. Meanwhile, as a metal-phenolic nanozyme, it can scavenge multiple ROS by simulating the cascade process of superoxide dismutase (SOD) and catalase (CAT). Further, the CuTA nanozyme can modulate the macrophage polarization from M1 phenotype to M2 phenotype through the Nrf2/NF-κB pathway, which reduces the pro-inflammatory cytokines, increases the anti-inflammatory cytokines, and promotes the expression of osteogenetic genes successively, thus relieving the inflammation and accelerating the tissue regeneration of periodontitis. Altogether, this multifunctional nanozyme on-demand release platform (TM/BHT/CuTA) provides a desirable strategy for the treatment of periodontitis.
Collapse
Affiliation(s)
- Yingying Xu
- The Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Yifan Luo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Zhenzhen Weng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Haichang Xu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Qun Li
- The Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Huijie Liu
- The Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Lubing Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Yanmei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Xuexia Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China
| | - Lan Liao
- The Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Medical College, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| |
Collapse
|
9
|
Boulebd H, Spiegel M. Computational assessment of the primary and secondary antioxidant potential of alkylresorcinols in physiological media. RSC Adv 2023; 13:29463-29476. [PMID: 37818267 PMCID: PMC10561184 DOI: 10.1039/d3ra05967g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
Alkylresorcinols are a group of natural phenolic compounds found in various foods such as whole grain cereals, bread, and certain fruits. They are known for their beneficial health effects, such as anti-inflammatory and anti-cancer properties. This study aimed to evaluate the antioxidant activity of two typical alkylresorcinols namely olivetol and olivetolic acid (Oli and OliA) under physiological conditions. The free radical scavenging capacity of Oli and OliA toward oxygenated free radicals (HO˙ and HOO˙ radicals) was investigated using thermodynamic and kinetic calculations. The results revealed that Oli and OliA are potent scavengers of HO˙ radical in both polar and lipid media, acting exclusively via the FHT (formal hydrogen transfer) mechanism. Moreover, they demonstrated excellent scavenging activity toward HOO˙ radical in water via the SET (single electron transfer) mechanism, outperforming the common antioxidant BHT. In lipid media, Oli and OliA showed moderate scavenging activity toward HOO˙ radical via the FHT mechanism. Significant prooxidant potential of OliA- was also demonstrated through the formation of complexes with copper ions. Additionally, docking studies indicate that the compounds exhibited a good affinity for ROS-producing enzymes, including myeloperoxidase (MP), cytochrome P450 (CP450), lipoxygenase (LOX), and xanthine oxidase (XO), highlighting their potential as natural antioxidants with promising therapeutic applications.
Collapse
Affiliation(s)
- Houssem Boulebd
- Department of Chemistry, Faculty of Exact Science, University of Constantine 1 Constantine 25000 Algeria
| | - Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University Borowska 211A 50-556 Wroclaw Poland
| |
Collapse
|
10
|
Rajendran S, Venkatesan EP, Dhairiyasamy R, Jaganathan S, Muniyappan G, Hasan N. Enhancing Performance and Emission Characteristics of Biodiesel-Operated Compression Ignition Engines through Low Heat Rejection Mode and Antioxidant Additives: A Review. ACS OMEGA 2023; 8:34281-34298. [PMID: 37779972 PMCID: PMC10534917 DOI: 10.1021/acsomega.3c03252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023]
Abstract
Depending on the heat content and compression ignition (CI) engine combustion, biodiesel is a viable substitute fuel. Biodiesel is an oxygenated, safe, sulfur-free, biodegradable, and renewable fuel. It may be utilized in CI engines in any combination with diesel fuel without requiring the engine to be significantly modified. Many research studies have been made with several biodiesels as diesel substitutes, including Pongamia pinnata, Jatropha curcas, Mangifera indica, and Madhuca longifolia. The topic of the current review is the potential of renewable fuels to outperform diesel fuel in terms of performance, combustion, and emission characteristics. In the present study, CI engines are fueled with biodiesels made from Man. indica, Mad. longifolia, and pongamia seed oil. Adopting low heat rejection (LHR) mode CI engines and adding an antioxidant agent in addition to the biodiesel blends may resolve the issue of these biodiesels' poorer performance and increased NO emission. Both these additions may provide positive approaches in both performance and emission.
Collapse
Affiliation(s)
- Silambarasan Rajendran
- Department
of Mechanical Engineering, Annapoorana Engineering
College, Salem, Tamil Nadu 636308, India
| | | | | | - Sivakumar Jaganathan
- Department
of Mechanical Engineering, Annapoorana Engineering
College, Salem, Tamil Nadu 636308, India
| | - Govindaraj Muniyappan
- Department
of Mechanical Engineering, Annapoorana Engineering
College, Salem, Tamil Nadu 636308, India
| | - Nasim Hasan
- Department
of Mechanical Engineering, Mettu University, 8H95+479 Mettu, Ethiopia
| |
Collapse
|
11
|
Prasetyo WE, Triadmojo B, Kusumaningsih T, Marliyana SD, Wibowo FR, Firdaus M. Mechanistic insight into the free radical scavenging and xanthine oxidase (XO) inhibitor potent of monoacetylphloroglucinols (MAPGs). Free Radic Res 2023:1-33. [PMID: 37315300 DOI: 10.1080/10715762.2023.2225731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Three novel antioxidant candidates based on phenolic polyketide, monoacetylphloroglucinol (MAPG), a natural antibiotic compound produced by plant growth-promoting rhizobacteria (PGPR), Pseudomonas fluorescens F113 have been proposed. Initially, a green and highly efficient route to the synthesis of MAPG and its two analogues from phloroglucinol (PG) has been developed. Afterward, their rational mechanism of antioxidant activity has been investigated based on thermodynamic descriptors involved in the double ( 2H+/2e-) radical trapping processes. These calculations have been performed using the systematic density functional theory (DFT) method at the B3LYP/Def2-SVP level of theory in the gas phase and aqueous solution. Our findings reveal that the double formal hydrogen atom transfer (df-HAT) mechanism is preferred in the gas phase, while the double sequential proton loss electron transfer (dSPLET) mechanism is preferred in aqueous solution for all MAPGs. The 6-OH group represents the most favourable site for trapping radical species for all MAPGs, which is supported by the pKa values obtained from DFT calculations. The role of acyl substituents on the PG ring has been comprehensively discussed. The presence of acyl substituents has a strong influence on the thermodynamic parameters of the phenolic O-H bond in PG. These results are supported by frontier molecular orbitals (FMOs) analysis, where the addition of acyl substituents increases the chemical reactivity of MAPGs significantly. Based on molecular docking and molecular dynamics simulations (MDs), MAPGs are also predicted to be promising candidates for xanthine oxidase (XO) inhibition.HighlightsThe antioxidant activity of the three synthesised MAPGs has been investigated using the DFT method.Acyl substituents increase the chemical reactivity and antioxidant activity of MAPGs.df-HAT is the preferred mechanism in the gas phase.dSPLET seems to be more favoured in aqueous solution.MAPGs are expected to be promising xanthine oxidase (XO) inhibitors.
Collapse
Affiliation(s)
- Wahyu Eko Prasetyo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Bram Triadmojo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Triana Kusumaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Soerya Dewi Marliyana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Fajar Rakhman Wibowo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| | - Maulidan Firdaus
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami No.36A, Surakarta, 57126, Indonesia
| |
Collapse
|
12
|
Thbayh DK, Palusiak M, Viskolcz B, Fiser B. Comparative study of the antioxidant capability of EDTA and Irganox. Heliyon 2023; 9:e16064. [PMID: 37234670 PMCID: PMC10205517 DOI: 10.1016/j.heliyon.2023.e16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress makes it difficult to preserve food and negatively affect the applicability of polymeric packaging. It is typically caused by an excess of free radicals, and it is dangerous to human health, resulting in the onset and development of diseases. The antioxidant ability and activity of ethylenediaminetetraacetic acid (EDTA) and Irganox (Irg) as synthetic antioxidant additives were studied. Three different antioxidant mechanisms were considered and compared by calculating bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) values. Two density functional theory (DFT) methods were used, M05-2X and M06-2X with the 6-311++G(2d,2p) basis set in gas phase. Both additives can be used to protect pre-processed food products and polymeric packaging from oxidative stress related material deterioration. By comparing the two studied compounds, it was found that EDTA has a higher antioxidant potential than Irganox. To the best of our knowledge several studies have been carried out to understand the antioxidant potential of various natural and synthetic species, but EDTA and Irganox were not compared and investigated before. These additives can be used to protect pre-processed food products and polymeric packaging and prevent material deterioration caused by oxidative stress.
Collapse
Affiliation(s)
- Dalal K. Thbayh
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Polymer Research Center, University of Basrah, Basrah, Iraq
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Marcin Palusiak
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Béla Fiser
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland
- Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Transcarpathia, Ukraine
| |
Collapse
|
13
|
Effect of Turmeric and Aloe Vera Extract on Shelf-Life of Goat and Buffalo Admixture Milk Paneer during Refrigeration Storage. Foods 2022; 11:foods11233870. [PMID: 36496678 PMCID: PMC9738584 DOI: 10.3390/foods11233870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The present study was undertaken to evaluate efficacy of turmeric and aloe vera extract in extending shelf life of goat milk paneer. The paneer was made by admixing goat milk and buffalo milk in the ratio of 60:40 so as to achieve a standard fat 4.5%. The treatment group, T1, was made by adding 5 mL/100 mL (v/v) of turmeric extract in heated milk before coagulation. Similarly, 5 mL/100 mL (v/v) aloe vera extract was added to heated milk for group T2 while T3 was prepared by adding both turmeric extract 5 mL/100 mL (v/v) and aloe vera extract 5 mL/100 mL (v/v), and the control was made without any additive. The extracts before incorporation were assessed for their antioxidant and antimicrobial potential by analysing total phenolic content, ABTS and DPPH percent inhibition and zone of inhibition. The developed paneer samples were evaluated for physico-chemical, oxidative and microbiological changes, and sensory attributes during storage at refrigeration temperature for ten days. The results revealed that paneer prepared with addition of extracts significantly (p < 0.05) suppressed physico-chemical deterioration. Significantly (p < 0.05) lower peroxide value, TBARS, FFA and microbial counts were noticed in T3 than T1, T2 and the control. The sensory attributes were also better (p < 0.05) maintained in T3 during storage. The results concluded that the combination of turmeric and aloe vera extract significantly improves the shelf life of paneer under refrigeration storage and these might be used as phyto-preservatives in paneer.
Collapse
|
14
|
Hales D, Muntean DM, Neag MA, Kiss B, Ștefan MG, Tefas LR, Tomuță I, Sesărman A, Rațiu IA, Porfire A. Curcumin-Loaded Microspheres Are Effective in Preventing Oxidative Stress and Intestinal Inflammatory Abnormalities in Experimental Ulcerative Colitis in Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175680. [PMID: 36080447 PMCID: PMC9457911 DOI: 10.3390/molecules27175680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Curcumin’s role in the treatment of ulcerative colitis (UC) has been proven by numerous studies, but its preventive administration, with the aim of reducing the remission episodes that are characteristic of this disease, must be further investigated. This study investigates the effects of a novel curcumin-loaded polymeric microparticulate oral-drug-delivery system for colon targeting (Col-CUR-MPs) in an experimental model of UC. Male Wistar rats (n = 40) were divided into five groups (n = 8), which were treated daily by oral gavage for seven days with a 2% aqueous solution of carboxymethylcellulose sodium salt (CMCNa) (healthy and disease control), free curcumin powder (reference), Col-CUR-MPs (test) and prednisolone (reference) prior to UC induction by the intrarectal administration of acetic acid (AA), followed by animal sacrification and blood and colonic samples’ collection on the eighth day. Col-CUR-MPs exhibited an important preventive effect in the severity degree of oxidative stress that resulted following AA intrarectal administration, which was proved by the highest catalase (CAT) and total antioxidant capacity (TAC) levels and the lowest nitrites/nitrates (NOx), total oxidative status (TOS) and oxidative stress index (OSI) levels. Biochemical parameter analysis was supported by histopathological assessment, confirming the significant anti-inflammatory and antioxidant effects of this novel colon-specific delivery system in AA-induced rat models of UC. Thus, this study offers encouraging perspectives regarding the preventive administration of curcumin in the form of a drug delivery system for colon targeting.
Collapse
Affiliation(s)
- Dana Hales
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania
| | - Dana-Maria Muntean
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-755-682158
| | - Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Haţieganu”, 400337 Cluj-Napoca, Romania
| | - Béla Kiss
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, 400012 Cluj-Napoca, Romania
| | - Maria-Georgia Ștefan
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, 400012 Cluj-Napoca, Romania
| | - Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania
| | - Alina Sesărman
- Department of Molecular Biology and Biotechnology, Centre for Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Molecular Biology Center, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Ioana-Adela Rațiu
- Department of Nephrology, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Thbayh DK, Reizer E, Kahaly MU, Viskolcz B, Fiser B. Antioxidant Potential of Santowhite as Synthetic and Ascorbic Acid as Natural Polymer Additives. Polymers (Basel) 2022; 14:polym14173518. [PMID: 36080595 PMCID: PMC9460313 DOI: 10.3390/polym14173518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
A wide variety of additives are used to improve specific characteristics of the final polymeric product. Antioxidant additives (AAs) can prevent oxidative stress and thus the damage of polymeric materials. In this work, the antioxidant potential and thus the applicability of Santowhite (SW) as synthetic and ascorbic acid (Asc) as natural AAs were explored by using computational tools. Two density functional theory (DFT) methods, M05-2X and M06-2X, have been applied in combination with the 6-311++G(2d,2p) basis set in gas phase. Three antioxidant mechanisms have been considered: hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). Bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) have been computed for each potential hydrogen donor site. The results indicate that the antioxidant potential of Asc is higher than SW. Furthermore, some of the C-H bonds, depending on their position in the structures, are potent radical scavengers, but O-H groups are more prone to donate H-atoms to free radicals. Nonetheless, both additives can be potentially applied to safeguard common polymers and prohibit oxidative stress-induced material deterioration.
Collapse
Affiliation(s)
- Dalal K. Thbayh
- Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary
- Polymer Research Center, University of Basrah, 61004 Basrah, Iraq
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
| | - Edina Reizer
- Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary
| | - Mousumi U. Kahaly
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, 6728 Szeged, Hungary
- Institute of Physics, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
- Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Ukraine
- Correspondence:
| |
Collapse
|