1
|
Watanabe M, Bhawal UK, Takemoto S, Nishiyama N, Nakahara Y, Tatematsu KI, Sezutsu H, Kuwabara N, Minamisawa T, Shiba K, Asakura T. Bio-functionalized titanium surfaces with modified silk fibroin carrying titanium binding motif to enhance the ossific differentiation of MC3T3-E1. Biotechnol Bioeng 2021; 118:2585-2596. [PMID: 33818762 DOI: 10.1002/bit.27777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/03/2023]
Abstract
Silk fibroin (SF) from Bombyx mori has superior properties as both a textile and a biomaterial, and has been used to functionalize the surfaces of various medical inorganic materials including titanium (Ti). In this study, we endowed SF with reversible binding ability to Ti by embedding a titanium binding motif (minTBP-1 and RKLPDA). Artificial SF proteins were first created by conjugating gene cassettes for SF motif (AGSGAG) and minTBP-1 motif with different ratios, which have been shown to bind reversibly to Ti surfaces in quartz crystal microbalance analyses. Based on these results, the functionalized SF (TiBP-SF) containing the designed peptide [TS[(AGSGAG)3 AS]2 RKLPDAS]8 was prepared from the cocoon of transgenic B. mori, which accelerates the ossific differentiation of MC3T3-E1 cells when coated on titanium substrates. Thus, TiBP-SF presents an alternative for endowing the surfaces of titanium materials with osseointegration functionality, which would allow the exploration of potential applications in the medical field.
Collapse
Affiliation(s)
- Mai Watanabe
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan.,Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Ujjal K Bhawal
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Shinji Takemoto
- Department of Biomedical Engineering, Iwate Medical University, Yahaba, Iwate, Japan
| | - Norihiro Nishiyama
- Department of Dental Biomaterials, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yuichi Nakahara
- Transgenic Silkworm Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Ken-Ichiro Tatematsu
- Transgenic Silkworm Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Nobuo Kuwabara
- Gunma Sericultural Technology Center, Maebashi, Gunma, Japan
| | - Tamiko Minamisawa
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| |
Collapse
|
2
|
Ma D, Wang Y, Dai W. Silk fibroin-based biomaterials for musculoskeletal tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:456-469. [DOI: 10.1016/j.msec.2018.04.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022]
|
3
|
Tasei Y, Nishimura A, Suzuki Y, Sato TK, Sugahara J, Asakura T. NMR Investigation about Heterogeneous Structure and Dynamics of Recombinant Spider Silk in the Dry and Hydrated States. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01862] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yugo Tasei
- Department
of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Akio Nishimura
- Department
of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yu Suzuki
- Tenure-Track
Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Takehiro K. Sato
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Junichi Sugahara
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tetsuo Asakura
- Department
of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
4
|
Kametani S, Tasei Y, Nishimura A, Asakura T. Distinct solvent- and temperature-dependent packing arrangements of anti-parallel β-sheet polyalanines studied with solid-state 13C NMR and MD simulation. Phys Chem Chem Phys 2017; 19:20829-20838. [DOI: 10.1039/c7cp03693k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Change from rectangular arrangement to staggered arrangement of (Ala)6 by heat treatment.
Collapse
Affiliation(s)
- Shunsuke Kametani
- Department of Biotechnology
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
- Mitsui Chemical Analysis & Consulting Service, Inc
| | - Yugo Tasei
- Department of Biotechnology
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| | - Akio Nishimura
- Department of Biotechnology
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| | - Tetsuo Asakura
- Department of Biotechnology
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| |
Collapse
|
5
|
Nakazawa Y, Sato M, Takahashi R, Aytemiz D, Takabayashi C, Tamura T, Enomoto S, Sata M, Asakura T. Development of Small-Diameter Vascular Grafts Based on Silk Fibroin Fibers from Bombyx mori for Vascular Regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 22:195-206. [PMID: 20557695 DOI: 10.1163/092050609x12586381656530] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the field of surgical revascularization, the need for functional small-diameter (1.5-4.0 mm in diameter) vascular grafts is increasing. Several synthetic biomaterials have been tested for this purpose, but in many cases they cause thrombosis. In this study, we report the development of small-diameter vascular grafts made from silk fibroin fibers from the domestic silkworm Bombyx mori or recombinant silk fibroin fibers from a transgenic silkworm. The vascular grafts were prepared by braiding, flattening and winding the silk fibers twice onto a cylindrical polymer tube followed by coating with an aqueous silk fibroin solution. The grafts, which are 1.5 mm in inner diameter and 10 mm in length, were implanted into rat abdominal aorta. An excellent patency (ca. 85%, n= 27) at 12 months after grafting with wild-type silk fibers was obtained. Endothelial cells and smooth muscle cells migrated into the silk fibroin graft early after implantation, and became organized into an endothelium and a media-like smooth muscle layer.
Collapse
Affiliation(s)
- Yasumoto Nakazawa
- a Nature and Science Museum, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Girotti A, Orbanic D, Ibáñez-Fonseca A, Gonzalez-Obeso C, Rodríguez-Cabello JC. Recombinant Technology in the Development of Materials and Systems for Soft-Tissue Repair. Adv Healthc Mater 2015; 4:2423-55. [PMID: 26172311 DOI: 10.1002/adhm.201500152] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/04/2015] [Indexed: 12/16/2022]
Abstract
The field of biomedicine is constantly investing significant research efforts in order to gain a more in-depth understanding of the mechanisms that govern the function of body compartments and to develop creative solutions for the repair and regeneration of damaged tissues. The main overall goal is to develop relatively simple systems that are able to mimic naturally occurring constructs and can therefore be used in regenerative medicine. Recombinant technology, which is widely used to obtain new tailored synthetic genes that express polymeric protein-based structures, now offers a broad range of advantages for that purpose by permitting the tuning of biological and mechanical properties depending on the intended application while simultaneously ensuring adequate biocompatibility and biodegradability of the scaffold formed by the polymers. This Progress Report is focused on recombinant protein-based materials that resemble naturally occurring proteins of interest for use in soft tissue repair. An overview of recombinant biomaterials derived from elastin, silk, collagen and resilin is given, along with a description of their characteristics and suggested applications. Current endeavors in this field are continuously providing more-improved materials in comparison with conventional ones. As such, a great effort is being made to put these materials through clinical trials in order to favor their future use.
Collapse
Affiliation(s)
- Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Doriana Orbanic
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Arturo Ibáñez-Fonseca
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Constancio Gonzalez-Obeso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| |
Collapse
|
7
|
Mottaghitalab F, Hosseinkhani H, Shokrgozar MA, Mao C, Yang M, Farokhi M. Silk as a potential candidate for bone tissue engineering. J Control Release 2015; 215:112-28. [DOI: 10.1016/j.jconrel.2015.07.031] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023]
|
8
|
Yang M, Shuai Y, Zhou G, Mandal N, Zhu L, Mao C. Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation. ACS APPLIED MATERIALS & INTERFACES 2014; 6:13782-9. [PMID: 25050697 PMCID: PMC4149330 DOI: 10.1021/am503214g] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Bombyx mori (B. mori) silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation, as well as resistance to oxidation, bacteria, and ultraviolet light. In contrast to other widely studied B. mori silk proteins such as fibroin, sericin is still unexplored as a building block for fabricating biomaterial, and thus a facile technique of processing it into a material is needed. Here, electrospinning technology was used to fabricate it into biomaterials from two forms of B. mori silk sericin with different molecular weights, one is a low (12.0 kDa) molecular sericin (LS) form and another is a high (66.0 kDa) molecular weight sericin (HS) form. Circular dichroism (CD) spectra showed that LS in hexafluoroacetone (HFA) solvent adopted a predominantly random coil conformation, whereas HS tended to form a β-sheet structure along with a large content of random coils. In addition, LS and HS in HFA solvent were found to form cylinder-like smaller nanoparticles and larger irregular aggregates before electrospinning, respectively. As a result, biomaterials based on microparticles and nanofibers were successfully fabricated by electrospinning of LS and HS dissolved in HFA, respectively. The cell viability and differentiation assay indicated that nanofibers and microparticles improved cell adhesion, growth, and differentiation, proving that the scaffolds electrospun from sericin are biocompatible regardless of its molecular weight. The microparticles, not common in electrospinning of silk proteins reported previously, were found to promote the osteogenic differentiation of mesenchymal stem cells in comparison to the nanofibers. This study suggested that molecular weight of sericin mediates its secondary structure and assembly structure, which in turn leads to a control of final morphology of the electrospun materials. The microparticles and nanofibers of sericin can be potentially used as building blocks for fabricating the scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Mingying Yang
- Institute of Applied
Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, China
- E-mail: (M.Y.)
| | - Yajun Shuai
- Institute of Applied
Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, China
| | - Guanshan Zhou
- Institute of Applied
Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, China
| | - Namita Mandal
- Institute of Applied
Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, China
| | - Liangjun Zhu
- Institute of Applied
Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences
Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5300, United States
- E-mail: (C.M.)
| |
Collapse
|
9
|
Asakura T, Saotome T, Aytemiz D, Shimokawatoko H, Yagi T, Fukayama T, Ozai Y, Tanaka R. Characterization of silk sponge in the wet state using13C solid state NMR for development of a porous silk vascular graft with small diameter. RSC Adv 2014. [DOI: 10.1039/c3ra45190a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Liu H, Zhou J, Liu X, Zuo D, Gu S, Xu W. Silk-inspired polyurethane containing GlyAlaGlyAla tetrapeptide. II. physical properties and structure. J Appl Polym Sci 2013. [DOI: 10.1002/app.39185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Chutipakdeevong J, Ruktanonchai UR, Supaphol P. Process optimization of electrospun silk fibroin fiber mat for accelerated wound healing. J Appl Polym Sci 2013. [DOI: 10.1002/app.39611] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jesada Chutipakdeevong
- The Petroleum and Petrochemical College; Chulalongkorn University; Pathumwan; Bangkok; 10330; Thailand
| | - Uracha Rungsardthong Ruktanonchai
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Thailand Science Park; Klong Luang; Pathumthani; 12120; Thailand
| | - Pitt Supaphol
- The Petroleum and Petrochemical College; Chulalongkorn University; Pathumwan; Bangkok; 10330; Thailand
| |
Collapse
|
12
|
Asakura T, Suzuki Y, Nakazawa Y, Yazawa K, Holland GP, Yarger JL. Silk structure studied with nuclear magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 69:23-68. [PMID: 23465642 DOI: 10.1016/j.pnmrs.2012.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| | | | | | | | | | | |
Collapse
|