1
|
Toledano M, Fernández-Romero E, Osorio MT, Osorio E, Aguilera FS, Toledano R, Osorio R. Investigation of the effect of Tideglusib on the hydroxyapatite formation, crystallinity and elasticity of conditioned resin-dentin interfaces. J Dent 2024; 150:105334. [PMID: 39218289 DOI: 10.1016/j.jdent.2024.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES To investigate the effect of dentin infiltration with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs) on hydroxyapatite formation, crystallinity and elasticity of conditioned resin-dentin interfaces. METHODS Dentin conditioned surfaces were infiltrated with NPs or TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging. Resin-dentin interfaces were evaluated through nanoindentation to determine the modulus of elasticity, X-ray diffraction and transmission electron microscopy through selected area diffraction and bright-filed imaging. RESULTS TDg-NPs provoked peaks narrowing after the diffraction-intensity analysis that corresponded with high crystallinity, with an increased modulus of Young after load cycling in comparison with the samples treated with undoped NPs. New minerals, in the group of TDg-NPs, showed the greatest both deviation of line profile from perfect crystal diffraction and dimension of the lattice strain, i.e., crystallite, grain size and microstrain and 002 plane-texture. The new minerals generated after TDg-NPs application and mechanical loading followed a well defined lineation. Undoped NPs mostly produced small hydroxyapatite crystallites, non crystalline or amorphous in nature with poor maturity. CONCLUSIONS Tideglusib promoted the precipitation of hydroxyapatite, as a major crystalline phase, at the intrafibrillar compartment of the collagen fibrils, enabling functional mineralization. TDg-NPs facilitated nucleation of crystals randomly oriented, showing less structural variation in angles and distances that improved crystallographic relative order of atoms and maturity. Nanocrystals inducted by TDg-NPs were hexagonal prisms of submicron size. Thermal challenging of dentin treated with TDg-NPs have provoked a decrease of functional mineralization and crystallinity, associated to immature hydroxyapatite. CLINICAL SIGNIFICANCE New polycrystalline lattice formation generated after TDg-NPs infiltration may become correlated with high mechanical performance. This association can be inferred from the superior crystallinity that was obtained in presence of tideglusib. Immature crystallites formed in dentin treated with undoped NPs will account for a high remineralizing activity.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Enrique Fernández-Romero
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Medicina Clínica y Salud Pública PhD Programme, University of Granada, Granada 18071, Spain
| | - María T Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain.
| | - Raquel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|
2
|
Camal Ruggieri IN, Aimone M, Juanes-Gusano D, Ibáñez-Fonseca A, Santiago O, Stur M, Mardegan Issa JP, Missana LR, Alonso M, Rodríguez-Cabello JC, Feldman S. Biocompatibility and bone regeneration with elastin-like recombinamer-based catalyst-free click gels. Sci Rep 2024; 14:20223. [PMID: 39215050 PMCID: PMC11364658 DOI: 10.1038/s41598-024-69658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Large bone defects are a significant health problem today with various origins, including extensive trauma, tumours, or congenital musculoskeletal disorders. Tissue engineering, and in particular bone tissue engineering, aims to respond to this demand. As such, we propose a specific model based on Elastin-Like Recombinamers-based click-chemistry hydrogels given their high biocompatibility and their potent on bone regeneration effect conferred by different bioactive sequences. In this work we demonstrate, using biochemistry, histology, histomorphometry and imaging techniques, the biocompatibility of our matrix and its potent effect on bone regeneration in a model of bone parietal lesion in female New Zealand rabbits.
Collapse
Affiliation(s)
- I N Camal Ruggieri
- LABOATEM. Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, School of Medicine, National Rosario University, Rosario, Argentina.
| | - M Aimone
- LABOATEM. Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, School of Medicine, National Rosario University, Rosario, Argentina
| | - D Juanes-Gusano
- BIOFORGE Lab, University of Valladolid, CIBER-BBN, Valladolid, Spain
| | - A Ibáñez-Fonseca
- BIOFORGE Lab, University of Valladolid, CIBER-BBN, Valladolid, Spain
| | - O Santiago
- LABOATEM. Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, School of Medicine, National Rosario University, Rosario, Argentina
| | - M Stur
- LABOATEM. Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, School of Medicine, National Rosario University, Rosario, Argentina
- Diagnostic Imaging and Radiology, School of Medicine, National Rosario University, Rosario, Argentina
| | - J P Mardegan Issa
- Ribeirão Preto School of Dentistry, São Paulo University, São Paulo, Brazil
| | - L R Missana
- Experimental Pathology and Tissue Engineering Laboratory, School of Dentistry, National Tucumán University, Tucumán, Argentina
- Tissues Laboratory, IMMCA-CONICET, Tucumán, Argentina
| | - M Alonso
- BIOFORGE Lab, University of Valladolid, CIBER-BBN, Valladolid, Spain.
| | | | - S Feldman
- LABOATEM. Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, School of Medicine, National Rosario University, Rosario, Argentina.
- Research Council of the National Rosario University (CIUNR) and CONICET, Rosario, Argentina.
| |
Collapse
|
3
|
Levêque M, Lecommandoux S, Garanger E. Thermoresponsive Core-cross-linked Nanoparticles from HA- b-ELP Diblock Copolymers. Biomacromolecules 2024; 25:3011-3017. [PMID: 38689515 DOI: 10.1021/acs.biomac.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Stabilization against the dilution-dependent disassembly of self-assembled nanoparticles is a requirement for in vivo application. Herein, we propose a simple and biocompatible cross-linking reaction for the stabilization of a series of nanoparticles formed by the self-assembly of amphiphilic HA-b-ELP block copolymers, through the alkylation of methionine residues from the ELP block with diglycidyl ether compounds. The core-cross-linked nanoparticles retain their colloidal properties, with a spherical core-shell morphology, while maintaining thermoresponsive behavior. As such, instead of a reversible disassembly when non-cross-linked, a reversible swelling of nanoparticles' core and increase of hydrodynamic diameter are observed with lowering of the temperature.
Collapse
Affiliation(s)
- Manon Levêque
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | | | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| |
Collapse
|
4
|
Blanco-Fernandez B, Ibañez-Fonseca A, Orbanic D, Ximenes-Carballo C, Perez-Amodio S, Rodríguez-Cabello JC, Engel E. Elastin-like Recombinamer Hydrogels as Platforms for Breast Cancer Modeling. Biomacromolecules 2023; 24:4408-4418. [PMID: 36597885 PMCID: PMC10565832 DOI: 10.1021/acs.biomac.2c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/07/2022] [Indexed: 01/05/2023]
Abstract
The involvement of the extracellular matrix (ECM) in tumor progression has motivated the development of biomaterials mimicking the tumor ECM to develop more predictive cancer models. Particularly, polypeptides based on elastin could be an interesting approach to mimic the ECM due to their tunable properties. Here, we demonstrated that elastin-like recombinamer (ELR) hydrogels can be suitable biomaterials to develop breast cancer models. This hydrogel was formed by two ELR polypeptides, one containing sequences biodegradable by matrix metalloproteinase and cyclooctyne and the other carrying arginylglycylaspartic acid and azide groups to allow cell adhesion, biodegradability, and suitable stiffness through "click-chemistry" cross-linking. Our findings show that breast cancer or nontumorigenic breast cells showed high viability and cell proliferation for up to 7 days. MCF7 and MCF10A formed spheroids whereas MDA-MB-231 formed cell networks, with the expression of ECM and high drug resistance in all cases, evidencing that ELR hydrogels are a promising biomaterial for breast cancer modeling.
Collapse
Affiliation(s)
- Barbara Blanco-Fernandez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology (BIST), Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER
en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28029, Spain
| | - Arturo Ibañez-Fonseca
- BIOFORGE
Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Doriana Orbanic
- BIOFORGE
Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Celia Ximenes-Carballo
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology (BIST), Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Soledad Perez-Amodio
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology (BIST), Baldiri Reixac 10-12, Barcelona 08028, Spain
| | | | - Elisabeth Engel
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology (BIST), Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER
en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28029, Spain
- IMEM-BRT
Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
| |
Collapse
|
5
|
Montanucci P, Pescara T, Greco A, Basta G, Calafiore R. Human induced pluripotent stem cells (hiPSC), enveloped in elastin-like recombinamers for cell therapy of type 1 diabetes mellitus (T1D): preliminary data. Front Bioeng Biotechnol 2023; 11:1046206. [PMID: 37180045 PMCID: PMC10166868 DOI: 10.3389/fbioe.2023.1046206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Therapeutic application and study of type 1 diabetes disease could benefit from the use of functional β islet-like cells derived from human induced pluripotent stem cells (hiPSCs). Considerable efforts have been made to develop increasingly effective hiPSC differentiation protocols, although critical issues related to cost, the percentage of differentiated cells that are obtained, and reproducibility remain open. In addition, transplantation of hiPSC would require immunoprotection within encapsulation devices, to make the construct invisible to the host's immune system and consequently avoid the recipient's general pharmacologic immunosuppression. Methods: For this work, a microencapsulation system based on the use of "human elastin-like recombinamers" (ELRs) was tested to envelop hiPSC. Special attention was devoted to in vitro and in vivo characterization of the hiPSCs upon coating with ERLs. Results and Discussion: We observed that ELRs coating did not interfere with viability and function and other biological properties of differentiated hiPSCs, while in vivo, ELRs seemed to afford immunoprotection to the cell grafts in preliminary in vivo study. The construct ability to correct hyperglycemia in vivo is in actual progress.
Collapse
|
6
|
Santos Beato P, Poologasundarampillai G, Nommeots-Nomm A, Kalaskar DM. Materials for 3D printing in medicine: metals, polymers, ceramics, and hydrogels. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
7
|
Griswold E, Cappello J, Ghandehari H. Silk-elastinlike protein-based hydrogels for drug delivery and embolization. Adv Drug Deliv Rev 2022; 191:114579. [PMID: 36306893 DOI: 10.1016/j.addr.2022.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023]
Abstract
Silk-Elastinlike Protein-Based Polymers (SELPs) can form thermoresponsive hydrogels that allow for the generation of in-situ drug delivery matrices. They are produced by recombinant techniques, enabling exact control of monomer sequence and polymer length. In aqueous solutions SELP strands form physical crosslinks as a function of temperature increase without the addition of crosslinking agents. Gelation kinetics, modulus of elasticity, pore size, drug release, biorecognition, and biodegradation of SELP hydrogels can be controlled by placement of amino acid residues at strategic locations in the polymer backbone. SELP hydrogels have been investigated for delivery of a variety of bioactive agents including small molecular weight drugs and fluorescent probes, oligomers of glycosaminoglycans, polymeric macromolecules, proteins, plasmid DNA, and viral gene delivery systems. In this review we provide a background for use of SELPs in matrix-mediated delivery and summarize recent investigations of SELP hydrogels for controlled delivery of bioactive agents as well as their use as liquid embolics.
Collapse
Affiliation(s)
- Ethan Griswold
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center of Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph Cappello
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hamidreza Ghandehari
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center of Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
8
|
Garanger E, Lecommandoux S. Emerging opportunities in bioconjugates of Elastin-like polypeptides with synthetic or natural polymers. Adv Drug Deliv Rev 2022; 191:114589. [PMID: 36323382 DOI: 10.1016/j.addr.2022.114589] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 01/24/2023]
Abstract
Nature is an everlasting source of inspiration for chemical and polymer scientists seeking to develop ever more innovative materials with greater performances. Natural structural proteins are particularly scrutinized to design biomimetic materials. Often characterized by repeat peptide sequences, that together interact by inter- and intramolecular interactions and form a 3D skeleton, they contribute to the mechanical properties of individual cells, tissues, organs, and whole organisms. (Numata, K. Polymer Journal 2020, 52, 1043-1056) Among them elastin, and its main repeat sequences, have been a source of intense studies for more than 50 years resulting in the specific research field dedicated to elastin-like polypeptides (ELPs). These are currently widely investigated in different applications, namely protein purification, tissue engineering, and drug delivery, and some technologies based on ELPs are currently explored by several start-up companies. In the present review, we have summarized pioneering contributions on ELPs, progress made in their genetic engineering, and understanding of their thermal behavior and self-assembly properties. Considered as intrinsically disordered protein polymers, we have finally focused on the works where ELPs have been conjugated to other synthetic macromolecules as covalent hybrid, statistical, graft, or block copolymers, highlighting the huge opportunities that have still not been explored so far.
Collapse
Affiliation(s)
- Elisabeth Garanger
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, ENSCBP, 16 Avenue Pey-Berland, Pessac F-33600, France.
| | - Sébastien Lecommandoux
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, ENSCBP, 16 Avenue Pey-Berland, Pessac F-33600, France.
| |
Collapse
|
9
|
García-Arévalo C, Quintanilla-Sierra L, Santos M, Ferrero S, Acosta S, Rodríguez-Cabello J. Impact of aromatic residues on the intrinsic disorder and transitional behaviour of model IDPs. Mater Today Bio 2022; 16:100400. [PMID: 36060106 PMCID: PMC9434135 DOI: 10.1016/j.mtbio.2022.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 10/28/2022] Open
Abstract
Understanding the interplay between order and disorder in intrinsically disorder proteins (IDPs), and its impact on the properties and features of materials manufactured from them, is a major challenge in the design of protein-based synthetic polymers intended for advanced functions. In this paper an elastin-like diblock co-recombinamer amphiphile (Phe-ELR) based on a hydrophobic block containing five phenylalanine (Phe) residues proximal to the carboxyl function of a glutamic acid (Glu) residue upon folding, and with Glu as the guest residue in the hydrophilic part, was engineered and its assembly behaviour compared with another amphiphilic ELR used as control. Phe-ELR was tailored in order to clarify the impact of the presence of aromatic residues in the amino acid sequence, which even in early studies by Urry's group already demonstrated a certain out-of-trend behaviour compared with other apolar amino acids, especially non-aromatic ones, on ELR behaviour. The combination of several experimental techniques indicates strong molecular interactions associated with the Phe residue, thus resulting in limited reversible character of the temperature-induced transitions during sequential thermal cycles, a lower than expected transition enthalpy, and clear differences in its supramolecular assembly with respect to the control ELR. A distinctive pre-aggregated state for the Phe-ELR under any condition of pH and temperature is found. Eventually, this state gives rise to Phe-core micelles or a solid jelly-like material, depending on the concentration, pH and presence of salts. In conclusion, it appears that the presence of aromatic residues and their ability to promote strong inter- and intramolecular interactions at any temperature and pH causes a complete modification of the order-disorder interplay present in other, non-aromatic ELRs. These molecular events have a profound impact on the physical properties of the resulting polymer when compared with other ELRs. This work helps to shed light on the limits that govern intrinsic disorder in ELRs beyond its inverse temperature transition.
Collapse
Affiliation(s)
- C. García-Arévalo
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| | - L. Quintanilla-Sierra
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| | - M. Santos
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| | - S. Ferrero
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011, Valladolid, Spain
| | - S. Acosta
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| | - J.C. Rodríguez-Cabello
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| |
Collapse
|
10
|
Levêque M, Xiao Y, Durand L, Massé L, Garanger E, Lecommandoux S. Aqueous synthesis and self-assembly of bioactive and thermo-responsive HA- b-ELP bioconjugates. Biomater Sci 2022; 10:6365-6376. [PMID: 36168976 DOI: 10.1039/d2bm01149b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The design of synthetic (bio)macromolecules that combine biocompatibility, self-assembly and bioactivity properties at the molecular level is an intense field of research for biomedical applications such as (nano)medicine. In this contribution, we have designed and synthesized a library of bioactive and thermo-responsive bioconjugates from elastin-like polypeptides (ELPs) and hyaluronic acid (HA) in order to access bioactive self-assembled nanoparticles. These were prepared by a simple synthetic and purification strategy, compatible with the requirements for biological applications and industrial scale-up. A series of 9 HA-b-ELP bioconjugates with different compositions and block lengths was synthesized under aqueous conditions by strain-promoted azide-alkyne cycloaddition (SPAAC), avoiding the use of catalysts, co-reactants and organic solvents, and isolated by a simple centrifugation step. An extensive physico-chemical study was then performed on the whole library of bioconjugates in an attempt to establish structure-property relationships. In particular, the determination of the critical conditions for thermally driven self-assembly was carried out upon temperature (CMT) and concentration (CMC) gradients, leading to a phase diagram for each of these bioconjugates. These parameters and the size of nanoparticles were found to depend on the chemical composition of the bioconjugates, namely on the respective size of individual blocks. Understanding the mechanism underlying this dependency is a real asset for designing more effective experiments: with key criteria defined (e.g. concentration, temperature, salinity, and biological target), the composition of the best candidates can be rationalized. In particular, four of the bioconjugates (HA4.6k-ELPn80 or n100 and HA24k-ELPn80 or n100) were found to self-assemble into well-defined spherical core-shell nanoparticles, with a negative surface charge due to the HA block exposed at the surface, a hydrodynamic diameter between 40 and 200 nm under physiological conditions and a good stability over time at 37 °C. We therefore propose here a versatile and simple design of smart, controllable, and bioactive nanoparticles that present different behaviors depending on the diblocks' composition.
Collapse
Affiliation(s)
- Manon Levêque
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Ye Xiao
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Laura Durand
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Louise Massé
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Elisabeth Garanger
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | | |
Collapse
|
11
|
Lima LF, Sousa MGDC, Rodrigues GR, de Oliveira KBS, Pereira AM, da Costa A, Machado R, Franco OL, Dias SC. Elastin-like Polypeptides in Development of Nanomaterials for Application in the Medical Field. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.874790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are biopolymers formed by amino acid sequences derived from tropoelastin. These biomolecules can be soluble below critical temperatures, forming aggregates at higher temperatures, which makes them an interesting source for the design of different nanobiomaterials. These nanobiomaterials can be obtained from heterologous expression in several organisms such as bacteria, fungi, and plants. Thanks to the many advantages of ELPs, they have been used in the biomedical field to develop nanoparticles, nanofibers, and nanocomposites. These nanostructures can be used in multiple applications such as drug delivery systems, treatments of type 2 diabetes, cardiovascular diseases, tissue repair, and cancer therapy. Thus, this review aims to shed some light on the main advances in elastin-like-based nanomaterials, their possible expression forms, and importance to the medical field.
Collapse
|
12
|
Adeyemi SA, Choonara YE. Current advances in cell therapeutics: A biomacromolecules application perspective. Expert Opin Drug Deliv 2022; 19:521-538. [PMID: 35395914 DOI: 10.1080/17425247.2022.2064844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Many chronic diseases have evolved and to circumvent the limitations of using conventional drug therapies, smart cell encapsulating delivery systems have been explored to customize the treatment with alignment to disease longevity. Cell therapeutics has advanced in tandem with improvements in biomaterials that can suitably deliver therapeutic cells to achieve targeted therapy. Among the promising biomacromolecules for cell delivery are those that share bio-relevant architecture with the extracellular matrix and display extraordinary compatibility in the presence of therapeutic cells. Interestingly, many biomacromolecules that fulfil these tenets occur naturally and can form hydrogels. AREAS COVERED This review provides a concise incursion into the paradigm shift to cell therapeutics using biomacromolecules. Advances in the design and use of biomacromolecules to assemble smart therapeutic cell carriers is discussed in light of their pivotal role in enhancing cell encapsulation and delivery. In addition, the principles that govern the application of cell therapeutics in diabetes, neuronal disorders, cancers and cardiovascular disease are outlined. EXPERT OPINION Cell therapeutics promises to revolutionize the treatment of various secretory cell dysfunctions. Current and future advances in designing functional biomacromolecules will be critical to ensure that optimal delivery of therapeutic cells is achieved with desired biosafety and potency.
Collapse
Affiliation(s)
- Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
13
|
Riziotis IG, Lamprou P, Papachristou E, Mantsou A, Karolidis G, Papi R, Choli-Papadopoulou T. De Novo Synthesis of Elastin-like Polypeptides (ELPs): An Applied Overview on the Current Experimental Techniques. ACS Biomater Sci Eng 2021; 7:5064-5077. [PMID: 34666482 DOI: 10.1021/acsbiomaterials.1c00329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Elastin-like polypeptides (ELPs) are protein-based biopolymers genetically produced from polypeptides composed of a repeating pentapeptide sequence V-P-G-X-G. The inherent properties of recombinant ELPs, such as smart nature, controlled sequence complexity, physicochemical properties, and biocompatibility, make these polymers suitable for use in nanobiotechnological applications, as biofunctionalized scaffolds for tissue-engineering purposes and drug delivery. In this work, we report the design and synthesis of two elastomeric self-assembling polypeptides (ELPs) that mimic the endogenous human tropoelastin. Using molecular biology techniques, two artificial genes that encode two ELP concatemers of approximate molecular mass 60 kDa, one of them carrying biotin-binding peptide motifs, were constructed. These motifs could facilitate biofunctionalization of the ELPs through tethering biotinylated factors, such as growth factors. The ELPs were heterologously overexpressed in E. coli and subsequently purified in two steps: a nonchromatographic technique by organic solvent extraction, followed by nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The characterization of the biochemical properties and biocompatibility of ELPs was also performed in this study. The ELP carrying the biotin-binding motifs was tested for its capability to bind biotin, and indeed, it was observed that it can bind biotinylated proteins specifically. Additionally, results concerning the cytotoxicity of the ELPs exhibited excellent compatibility of the ELPs with mammalian cells in vitro. We anticipate that these ELPs can be used as components of a scaffold that mimics the extracellular matrix (ECM) for the regeneration of endogenously highly elastic tissues.
Collapse
Affiliation(s)
- Ioannis G Riziotis
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Paraskevas Lamprou
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Aglaia Mantsou
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Georgios Karolidis
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Rigini Papi
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
14
|
Elastin-Plasma Hybrid Hydrogels for Skin Tissue Engineering. Polymers (Basel) 2021; 13:polym13132114. [PMID: 34203144 PMCID: PMC8271496 DOI: 10.3390/polym13132114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Dermo-epidermal equivalents based on plasma-derived fibrin hydrogels have been extensively studied for skin engineering. However, they showed rapid degradation and contraction over time and low mechanical properties which limit their reproducibility and lifespan. In order to achieve better mechanical properties, elasticity and biological properties, we incorporated a elastin-like recombinamer (ELR) network, based on two types of ELR, one modified with azide (SKS-N3) and other with cyclooctyne (SKS-Cyclo) chemical groups at molar ratio 1:1 at three different SKS (serine-lysine-serine sequence) concentrations (1, 3, and 5 wt.%), into plasma-derived fibrin hydrogels. Our results showed a decrease in gelation time and contraction, both in the absence and presence of the encapsulated human primary fibroblasts (hFBs), higher mechanical properties and increase in elasticity when SKSs content is equal or higher than 3%. However, hFBs proliferation showed an improvement when the lowest SKS content (1 wt.%) was used but started decreasing when increasing SKS concentration at day 14 with respect to the plasma control. Proliferation of human primary keratinocytes (hKCs) seeded on top of the hybrid-plasma hydrogels containing 1 and 3% of SKS showed no differences to plasma control and an increase in hKCs proliferation was observed for hybrid-plasma hydrogels containing 5 wt.% of SKS. These promising results showed the need to achieve a balance between the reduced contraction, the better mechanical properties and biological properties and indicate the potential of using this type of hydrogel as a testing platform for pharmaceutical products and cosmetics, and future work will elucidate their potential.
Collapse
|
15
|
Dai M, Georgilis E, Goudounet G, Garbay B, Pille J, van Hest JCM, Schultze X, Garanger E, Lecommandoux S. Refining the Design of Diblock Elastin-Like Polypeptides for Self-Assembly into Nanoparticles. Polymers (Basel) 2021; 13:1470. [PMID: 34062852 PMCID: PMC8125372 DOI: 10.3390/polym13091470] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Diblock copolymers based-on elastin-like polypeptide (ELP) have the potential to undergo specific phase transitions when thermally stimulated. This ability is especially suitable to form carriers, micellar structures for instance, for delivering active cargo molecules. Here, we report the design and study of an ELP diblock library based on ELP-[M1V3-i]-[I-j]. First, ELP-[M1V3-i]-[I-j] (i = 20, 40, 60; j = 20, 90) that showed a similar self-assembly propensity (unimer-to-aggregate transition) as their related monoblocks ELP-[M1V3-i] and ELP-[I-j]. By selectively oxidizing methionines of ELP-[M1V3-i] within the different diblocks structures, we have been able to access a thermal phase transition with three distinct regimes (unimers, micelles, aggregates) characteristic of well-defined ELP diblocks.
Collapse
Affiliation(s)
- Michèle Dai
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
- L’Oréal Recherche Avancée, 1 Avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France;
| | - Evangelos Georgilis
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
- Current affiliation E.G. (Evangelos Georgilis): CIC nanoGUNE (BRTA), Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain
| | - Guillaume Goudounet
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
| | - Bertrand Garbay
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
| | - Jan Pille
- Bio-organic Chemistry Lab, Eindhoven University of Technology, P.O. Box 513 (STO 3.31), 5600 MB Eindhoven, The Netherlands; (J.P.); (J.C.M.v.H.)
| | - Jan C. M. van Hest
- Bio-organic Chemistry Lab, Eindhoven University of Technology, P.O. Box 513 (STO 3.31), 5600 MB Eindhoven, The Netherlands; (J.P.); (J.C.M.v.H.)
| | - Xavier Schultze
- L’Oréal Recherche Avancée, 1 Avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France;
| | - Elisabeth Garanger
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
| | - Sébastien Lecommandoux
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
| |
Collapse
|
16
|
Effective elastin-like recombinamers coating on poly(vinylidene) fluoride membranes for mesenchymal stem cell culture. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Bravo-Anaya LM, Rosselgong J, Fernández-Solís KG, Xiao Y, Vax A, Ibarboure E, Ruban A, Lebleu C, Joucla G, Garbay B, Garanger E, Lecommandoux S. Coupling of RAFT polymerization and chemoselective post-modifications of elastin-like polypeptides for the synthesis of gene delivery hybrid vectors. Polym Chem 2021. [DOI: 10.1039/d0py01293a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hybrid cationic ELPs for nucleic acids transport and delivery were synthetized through the coupling of RAFT polymerization and biorthogonal chemistry of ELPs, introducing a specific number of positive charges to the ELP backbone.
Collapse
Affiliation(s)
| | | | | | - Ye Xiao
- University of Bordeaux
- CNRS
- Bordeaux INP
- Pessac
- France
| | - Amélie Vax
- University of Bordeaux
- CNRS
- Bordeaux INP
- Pessac
- France
| | | | - Anna Ruban
- University of Bordeaux
- CNRS
- Bordeaux INP
- Pessac
- France
| | | | | | | | | | | |
Collapse
|
18
|
González-Obeso C, González-Pérez M, Mano JF, Alonso M, Rodríguez-Cabello JC. Complex Morphogenesis by a Model Intrinsically Disordered Protein. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005191. [PMID: 33216415 DOI: 10.1002/smll.202005191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Indexed: 05/13/2023]
Abstract
The development of intricate and complex self-assembling structures in the micrometer range, such as biomorphs, is a major challenge in materials science. Although complex structures can be obtained from self-assembling materials as they segregate from solution, their size is usually in the nanometer range or requires accessory techniques. Previous studies with intrinsically disordered proteins (IDPs) have shown that the active interplay of different molecular interactions provides access to new and more complex nanostructures. As such, it is hypothesized that enriching the variety of intra- and intermolecular interactions in a model IDP will widen the landscape of sophisticated intermediate structures that can be accessed. In this study, a model silk-elastin-like recombinamer capable of interacting via three non-covalent interactions, namely hydrophobic, ion-pairing, and H-bonding is built. This model material is shown to self-assemble into complex stable micrometer-sized biomorphs. Variation of the block composition, pH, and temperature demonstrates the necessary interplay of all three interactions for the formation of such complex structures.
Collapse
Affiliation(s)
- Constancio González-Obeso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, Valladolid, 47011, Spain
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Miguel González-Pérez
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, Valladolid, 47011, Spain
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Matilde Alonso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, Valladolid, 47011, Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, Valladolid, 47011, Spain
| |
Collapse
|
19
|
Fonseca AC, Melchels FPW, Ferreira MJS, Moxon SR, Potjewyd G, Dargaville TR, Kimber SJ, Domingos M. Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chem Rev 2020; 120:11128-11174. [PMID: 32937071 PMCID: PMC7645917 DOI: 10.1021/acs.chemrev.0c00342] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The lack of in vitro tissue and organ models capable of mimicking human physiology severely hinders the development and clinical translation of therapies and drugs with higher in vivo efficacy. Bioprinting allow us to fill this gap and generate 3D tissue analogues with complex functional and structural organization through the precise spatial positioning of multiple materials and cells. In this review, we report the latest developments in terms of bioprinting technologies for the manufacturing of cellular constructs with particular emphasis on material extrusion, jetting, and vat photopolymerization. We then describe the different base polymers employed in the formulation of bioinks for bioprinting and examine the strategies used to tailor their properties according to both processability and tissue maturation requirements. By relating function to organization in human development, we examine the potential of pluripotent stem cells in the context of bioprinting toward a new generation of tissue models for personalized medicine. We also highlight the most relevant attempts to engineer artificial models for the study of human organogenesis, disease, and drug screening. Finally, we discuss the most pressing challenges, opportunities, and future prospects in the field of bioprinting for tissue engineering (TE) and regenerative medicine (RM).
Collapse
Affiliation(s)
- Ana Clotilde Fonseca
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Ferry P. W. Melchels
- Institute
of Biological Chemistry, Biophysics and Bioengineering, School of
Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
| | - Miguel J. S. Ferreira
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| | - Samuel R. Moxon
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Geoffrey Potjewyd
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Tim R. Dargaville
- Institute
of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| | - Susan J. Kimber
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Marco Domingos
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
20
|
Moreno-Estar S, Serrano S, Arévalo-Martínez M, Cidad P, López-López JR, Santos M, Pérez-Garcia MT, Arias FJ. Elastin-like recombinamer-based devices releasing Kv1.3 blockers for the prevention of intimal hyperplasia: An in vitro and in vivo study. Acta Biomater 2020; 115:264-274. [PMID: 32771595 DOI: 10.1016/j.actbio.2020.07.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
Coronary artery disease (CAD) is the most common cardiovascular disorder. Vascular surgery strategies for coronary revascularization (either percutaneous or open) show a high rate of failure because of restenosis of the vessel, due to phenotypic switch of vascular smooth muscle cells (VSMCs) leading to proliferation and migration. We have previously reported that the inhibition of Kv1.3 channel function with selective blockers represents an effective strategy for the prevention of restenosis in human vessels used for coronary angioplasty procedures. However, delivery systems for controlled release of these drugs have not been investigated. Here we tested the efficacy of several formulations of elastin like recombinamers (ELRs) hydrogels to deliver the Kv1.3 blocker PAP-1 in various restenosis models. The dose and time course of PAP-1 release from ELRs click hydrogels was able to inhibit human VSMC proliferation in vitro as well as remodeling of human vessels in organ culture and restenosis in in vivo models. We conclude that this combination of active compound and advanced delivery method could improve the outcomes of vascular surgery in patients. STATEMENT OF SIGNIFICANCE: Vascular surgery strategies for coronary revascularization show a high rate of failure, because of occlusion (restenosis) of the vessel, due to vascular smooth muscle cells proliferation and migration. We have previously reported that blockers of Kv1.3 channels represent an effective anti-restenosis therapy, but delivery systems for their controlled release have not being explored. Here we tested the efficacy of several formulations of elastin like recombinamers (ELRs) hydrogels to deliver the Kv1.3 blocker PAP-1 in various restenosis models, both in vivo and in vitro, and also in human vessels. We demonstrated that combination of active compound and advanced delivery method could improve the outcomes of vascular surgery in patients.
Collapse
|
21
|
Ibáñez-Fonseca A, Orbanic D, Arias FJ, Alonso M, Zeugolis DI, Rodríguez-Cabello JC. Influence of the Thermodynamic and Kinetic Control of Self-Assembly on the Microstructure Evolution of Silk-Elastin-Like Recombinamer Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001244. [PMID: 32519515 DOI: 10.1002/smll.202001244] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Complex recombinant biomaterials that merge the self-assembling properties of different (poly)peptides provide a powerful tool for the achievement of specific structures, such as hydrogel networks, by tuning the thermodynamics and kinetics of the system through a tailored molecular design. In this work, elastin-like (EL) and silk-like (SL) polypeptides are combined to obtain a silk-elastin-like recombinamer (SELR) with dual self-assembly. First, EL domains force the molecule to undergo a phase transition above a precise temperature, which is driven by entropy and occurs very fast. Then, SL motifs interact through the slow formation of β-sheets, stabilized by H-bonds, creating an energy barrier that opposes phase separation. Both events lead to the development of a dynamic microstructure that evolves over time (until a pore size of 49.9 ± 12.7 µm) and to a delayed hydrogel formation (obtained after 2.6 h). Eventually, the network is arrested due to an increase in β-sheet secondary structures (up to 71.8 ± 0.8%) within SL motifs. This gives a high bond strength that prevents the complete segregation of the SELR from water, which results in a fixed metastable microarchitecture. These porous hydrogels are preliminarily tested as biomimetic niches for the isolation of cells in 3D cultures.
Collapse
Affiliation(s)
- Arturo Ibáñez-Fonseca
- BIOFORGE Lab, University of Valladolid - CIBER-BBN. Paseo de Belén 19, Valladolid, 47011, Spain
| | - Doriana Orbanic
- BIOFORGE Lab, University of Valladolid - CIBER-BBN. Paseo de Belén 19, Valladolid, 47011, Spain
| | - Francisco Javier Arias
- BIOFORGE Lab, University of Valladolid - CIBER-BBN. Paseo de Belén 19, Valladolid, 47011, Spain
| | - Matilde Alonso
- BIOFORGE Lab, University of Valladolid - CIBER-BBN. Paseo de Belén 19, Valladolid, 47011, Spain
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, H91 TK33, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, H91 TK33, Ireland
| | | |
Collapse
|
22
|
Ibáñez-Fonseca A, Santiago Maniega S, Gorbenko del Blanco D, Catalán Bernardos B, Vega Castrillo A, Álvarez Barcia ÁJ, Alonso M, Aguado HJ, Rodríguez-Cabello JC. Elastin-Like Recombinamer Hydrogels for Improved Skeletal Muscle Healing Through Modulation of Macrophage Polarization. Front Bioeng Biotechnol 2020; 8:413. [PMID: 32478048 PMCID: PMC7240013 DOI: 10.3389/fbioe.2020.00413] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Large skeletal muscle injuries, such as a volumetric muscle loss (VML), often result in an incomplete regeneration due to the formation of a non-contractile fibrotic scar tissue. This is, in part, due to the outbreak of an inflammatory response, which is not resolved over time, meaning that type-1 macrophages (M1, pro-inflammatory) involved in the initial stages of the process are not replaced by pro-regenerative type-2 macrophages (M2). Therefore, biomaterials that promote the shift from M1 to M2 are needed to achieve optimal regeneration in VML injuries. In this work, we used elastin-like recombinamers (ELRs) as biomaterials for the formation of non- (physical) and covalently (chemical) crosslinked bioactive and biodegradable hydrogels to fill the VML created in the tibialis anterior (TA) muscles of rats. These hydrogels promoted a higher infiltration of M2 within the site of injury in comparison to the non-treated control after 2 weeks (p<0.0001), indicating that the inflammatory response resolves faster in the presence of both types of ELR-based hydrogels. Moreover, there were not significant differences in the amount of collagen deposition between the samples treated with the chemical ELR hydrogel at 2 and 5 weeks, and this same result was found upon comparison of these samples with healthy tissue after 5 weeks, which implies that this treatment prevents fibrosis. The macrophage modulation also translated into the formation of myofibers that were morphologically more similar to those present in healthy muscle. Altogether, these results highlight that ELR hydrogels provide a friendly niche for infiltrating cells that biodegrades over time, leaving space to new muscle tissue. In addition, they orchestrate the shift of macrophage population toward M2, which resulted in the prevention of fibrosis in the case of the chemical hydrogel treatment and in a more healthy-like myofiber phenotype for both types of hydrogels. Further studies should focus in the assessment of the regeneration of skeletal muscle in larger animal models, where a more critical defect can be created and additional methods can be used to evaluate the functional recovery of skeletal muscle.
Collapse
Affiliation(s)
- Arturo Ibáñez-Fonseca
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Valladolid, Spain
| | | | - Darya Gorbenko del Blanco
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Valladolid, Spain
| | | | | | | | - Matilde Alonso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Valladolid, Spain
| | - Héctor J. Aguado
- Servicio de Traumatología, Hospital Clínico de Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Valladolid, Spain
| |
Collapse
|
23
|
Hossain MS, Liu X, Maynard TI, Mozhdehi D. Genetically Encoded Inverse Bolaamphiphiles. Biomacromolecules 2019; 21:660-669. [DOI: 10.1021/acs.biomac.9b01380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Md Shahadat Hossain
- Department of Chemistry, 1-014 Center for Science and Technology, 111 College Place, Syracuse University, Syracuse, New York 13244, United States
| | - Xin Liu
- Department of Chemistry, 1-014 Center for Science and Technology, 111 College Place, Syracuse University, Syracuse, New York 13244, United States
| | - Timothy I. Maynard
- Department of Chemistry, 1-014 Center for Science and Technology, 111 College Place, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department of Chemistry, 1-014 Center for Science and Technology, 111 College Place, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
24
|
Bravo-Anaya L, Garbay B, Nando-Rodríguez J, Carvajal Ramos F, Ibarboure E, Bathany K, Xia Y, Rosselgong J, Joucla G, Garanger E, Lecommandoux S. Nucleic acids complexation with cationic elastin-like polypeptides: Stoichiometry and stability of nano-assemblies. J Colloid Interface Sci 2019; 557:777-792. [DOI: 10.1016/j.jcis.2019.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/01/2023]
|
25
|
Dos Santos BP, Garbay B, Fenelon M, Rosselin M, Garanger E, Lecommandoux S, Oliveira H, Amédée J. Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation. Acta Biomater 2019; 99:154-167. [PMID: 31425892 DOI: 10.1016/j.actbio.2019.08.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Despite significant progress in the field of biomaterials for bone repair, the lack of attention to the vascular and nervous networks within bone implants could be one of the main reasons for the delayed or impaired recovery of bone defects. The design of innovative biomaterials should improve the host capacity of healing to restore a functional tissue, taking into account that the nerve systems closely interact with blood vessels in the bone tissue. The aim of this work is to develop a cell-free and growth factor-free hydrogel capable to promote angiogenesis and innervation. To this end, we have used elastin-like polypeptides (ELPs), poly(ethylene glycol) (PEG) and increasing concentrations of the adhesion peptide IKVAV (25% (w/w) representing 1.7 mM and 50% (w/w) representing 4.1 mM) to formulate and produce hydrogels. When characterized in vitro, hydrogels have fine-tunable rheological properties, microporous structure and are biocompatible. At the biological level, 50% IKVAV composition up-regulated Runx2, Osx, Spp1, Vegfa and Bmp2 in mesenchymal stromal cells and Tek in endothelial cells, and sustained the formation of long neurites in sensory neurons. When implanted subcutaneously in mice, hydrogels induced no signals of major inflammation and the 50% IKVAV composition induced higher vessel density and formation of nervous terminations in the peripheral tissue. This novel composite has important features for tissue engineering, showing higher osteogenic, angiogenic and innervation potential in vitro, being not inflammatory in vivo, and inducing angiogenesis and innervation subcutaneously. STATEMENT OF SIGNIFICANCE: One of the main limitations in the field of tissue engineering remains the sufficient vascularization and innervation during tissue repair. In this scope, the development of advanced biomaterials that can support these processes is of crucial importance. Here, we formulated different compositions of Elastin-like polypeptide-based hydrogels bearing the IKVAV adhesion sequence. These compositions showed controlled mechanical properties, and were degradable in vitro. Additionally, we could identify in vitro a composition capable to promote neurite formation and to modulate endothelial and mesenchymal stromal cells gene expression, in view of angiogenesis and osteogenesis, respectively. When tested in vivo, it showed no signs of major inflammation and induced the formation of a highly vascularized and innervated neotissue. In this sense, our approach represents a potential advance in the development of new strategies to promote tissue regeneration, taking into account both angiogenesis and innervation.
Collapse
Affiliation(s)
- Bruno Paiva Dos Santos
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France.
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Mathilde Fenelon
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France; CHU Bordeaux, Department of Oral Surgery, F-33076 Bordeaux, France
| | - Marie Rosselin
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | | - Hugo Oliveira
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Joëlle Amédée
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| |
Collapse
|
26
|
Ibáñez-Fonseca A, Flora T, Acosta S, Rodríguez-Cabello JC. Trends in the design and use of elastin-like recombinamers as biomaterials. Matrix Biol 2019; 84:111-126. [PMID: 31288085 DOI: 10.1016/j.matbio.2019.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
Elastin-like recombinamers (ELRs), which derive from one of the repetitive domains found in natural elastin, have been intensively studied in the last few years from several points of view. In this mini review, we discuss all the recent works related to the investigation of ELRs, starting with those that define these polypeptides as model intrinsically disordered proteins or regions (IDPs or IDRs) and its relevance for some biomedical applications. Furthermore, we summarize the current knowledge on the development of drug, vaccine and gene delivery systems based on ELRs, while also emphasizing the use of ELR-based hydrogels in tissue engineering and regenerative medicine (TERM). Finally, we show different studies that explore applications in other fields, and several examples that describe biomaterial blends in which ELRs have a key role. This review aims to give an overview of the recent advances regarding ELRs and to encourage further investigation of their properties and applications.
Collapse
Affiliation(s)
- Arturo Ibáñez-Fonseca
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Tatjana Flora
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Sergio Acosta
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | | |
Collapse
|
27
|
Cipriani F, Ariño Palao B, Gonzalez de Torre I, Vega Castrillo A, Aguado Hernández HJ, Alonso Rodrigo M, Àlvarez Barcia AJ, Sanchez A, García Diaz V, Lopez Peña M, Rodriguez-Cabello JC. An elastin-like recombinamer-based bioactive hydrogel embedded with mesenchymal stromal cells as an injectable scaffold for osteochondral repair. Regen Biomater 2019; 6:335-347. [PMID: 31827887 PMCID: PMC6897338 DOI: 10.1093/rb/rbz023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to evaluate injectable, in situ cross-linkable elastin-like recombinamers (ELRs) for osteochondral repair. Both the ELR-based hydrogel alone and the ELR-based hydrogel embedded with rabbit mesenchymal stromal cells (rMSCs) were tested for the regeneration of critical subchondral defects in 10 New Zealand rabbits. Thus, cylindrical osteochondral defects were filled with an aqueous solution of ELRs and the animals sacrificed at 4 months for histological and gross evaluation of features of biomaterial performance, including integration, cellular infiltration, surrounding matrix quality and the new matrix in the defects. Although both approaches helped cartilage regeneration, the results suggest that the specific composition of the rMSC-containing hydrogel permitted adequate bone regeneration, whereas the ELR-based hydrogel alone led to an excellent regeneration of hyaline cartilage. In conclusion, the ELR cross-linker solution can be easily delivered and forms a stable well-integrated hydrogel that supports infiltration and de novo matrix synthesis.
Collapse
Affiliation(s)
- Filippo Cipriani
- Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, Valladolid 47011, Spain
| | - Blanca Ariño Palao
- Departamento de traumatología, Hospital Clínico de Valladolid, Av. Ramón y Cajal 3, Valladolid 47003, Spain
| | - Israel Gonzalez de Torre
- Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, Valladolid 47011, Spain.,Bioforge, University of Valladolid CIBER-BBN, Paseo de Belén 19, Valladolid 47011, Spain
| | - Aurelio Vega Castrillo
- Departamento de traumatología, Hospital Clínico de Valladolid, Av. Ramón y Cajal 3, Valladolid 47003, Spain
| | | | - Matilde Alonso Rodrigo
- Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, Valladolid 47011, Spain.,Bioforge, University of Valladolid CIBER-BBN, Paseo de Belén 19, Valladolid 47011, Spain
| | - Angel José Àlvarez Barcia
- SIBA-UVA: servicio investigación y bienestar animal, University of Valladolid, C/Plaza de Santa Cruz 8, Valladolid 47002, Spain
| | - Ana Sanchez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Calle Sanz y Fores 3, Valladolid 47003, Spain
| | - Verónica García Diaz
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Calle Sanz y Fores 3, Valladolid 47003, Spain
| | - Monica Lopez Peña
- Facultad de veterinaria, Campus Universitario, Avda. Carballo Calero s/n, Lugo 27002, Spain
| | - José Carlos Rodriguez-Cabello
- Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, Valladolid 47011, Spain.,Bioforge, University of Valladolid CIBER-BBN, Paseo de Belén 19, Valladolid 47011, Spain
| |
Collapse
|
28
|
Gonzalez-Obeso C, Girotti A, Rodriguez-Cabello JC. A transferrin receptor-binding mucoadhesive elastin-like recombinamer: In vitro and in vivo characterization. Acta Biomater 2019; 88:241-250. [PMID: 30794989 DOI: 10.1016/j.actbio.2019.02.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 12/24/2022]
Abstract
The development of mucoadhesive materials is of great interest and is also a major challenge. Being adsorption sites, mucosae are suitable targets for drug delivery, but as defensive barriers they are complex biological surfaces to interact with, mainly due to their protective mucus layer. As such, first- and second-generation mucoadhesives focused on material-mucus interactions, whereas the third generation of mucoadhesives introduced structural motifs that are able to interact with the cells beneath the mucus layer. The combination of different prerequisites (water solubility, soft gel formation at body temperature and able to interact with the mucus) in a single molecule is easily achieved using elastin-like recombinamers (ELRs) given their multiple block design. Moreover, we have been able to introduce a short amino-acid sequence known as T7 that is able to bind to transferrin receptors in the epithelial cell layer. The T7 sequence enhances the cell-binding properties of the mucoadhesive ELR (MELR), as demonstrated using a Caco-2 epithelial cell model. In vivo experiments confirmed the mucoadhesive properties found in vitro. STATEMENT OF SIGNIFICANCE: The development of a mucoadhesive material is a major challenge. Mucosae are suitable targets for drug delivery, but as defense barriers, they are complex surfaces to interact with. In this work we report the first ELR that combines different functional blocks, in a single molecule, which provide it with the properties of soft-gel forming at body temperature and being able of efficiently adhering to the mucus layer of mucosas, as well as to the underlying epithelial cell layer, as demonstrated in vitro and in vivo. The rationally designed materials presented in this work sets the basis for developing ELR-based, mucosa-directed drug delivery systems, which could improve patient's compliance, enhancing drug retention at the mucosal site.
Collapse
|
29
|
Quintanilla-Sierra L, García-Arévalo C, Rodriguez-Cabello J. Self-assembly in elastin-like recombinamers: a mechanism to mimic natural complexity. Mater Today Bio 2019; 2:100007. [PMID: 32159144 PMCID: PMC7061623 DOI: 10.1016/j.mtbio.2019.100007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
The topic of self-assembled structures based on elastin-like recombinamers (ELRs, i.e., elastin-like polymers recombinantly bio-produced) has released a noticeable amount of references in the last few years. Most of them are intended for biomedical applications. In this review, a complete revision of the bibliography is carried out. Initially, the self-assembly (SA) concept is considered from a general point of view, and then ELRs are described and characterized based on their intrinsic disorder. A classification of the different self-assembled ELR-based structures is proposed based on their morphologies, paying special attention to their tentative modeling. The impact of the mechanism of SA on these biomaterials is analyzed. Finally, the implications of ELR SA in biological systems are considered.
Collapse
Affiliation(s)
| | | | - J.C. Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011, Valladolid, Spain
| |
Collapse
|
30
|
Flora T, de Torre IG, Alonso M, Rodríguez-Cabello JC. Tethering QK peptide to enhance angiogenesis in elastin-like recombinamer (ELR) hydrogels. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:30. [PMID: 30762134 DOI: 10.1007/s10856-019-6232-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
The development of new capillary networks in engineered constructs is essential for their survival and their integration with the host tissue. It has recently been demonstrated that ELR-based hydrogels encoding different bioactivities are able to modulate their interaction with the host after injection or implantation, as indicated by an increase in cell adhesion and the ability to trigger vascularization processes. Accordingly, the aim of this study was to increase their angiogenic ability both in vitro and in vivo using a small VEGF mimetic peptide named QK, which was tethered chemically to ELR-based hydrogels containing cell-adhesion sequences in their backbone, such as REDV and RGD, as well as a proteolytic site (VGVAPG). In vitro studies were performed using a co-culture of endothelial and fibroblast cells encapsulated into the ELR-based hydrogels in order to determine cell proliferation after 21 days of culture, as well as the number of cell-cell interactions. It was found that although the presence of this peptide does not influence the morphological and rheological properties of these hydrogels, it has an effect on cell behaviour, inducing an increase in cell proliferation and the formation of endothelial cell clusters. In vivo studies demonstrate that the QK peptide enhances the formation of prominent functional capillaries at three weeks post-injection, as confirmed by H&E staining and CD31 immunohistochemistry. The newly formed functional microvasculature ensures perfusion and connection with surrounding tissues. These results show that ELR-QK hydrogels increase capillary network formation and are therefore attractive candidates for application in tissue regeneration, for example for the treatment of cardiovascular diseases such as myocardial infarction or ischemia.
Collapse
Affiliation(s)
- Tatjana Flora
- BIOFORGE, CIBER-BBN, Edificio Lucia, Universidad de Valladolid, Paseo Belén 19, 47011, Valladolid, Spain
| | - I González de Torre
- BIOFORGE, CIBER-BBN, Edificio Lucia, Universidad de Valladolid, Paseo Belén 19, 47011, Valladolid, Spain
- Technical proteins nanobiotechnology (TPNBT S.L.), Paseo Belén 9A, 47011, Valladolid, Spain
| | - M Alonso
- BIOFORGE, CIBER-BBN, Edificio Lucia, Universidad de Valladolid, Paseo Belén 19, 47011, Valladolid, Spain
| | - J Carlos Rodríguez-Cabello
- BIOFORGE, CIBER-BBN, Edificio Lucia, Universidad de Valladolid, Paseo Belén 19, 47011, Valladolid, Spain.
| |
Collapse
|
31
|
Alagoz AS, Rodriguez-Cabello JC, Hasirci V. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering. Biomed Mater 2018; 13:055010. [DOI: 10.1088/1748-605x/aad139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
González de Torre I, Ibáñez-Fonseca A, Quintanilla L, Alonso M, Rodríguez-Cabello JC. Random and oriented electrospun fibers based on a multicomponent, in situ clickable elastin-like recombinamer system for dermal tissue engineering. Acta Biomater 2018; 72:137-149. [PMID: 29574183 DOI: 10.1016/j.actbio.2018.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/20/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
Herein we present a system to obtain fibers from clickable elastin-like recombinamers (ELRs) that crosslink in situ during the electrospinning process itself, with no need for any further treatment to stabilize them. These ELR-click fibers are completely stable under in vitro conditions. A wrinkled fiber morphology is obtained. In addition to a random fiber orientation, oriented fibers with a high degree of alignment and coherence can also be obtained by using a rotational electrode. The production of multicomponent fibers means that different functionalities, such as cell-adhesion domains (RGD peptides), can be incorporated into them. In a subsequent study, two main cell lines present in the dermis and epidermis, namely keratinocytes and fibroblasts, were cultured on top of the ELR-click fibers. Adhesion, proliferation, fluorescence, immunostaining and histology studies showed the cytocompatibility of these scaffolds, thus suggesting their possible use for wound dressings in skin tissue engineering applications. STATEMENT OF SIGNIFICANCE For the first time stable electrospun bioactive fibers are obtained by the in situ mixing of two "clickable" ELR components previously described by Gonzalez et al (Acta Biomaterialia 2014). This work describes an efficient system to prepare fibrous scaffolds based on peptidic polymers by electrospinning without the need of crosslinking agents that could be harmful for cells or living tissues. These bioactive fibers support cell growth due to the inclusion of RGD motifs (Staubli et al. Biomaterials 2017). Finally, the in vitro biocompatibility of the two main cell types found in the outer layers of skin, fibroblasts and keratinocytes, indicates that this system is of great interest to prepare elastic artificial skin substitutes for wound healing applications.
Collapse
|
33
|
Antmen E, Ermis M, Demirci U, Hasirci V. Engineered natural and synthetic polymer surfaces induce nuclear deformation in osteosarcoma cells. J Biomed Mater Res B Appl Biomater 2018; 107:366-376. [DOI: 10.1002/jbm.b.34128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/22/2018] [Accepted: 03/14/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Ezgi Antmen
- BIOMATEN, Middle East Technical University (METU); Center of Excellence in Biomaterials and Tissue Engineering; Ankara Turkey
- Department of Biotechnology; Middle East Technical University; Ankara Turkey
| | - Menekse Ermis
- BIOMATEN, Middle East Technical University (METU); Center of Excellence in Biomaterials and Tissue Engineering; Ankara Turkey
- Department of Biomedical Engineering; Middle East Technical University; Ankara Turkey
| | - Utkan Demirci
- Department of Radiology; School of Medicine, Stanford University; Palo Alto CA 94304 USA
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU); Center of Excellence in Biomaterials and Tissue Engineering; Ankara Turkey
- Department of Biotechnology; Middle East Technical University; Ankara Turkey
- Department of Biomedical Engineering; Middle East Technical University; Ankara Turkey
- Department of Biological Sciences; Middle East Technical University; Ankara Turkey
| |
Collapse
|
34
|
Gonzalez de Torre I, Weber M, Quintanilla L, Alonso M, Jockenhoevel S, Rodríguez Cabello JC, Mela P. Hybrid elastin-like recombinamer-fibrin gels: physical characterization and in vitro evaluation for cardiovascular tissue engineering applications. Biomater Sci 2018; 4:1361-70. [PMID: 27430365 DOI: 10.1039/c6bm00300a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the field of tissue engineering, the properties of the scaffolds are of crucial importance for the success of the application. Hybrid materials combine the properties of the different components that constitute them. In this study hybrid gels of Elastin-Like Recombinamer (ELR) and fibrin were prepared with a range of polymer concentrations and ELR-to-fibrin ratios. The correlation between SEM micrographs, porosities, swelling ratios and rheological properties was discussed and a poroelastic mechanism was suggested to explain the mechanical behavior of the hybrid gels. Applicability as scaffold materials for cardiovascular tissue engineering was shown by the realization of cell-laden matrixes which supported the synthesis of collagens as revealed by immunohistochemical analysis. As a proof of concept, a tissue-engineered heart valve was fabricated by injection moulding and cultivated in a bioreactor for 3 weeks under dynamic conditions. Tissue analysis revealed the production of collagen I and III, fundamental proteins for cardiovascular constructs.
Collapse
Affiliation(s)
- Israel Gonzalez de Torre
- BIOFORGE, CIBER-BBN, Campus "Miguel Delibes" Edificio LUCIA, Universidad de Valladolid, Paseo Belén 19, 47011, Valladolid, Spain and TECHNICAL PROTEINS NANOBIOTECHNOLOGY S.L., Campus "Miguel Delibes" Edificio CTTA, Universidad de Valladolid, Paseo Belén 9A, 47011, Valladolid, Spain
| | - Miriam Weber
- Tissue Engineering and Textile Implants, AME, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Luis Quintanilla
- BIOFORGE, CIBER-BBN, Campus "Miguel Delibes" Edificio LUCIA, Universidad de Valladolid, Paseo Belén 19, 47011, Valladolid, Spain
| | - Matilde Alonso
- BIOFORGE, CIBER-BBN, Campus "Miguel Delibes" Edificio LUCIA, Universidad de Valladolid, Paseo Belén 19, 47011, Valladolid, Spain
| | - Stefan Jockenhoevel
- Tissue Engineering and Textile Implants, AME, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany
| | - José Carlos Rodríguez Cabello
- BIOFORGE, CIBER-BBN, Campus "Miguel Delibes" Edificio LUCIA, Universidad de Valladolid, Paseo Belén 19, 47011, Valladolid, Spain
| | - Petra Mela
- Tissue Engineering and Textile Implants, AME, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany
| |
Collapse
|
35
|
Coletta DJ, Ibáñez-Fonseca A, Missana LR, Jammal MV, Vitelli EJ, Aimone M, Zabalza F, Issa JPM, Alonso M, Rodríguez-Cabello JC, Feldman S. Bone Regeneration Mediated by a Bioactive and Biodegradable Extracellular Matrix-Like Hydrogel Based on Elastin-Like Recombinamers. Tissue Eng Part A 2017; 23:1361-1371. [DOI: 10.1089/ten.tea.2017.0047] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Dante J. Coletta
- LABOATEM, Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, School of Medicine, National Rosario University, Rosario, Argentina
| | | | - Liliana R. Missana
- Experimental Pathology and Tissue Engineering Laboratory, Dental School, National Tucumán University, Tucumán, Argentina
- Tissues Laboratory, Proimi-Biotechnology-Conicet, Tucumán, Argentina
| | - María V. Jammal
- Experimental Pathology and Tissue Engineering Laboratory, Dental School, National Tucumán University, Tucumán, Argentina
- Tissues Laboratory, Proimi-Biotechnology-Conicet, Tucumán, Argentina
| | - Ezequiel J. Vitelli
- LABOATEM, Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, School of Medicine, National Rosario University, Rosario, Argentina
| | - Mariangeles Aimone
- LABOATEM, Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, School of Medicine, National Rosario University, Rosario, Argentina
| | - Facundo Zabalza
- LABOATEM, Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, School of Medicine, National Rosario University, Rosario, Argentina
| | | | - Matilde Alonso
- BIOFORGE Lab, University of Valladolid, CIBER-BBN, Valladolid, Spain
| | | | - Sara Feldman
- LABOATEM, Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, School of Medicine, National Rosario University, Rosario, Argentina
| |
Collapse
|
36
|
Ibáñez‐Fonseca A, Ramos TL, González de Torre I, Sánchez‐Abarca LI, Muntión S, Arias FJ, Cañizo MC, Alonso M, Sánchez‐Guijo F, Rodríguez‐Cabello JC. Biocompatibility of two model elastin‐like recombinamer‐based hydrogels formed through physical or chemical cross‐linking for various applications in tissue engineering and regenerative medicine. J Tissue Eng Regen Med 2017; 12:e1450-e1460. [DOI: 10.1002/term.2562] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/08/2017] [Accepted: 08/25/2017] [Indexed: 12/17/2022]
Affiliation(s)
| | - Teresa L. Ramos
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de Salamanca Salamanca Spain
- Unidad de Terapia Celular, Servicio de HematologíaHospital Universitario de Salamanca Salamanca Spain
| | | | - Luis Ignacio Sánchez‐Abarca
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de Salamanca Salamanca Spain
- Unidad de Terapia Celular, Servicio de HematologíaHospital Universitario de Salamanca Salamanca Spain
| | - Sandra Muntión
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de Salamanca Salamanca Spain
- Unidad de Terapia Celular, Servicio de HematologíaHospital Universitario de Salamanca Salamanca Spain
| | | | - María Consuelo Cañizo
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de Salamanca Salamanca Spain
- Unidad de Terapia Celular, Servicio de HematologíaHospital Universitario de Salamanca Salamanca Spain
| | - Matilde Alonso
- BIOFORGE LabUniversity of Valladolid–CIBER‐BBN Valladolid Spain
| | - Fermín Sánchez‐Guijo
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de Salamanca Salamanca Spain
- Unidad de Terapia Celular, Servicio de HematologíaHospital Universitario de Salamanca Salamanca Spain
| | | |
Collapse
|
37
|
Prigipaki A, Papanikolopoulou K, Mossou E, Mitchell EP, Forsyth VT, Selimis A, Ranella A, Mitraki A. Laser processing of protein films as a method for accomplishment of cell patterning at the microscale. Biofabrication 2017; 9:045004. [PMID: 28837041 DOI: 10.1088/1758-5090/aa8859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, we propose a photostructuring approach for protein films based on a treatment with nanosecond pulses of a KrF excimer laser. As a model protein we used an amyloid fibril-forming protein. Laser treatment induced a foaming of the sample surface exhibiting an interconnected fibrous mesh with a high degree of control and precision. The surface foaming was well characterized by scanning electron microscopy, atomic force microscopy, laser induced fluorescence and contact angle measurements. The laser irradiated areas of the protein films acquired new morphological and physicochemical properties that could be exploited to fulfill unmet challenges in the tissue engineering field. In this context we subsequently evaluated the response of NIH/3T3 fibroblast cell line on the processed film. Our results show a strong and statistically significant preference for adhesion and proliferation of cells on the irradiated areas compared to the non-irradiated ones. We propose that this strategy can be followed to induce selective cell patterning on protein films at the microscale.
Collapse
Affiliation(s)
- Ariadne Prigipaki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 710 03 Heraklion, Crete, Greece. Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), PO Box 527, Vassilika Vouton, 711 10 Heraklion, Crete, Greece
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Petitdemange R, Garanger E, Bataille L, Dieryck W, Bathany K, Garbay B, Deming TJ, Lecommandoux S. Selective Tuning of Elastin-like Polypeptide Properties via Methionine Oxidation. Biomacromolecules 2017; 18:544-550. [DOI: 10.1021/acs.biomac.6b01696] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rosine Petitdemange
- Université de Bordeaux/Bordeaux INP, ENSCBP, and CNRS, Laboratoire de Chimie des Polymères
Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Elisabeth Garanger
- Université de Bordeaux/Bordeaux INP, ENSCBP, and CNRS, Laboratoire de Chimie des Polymères
Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Laure Bataille
- Université de Bordeaux/Bordeaux INP, ENSCBP, and CNRS, Laboratoire de Chimie des Polymères
Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Wilfrid Dieryck
- Université de Bordeaux/Bordeaux INP and CNRS, Chimie et Biologie des Membranes et des Nano-objets (UMR5248), Allée Geoffroy Saint Hilaire, Pessac 33600, France
| | - Katell Bathany
- Université de Bordeaux/Bordeaux INP and CNRS, Chimie et Biologie des Membranes et des Nano-objets (UMR5248), Allée Geoffroy Saint Hilaire, Pessac 33600, France
| | - Bertrand Garbay
- Université de Bordeaux/Bordeaux INP, ENSCBP, and CNRS, Laboratoire de Chimie des Polymères
Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Timothy J. Deming
- Department
of Chemistry and Biochemistry, and Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Sébastien Lecommandoux
- Université de Bordeaux/Bordeaux INP, ENSCBP, and CNRS, Laboratoire de Chimie des Polymères
Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| |
Collapse
|
39
|
Poologasundarampillai G, Nommeots-Nomm A. Materials for 3D printing in medicine. 3D Print Med 2017. [DOI: 10.1016/b978-0-08-100717-4.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
40
|
Donderwinkel I, van Hest JCM, Cameron NR. Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem 2017. [DOI: 10.1039/c7py00826k] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last decade, interest in the field of three-dimensional (3D) bioprinting has increased enormously. This review describes all the currently used bio-printing inks, including polymeric hydrogels, polymer bead microcarriers, cell aggregates and extracellular matrix proteins.
Collapse
Affiliation(s)
- Ilze Donderwinkel
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- Department of Bio-organic Chemistry
| | - Jan C. M. van Hest
- Department of Bio-organic Chemistry
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
- Department of Chemical Engineering and Chemistry
| | - Neil R. Cameron
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- School of Engineering
| |
Collapse
|
41
|
Putzu M, Causa F, Nele V, de Torre IG, Rodriguez-Cabello JC, Netti PA. Elastin-like-recombinamers multilayered nanofibrous scaffolds for cardiovascular applications. Biofabrication 2016; 8:045009. [PMID: 27845938 DOI: 10.1088/1758-5090/8/4/045009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Coronary angioplasty is the most widely used technique for removing atherosclerotic plaques in blood vessels. The regeneration of the damaged intima layer after this treatment is still one of the major challenges in the field of cardiovascular tissue engineering. Different polymers have been used in scaffold manufacturing in order to improve tissue regeneration. Elastin-mimetic polymers are a new class of molecules that have been synthesized and used to obtain small diameter fibers with specific morphological characteristics. Elastin-like polymers produced by recombinant techniques and called elastin-like recombinamers (ELRs) are particularly promising due to their high degree of functionalization. Generally speaking, ELRs can show more complex molecular designs and a tighter control of their sequence than other chemically synthetized polymers Rodriguez Cabello et al (2009 Polymer 50 5159-69, 2011 Nanomedicine 6 111-22). For the fabrication of small diameter fibers, different ELRs were dissolved in 2,2,2-fluoroethanol (TFE). Dynamic light scattering was used to identify the transition temperature and get a deep characterization of the transition behavior of the recombinamers. In this work, we describe the use of electrospinning technique for the manufacturing of an elastic fibrous scaffold; the obtained fibers were characterized and their cytocompatibility was tested in vitro. A thorough study of the influence of voltage, flow rate and distance was carried out in order to determine the appropriate parameters to obtain fibrous mats without beads and defects. Moreover, using a rotating mandrel, we fabricated a tubular scaffold in which ELRs containing different cell adhesion sequences (mainly REDV and RGD) were collected. The stability of the scaffold was improved by using genipin as a crosslinking agent. Genipin-ELRs crosslinked scaffolds show a good stability and fiber morphology. Human umbilical vein endothelial cells were used to assess the in vitro bioactivity of the cell adhesion domains within the backbone of the ELRs.
Collapse
Affiliation(s)
- M Putzu
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), University 'Federico II', Piazzale Tecchio 80, 80125 Naples, Italy. Interdisciplinary Research Centre on Biomaterials (CRIB) University of Naples Federico II Piazzale Tecchio 80, 80125 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Rodríguez-Cabello JC, Arias FJ, Rodrigo MA, Girotti A. Elastin-like polypeptides in drug delivery. Adv Drug Deliv Rev 2016; 97:85-100. [PMID: 26705126 DOI: 10.1016/j.addr.2015.12.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
The use of recombinant elastin-like materials, or elastin-like recombinamers (ELRs), in drug-delivery applications is reviewed in this work. Although ELRs were initially used in similar ways to other, more conventional kinds of polymeric carriers, their unique properties soon gave rise to systems of unparalleled functionality and efficiency, with the stimuli responsiveness of ELRs and their ability to self-assemble readily allowing the creation of advanced systems. However, their recombinant nature is likely the most important factor that has driven the current breakthrough properties of ELR-based delivery systems. Recombinant technology allows an unprecedented degree of complexity in macromolecular design and synthesis. In addition, recombinant materials easily incorporate any functional domain present in natural proteins. Therefore, ELR-based delivery systems can exhibit complex interactions with both their drug load and the tissues and cells towards which this load is directed. Selected examples, ranging from highly functional nanocarriers to macrodepots, will be presented.
Collapse
|
43
|
Schloss AC, Williams DM, Regan LJ. Protein-Based Hydrogels for Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:167-177. [PMID: 27677513 DOI: 10.1007/978-3-319-39196-0_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The tunable mechanical and structural properties of protein-based hydrogels make them excellent scaffolds for tissue engineering and repair. Moreover, using protein-based components provides the option to insert sequences associated with promoting both cellular adhesion to the substrate and overall cell growth. Protein-based hydrogel components are appealing for their structural designability, specific biological functionality, and stimuli-responsiveness. Here we present highlights in the field of protein-based hydrogels for tissue engineering applications including design requirements, components, and gel types.
Collapse
Affiliation(s)
- Ashley C Schloss
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Danielle M Williams
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Lynne J Regan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA. .,Department of Chemistry, Yale University, New Haven, CT, 06520, USA. .,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
44
|
Loo Y, Goktas M, Tekinay AB, Guler MO, Hauser CAE, Mitraki A. Self-Assembled Proteins and Peptides as Scaffolds for Tissue Regeneration. Adv Healthc Mater 2015; 4:2557-86. [PMID: 26461979 DOI: 10.1002/adhm.201500402] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/24/2015] [Indexed: 12/15/2022]
Abstract
Self-assembling proteins and peptides are increasingly gaining interest for potential use as scaffolds in tissue engineering applications. They self-organize from basic building blocks under mild conditions into supramolecular structures, mimicking the native extracellular matrix. Their properties can be easily tuned through changes at the sequence level. Moreover, they can be produced in sufficient quantities with chemical synthesis or recombinant technologies to allow them to address homogeneity and standardization issues required for applications. Here. recent advances in self-assembling proteins, peptides, and peptide amphiphiles that form scaffolds suitable for tissue engineering are reviewed. The focus is on a variety of motifs, ranging from minimalistic dipeptides, simplistic ultrashort aliphatic peptides, and peptide amphiphiles to large "recombinamer" proteins. Special emphasis is placed on the rational design of self-assembling motifs and biofunctionalization strategies to influence cell behavior and modulate scaffold stability. Perspectives for combination of these "bottom-up" designer strategies with traditional "top-down" biofabrication techniques for new generations of tissue engineering scaffolds are highlighted.
Collapse
Affiliation(s)
- Yihua Loo
- Institute for Bioengineering and Nanotechnology; A* STAR; 31 Biopolis Way The Nanos 138669 Singapore
| | - Melis Goktas
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara Turkey 06800
| | - Ayse B. Tekinay
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara Turkey 06800
| | - Mustafa O. Guler
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara Turkey 06800
| | - Charlotte A. E. Hauser
- Institute for Bioengineering and Nanotechnology; A* STAR; 31 Biopolis Way The Nanos 138669 Singapore
| | - Anna Mitraki
- Department of Materials Science and Technology; University of Crete; Greece 70013
- Institute for Electronic Structure and Lasers (IESL); Foundation for Research and Technology Hellas (FORTH); Vassilika Vouton; Heraklion Crete Greece 70013
| |
Collapse
|
45
|
Kramer JR, Petitdemange R, Bataille L, Bathany K, Wirotius AL, Garbay B, Deming TJ, Garanger E, Lecommandoux S. Quantitative Side-Chain Modifications of Methionine-Containing Elastin-Like Polypeptides as a Versatile Tool to Tune Their Properties. ACS Macro Lett 2015; 4:1283-1286. [PMID: 35614829 DOI: 10.1021/acsmacrolett.5b00651] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tuning the lower critical solution temperature (LCST) of temperature-responsive recombinant elastin-like polypeptides has usually been achieved by designing different protein sequences, in terms of amino acid composition and length, implying tedious molecular cloning steps. In the present work, we have explored the chemoselective alkylation of methionine as an easy means to modify elastin repeat side chains and easily modulate the LCST of the polypeptides. Such a versatile synthetic method shall practically be exploited to modulate any properties of recombinant polymers.
Collapse
Affiliation(s)
- Jessica R. Kramer
- Department
of Chemistry and Biochemistry and Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Rosine Petitdemange
- Université de Bordeaux/Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, Pessac 33607, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
- Institut Européen de Chimie et Biologie (IECB), Pessac 33607, France
| | - Laure Bataille
- Université de Bordeaux/Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, Pessac 33607, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
- Institut Européen de Chimie et Biologie (IECB), Pessac 33607, France
| | - Katell Bathany
- Université de Bordeaux/Bordeaux INP, Allée Geoffroy
Saint Hilaire, Bât B14, Pessac 33600, France
- CNRS, Chimie et Biologie des Membranes et Nano-objets (UMR5248), Pessac, France
| | - Anne-Laure Wirotius
- Université de Bordeaux/Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, Pessac 33607, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
| | - Bertrand Garbay
- Université de Bordeaux/Bordeaux INP, Biologie des Protéines
Recombinantes à Visée Santé, EA4135, Bordeaux 33000, France
| | - Timothy J. Deming
- Department
of Chemistry and Biochemistry and Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Elisabeth Garanger
- Université de Bordeaux/Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, Pessac 33607, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
- Institut Européen de Chimie et Biologie (IECB), Pessac 33607, France
| | - Sebastien Lecommandoux
- Université de Bordeaux/Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, Pessac 33607, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
| |
Collapse
|
46
|
Garanger E, MacEwan SR, Sandre O, Brûlet A, Bataille L, Chilkoti A, Lecommandoux S. Structural Evolution of a Stimulus-Responsive Diblock Polypeptide Micelle by Temperature Tunable Compaction of its Core. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01371] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elisabeth Garanger
- Laboratoire
de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France
- Institut Européen de Chimie et Biologie (IECB), Pessac 33607, France
| | - Sarah R. MacEwan
- Department
of Biomedical Engineering, Duke University, Campus Box 90281, Durham, North Carolina 27708, United States
| | - Olivier Sandre
- Laboratoire
de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France
| | - Annie Brûlet
- Laboratoire
Léon Brillouin (LLB), CEA-CNRS UMR 12, CEA-Saclay, Gif-sur-Yvette 91191, France
| | - Laure Bataille
- Laboratoire
de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France
- Institut Européen de Chimie et Biologie (IECB), Pessac 33607, France
| | - Ashutosh Chilkoti
- Department
of Biomedical Engineering, Duke University, Campus Box 90281, Durham, North Carolina 27708, United States
| | - Sébastien Lecommandoux
- Laboratoire
de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France
| |
Collapse
|
47
|
Punet X, Mauchauffé R, Rodríguez-Cabello JC, Alonso M, Engel E, Mateos-Timoneda MA. Biomolecular functionalization for enhanced cell-material interactions of poly(methyl methacrylate) surfaces. Regen Biomater 2015; 2:167-75. [PMID: 26816640 PMCID: PMC4669015 DOI: 10.1093/rb/rbv014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 01/26/2023] Open
Abstract
The integration of implants or medical devices into the body tissues requires of good cell-material interactions. However, most polymeric materials used for these applications lack on biological cues, which enhanced mid- and long-term implant failure due to weak integration with the surrounding tissue. Commonly used strategies for tissue-material integration focus on functionalization of the material surface by means of natural proteins or short peptides. However, the use of these biomolecules involves major drawbacks such as immunogenic problems and oversimplification of the constructs. Here, designed elastin-like recombinamers (ELRs) are used to enhance poly(methyl methacrylate) surface properties and compared against the use of short peptides. In this study, cell response has been analysed for different functionalization conditions in the presence and absence of a competing protein, which interferes on surface-cell interaction by unspecific adsorption on the interface. The study has shown that ELRs can induce higher rates of cell attachment and stronger cell anchorages than short peptides, being a better choice for surface functionalization.
Collapse
Affiliation(s)
- Xavier Punet
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain,; CIBER en Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Rodolphe Mauchauffé
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - José C Rodríguez-Cabello
- CIBER en Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Spain,; G.I.R. Bioforge, Universidad Valladolid (UVA), Valladolid 47011, Spain and
| | - Matilde Alonso
- CIBER en Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Spain,; G.I.R. Bioforge, Universidad Valladolid (UVA), Valladolid 47011, Spain and
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain,; CIBER en Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Spain,; Department of Material Science and Metallurgical Engineering, Technical University of Catalonia (UPC), Barcelona 08028, Spain
| | - Miguel A Mateos-Timoneda
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain,; CIBER en Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Spain,; Department of Material Science and Metallurgical Engineering, Technical University of Catalonia (UPC), Barcelona 08028, Spain
| |
Collapse
|
48
|
Machado R, da Costa A, Sencadas V, Pereira AM, Collins T, Rodríguez-Cabello JC, Lanceros-Méndez S, Casal M. Exploring the Properties of Genetically Engineered Silk-Elastin-Like Protein Films. Macromol Biosci 2015. [DOI: 10.1002/mabi.201500132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Raul Machado
- CBMA (Centre of Molecular and Environmental Biology); Department of Biology, University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - André da Costa
- CBMA (Centre of Molecular and Environmental Biology); Department of Biology, University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Vitor Sencadas
- Centro/Departamento de Física; University of Minho; Campus de Gualtar 4710-057 Braga Portugal
- School of Mechanical, Materials and Mechatronics Engineering; University of Wollongong; Wollongong NSW 2522 Australia
| | - Ana Margarida Pereira
- CBMA (Centre of Molecular and Environmental Biology); Department of Biology, University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Tony Collins
- CBMA (Centre of Molecular and Environmental Biology); Department of Biology, University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - José Carlos Rodríguez-Cabello
- Bioforge (Group for Advanced Materials and Nanobiotechnology); Universidad de Valladolid; 47011 Valladolid Spain
- Networking Research Centre on Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); 47011 Valladolid Spain
| | | | - Margarida Casal
- CBMA (Centre of Molecular and Environmental Biology); Department of Biology, University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
49
|
Rodríguez-Cabello JC, Piña MJ, Ibáñez-Fonseca A, Fernández-Colino A, Arias FJ. Nanotechnological Approaches to Therapeutic Delivery Using Elastin-Like Recombinamers. Bioconjug Chem 2015; 26:1252-65. [DOI: 10.1021/acs.bioconjchem.5b00183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced
Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - María Jesús Piña
- BIOFORGE (Group for Advanced
Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Arturo Ibáñez-Fonseca
- BIOFORGE (Group for Advanced
Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Alicia Fernández-Colino
- BIOFORGE (Group for Advanced
Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Francisco Javier Arias
- BIOFORGE (Group for Advanced
Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
50
|
Monge C, Almodóvar J, Boudou T, Picart C. Spatio-Temporal Control of LbL Films for Biomedical Applications: From 2D to 3D. Adv Healthc Mater 2015; 4:811-30. [PMID: 25627563 PMCID: PMC4540079 DOI: 10.1002/adhm.201400715] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/19/2014] [Indexed: 12/15/2022]
Abstract
Introduced in the '90s by Prof. Moehwald, Lvov, and Decher, the layer-by-layer (LbL) assembly of polyelectrolytes has become a popular technique to engineer various types of objects such as films, capsules and free standing membranes, with an unprecedented control at the nanometer and micrometer scales. The LbL technique allows to engineer biofunctional surface coatings, which may be dedicated to biomedical applications in vivo but also to fundamental studies and diagnosis in vitro. Initially mostly developed as 2D coatings and hollow capsules, the range of complex objects created by the LbL technique has greatly expanded in the past 10 years. In this Review, the aim is to highlight the recent progress in the field of LbL films for biomedical applications and to discuss the various ways to spatially and temporally control the biochemical and mechanical properties of multilayers. In particular, three major developments of LbL films are discussed: 1) the new methods and templates to engineer LbL films and control cellular processes from adhesion to differentiation, 2) the major ways to achieve temporal control by chemical, biological and physical triggers and, 3) the combinations of LbL technique, cells and scaffolds for repairing 3D tissues, including cardio-vascular devices, bone implants and neuro-prosthetic devices.
Collapse
Affiliation(s)
- Claire Monge
- CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016, Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, F-38016, Grenoble, France
| | | | | | | |
Collapse
|