1
|
Zhang Y, Luo X, Mo X, Wang X, Jiang J, Wang L. Silk fibroin wetting stability film induced by polyamide-amine-epichlorohydrin (PAE) for intelligent sensing system. Int J Biol Macromol 2024; 275:133585. [PMID: 38960247 DOI: 10.1016/j.ijbiomac.2024.133585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Protein materials gain new functions and applicability through redesigns in protein structure and engineering confer. However, the application and development of proteins for use in flexible devices that fit in flexible devices that fit the surface of human skin is hindered by their poor wet stability. Here, we described the design of wet-stable materials based on the reconstruction of silk fibroin (SF). The combination of polyamide-amine-epichlorohydrin (PAE) was used as a traction rope to bring SF molecular chains closer to each other, to facilitate the self-assembly of SF through branching and lengthening of molecular chains, and change its crystalline structure. SF/PAE composite films that exhibited huge improvement in ductility and wet stability were combined with flexible SF substrates via patterning and ion sputtering to prepare flexible sensors. In addition, the SF/PAE sensing system equipped with a microprocessor and Bluetooth module enabled the real-time remote acquisition of human health signals such as vocal cords, joints, pulse and meridians. This reconfiguration of the SF structure will advance the systematic exploration of protein structures and the development of protein materials for intelligent device applications.
Collapse
Affiliation(s)
- Yifan Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
| | - Xin Luo
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Xinning Mo
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoyou Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Jungang Jiang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Lei Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
2
|
Zhou B, Luo F, Liu Y, Shao Z. Engineering a High-Strength and Superior-Electrolyte-Wettability Silk Fibroin-Based Gel Interface Achieving Dendrite-Free Zn Anode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18927-18936. [PMID: 38563418 DOI: 10.1021/acsami.4c01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Zn metal anode is confronted with notorious Zn dendrite growth caused by inhomogeneous Zn2+ deposition, rampant dendrite growth, and serious interface side reactions, which significantly hinder their large-scale implication. Interface modification engineering is a powerful strategy to improve the Zn metal anode by regulating Zn2+ deposition behavior, suppressing dendrite formation, and protecting the anode from electrolyte corrosion. Herein, we have designed a high-strength and superior-electrolyte-wettability composite gel protective layer based on silk fibroin (SF) and ionic liquids (ILs) on the Zn anode surface by a straightforward spin-coating strategy. The Zn ion transport kinetics and mechanical properties were further improved by following the incubation process to construct a more well-ordered β-sheet structure. Consequently, the incubated composite gel coating serves as a command station, guiding the Zn ion's preferential growth along the (002) plane, resulting in a smooth and uniform deposition morphology. Driven by these improvements, the zinc anode modified with this composite gel exhibits a remarkably long-term cycling lifespan up to 2200 h at 2 mA cm-2, while also displaying superior rate capability. This study represents a landmark achievement in the realm of electrochemical science, delineating a clear pathway toward the realization of a highly reversible and enduring Zn anode.
Collapse
Affiliation(s)
- Bin Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Feiyu Luo
- Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yi Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
- Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
3
|
Johari N, Khodaei A, Samadikuchaksaraei A, Reis RL, Kundu SC, Moroni L. Ancient fibrous biomaterials from silkworm protein fibroin and spider silk blends: Biomechanical patterns. Acta Biomater 2022; 153:38-67. [PMID: 36126911 DOI: 10.1016/j.actbio.2022.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
Silkworm silk protein fibroin and spider silk spidroin are known biocompatible and natural biodegradable polymers in biomedical applications. The presence of β-sheets in silk fibroin and spider spidroin conformation improves their mechanical properties. The strength and toughness of pure recombinant silkworm fibroin and spidroin are relatively low due to reduced molecular weight. Hence, blending is the foremost approach of recent studies to optimize silk fibroin and spidroin's mechanical properties. As summarised in the present review, numerous research investigations evaluate the blending of natural and synthetic polymers. The effects of blending silk fibroin and spidroin with natural and synthetic polymers on the mechanical properties are discussed in this review article. Indeed, combining natural and synthetic polymers with silk fibroin and spidroin changes their conformation and structure, fine-tuning the blends' mechanical properties. STATEMENT OF SIGNIFICANCE: Silkworm and spider silk proteins (silk fibroin and spidroin) are biocompatible and biodegradable natural polymers having different types of biomedical applications. Their mechanical and biological properties may be tuned through various strategies such as blending, conjugating and cross-linking. Blending is the most common method to modify fibroin and spidroin properties on demand, this review article aims to categorize and evaluate the effects of blending fibroin and spidroin with different natural and synthetic polymers. Increased polarity and hydrophilicity end to hydrogen bonding triggered conformational change in fibroin and spidroin blends. The effect of polarity and hydrophilicity of the blending compound is discussed and categorized to a combinatorial, synergistic and indirect impacts. This outlook guides us to choose the blending compounds mindfully as this mixing affects the biochemical and biophysical characteristics of the biomaterials.
Collapse
Affiliation(s)
- Narges Johari
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
| | - Azin Khodaei
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Patel M, Singh SP, Dubey DK. In‐silico investigations of dynamic mechanical behavior of
Bombyx mori
silk fibroin nanostructure under cyclic deformations and associated molecular mechanisms. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mrinal Patel
- Mechanical Engineering Department Indian Institute of Technology Delhi New Delhi India
| | - Satinder Paul Singh
- Mechanical Engineering Department Indian Institute of Technology Delhi New Delhi India
| | - Devendra K. Dubey
- Mechanical Engineering Department Indian Institute of Technology Delhi New Delhi India
| |
Collapse
|
5
|
Li C, Wu J, Shi H, Xia Z, Sahoo JK, Yeo J, Kaplan DL. Fiber-Based Biopolymer Processing as a Route toward Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105196. [PMID: 34647374 PMCID: PMC8741650 DOI: 10.1002/adma.202105196] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/04/2021] [Indexed: 05/02/2023]
Abstract
Some of the most abundant biomass on earth is sequestered in fibrous biopolymers like cellulose, chitin, and silk. These types of natural materials offer unique and striking mechanical and functional features that have driven strong interest in their utility for a range of applications, while also matching environmental sustainability needs. However, these material systems are challenging to process in cost-competitive ways to compete with synthetic plastics due to the limited options for thermal processing. This results in the dominance of solution-based processing for fibrous biopolymers, which presents challenges for scaling, cost, and consistency in outcomes. However, new opportunities to utilize thermal processing with these types of biopolymers, as well as fibrillation approaches, can drive renewed opportunities to bridge this gap between synthetic plastic processing and fibrous biopolymers, while also holding sustainability goals as critical to long-term successful outcomes.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Haoyuan Shi
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY 14853, USA
| | - Zhiyu Xia
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY 14853, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
6
|
Cai B, Gu H, Wang F, Printon K, Gu Z, Hu X. Ultrasound regulated flexible protein materials: Fabrication, structure and physical-biological properties. ULTRASONICS SONOCHEMISTRY 2021; 79:105800. [PMID: 34673337 PMCID: PMC8560629 DOI: 10.1016/j.ultsonch.2021.105800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 05/03/2023]
Abstract
Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials.
Collapse
Affiliation(s)
- Bowen Cai
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hanling Gu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Kyle Printon
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Zhenggui Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
7
|
Santos FV, Yoshioka SA, Branciforti MC. Large‐area thin films of silk fibroin prepared by two methods with formic acid as solvent and glycerol as plasticizer. J Appl Polym Sci 2021. [DOI: 10.1002/app.50759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Francisco Vieira Santos
- Department of Materials Engineering, Sao Carlos School of Engineering University of Sao Paulo Sao Carlos Brasil Brazil
| | | | - Marcia Cristina Branciforti
- Department of Materials Engineering, Sao Carlos School of Engineering University of Sao Paulo Sao Carlos Brasil Brazil
| |
Collapse
|
8
|
Wang X, Liu J, Jing H, Li B, Sun Z, Li B, Kong D, Leng X, Wang Z. Biofabrication of poly(l-lactide-co-ε-caprolactone)/silk fibroin scaffold for the application as superb anti-calcification tissue engineered prosthetic valve. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111872. [PMID: 33579497 DOI: 10.1016/j.msec.2021.111872] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
In this study, electrospun scaffolds were fabricated by blending poly(l-lactide-co-ε-caprolactone) (PLCL) and silk fibroin (SF) with different ratios, and further the feasibility of electrospun PLCL/SF scaffolds were evaluated for application of tissue engineered heart valve (TEHV). Scanning electron microscopy (SEM) results showed that the surface of PLCL/SF electrospun scaffolds was smooth and uniform while the mechanical properties were appropriate as valve prosthesis. In vitro cytocompatibility evaluation results demonstrated that all of the PLCL/SF electrospun scaffolds were cytocompatible and valvular interstitial cells (VICs) cultured on PLCL/SF scaffolds of 80/20 & 70/30 ratios exhibited the best cytocompatibility. The in vitro osteogenic differentiation of VICs including alkaline phosphatase (ALP) activity and quantitative polymerase chain reaction (qPCR) assays indicated that PLCL/SF scaffolds of 80/20 & 90/10 ratios behaved better anti-calcification ability. In the in vivo calcification evaluation model of rat subdermal implantation, PLCL/SF scaffolds of 80/20 & 90/10 ratios presented better anti-calcification ability, which was consistent with the in vitro results. Moreover, PLCL/SF scaffolds of 80/20 & 70/30 ratios showed significantly enhanced cell infiltration and M2 macrophage with higher CD206+/CD68+ ratio. Collectively, our data demonstrated that electrospun scaffolds with the PLCL/SF ratio of 80/20 hold great potential as TEHV materials.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin 300385, China.
| | - Huimin Jing
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Binhan Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhiting Sun
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Boxuan Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Zhihong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
9
|
Patel M, Dubey DK, Singh SP. Phenomenological models of Bombyx mori silk fibroin and their mechanical behavior using molecular dynamics simulations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110414. [DOI: 10.1016/j.msec.2019.110414] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 11/26/2022]
|
10
|
Sha J, Chen X, Ma L. Concentration‐dependent conformation transition of regenerated silk fibroin induced by graphene oxide nanosheets incorporation. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jin Sha
- School of Mechanical and Power Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xin Chen
- School of Mechanical and Power Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Liang Ma
- School of Mechanical and Power Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
11
|
Study of phase separation in blends of silk fibroin and sodium alginate in solution and in solid state. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1594-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Numata K, Ifuku N, Isogai A. Silk Composite with a Fluoropolymer as a Water-Resistant Protein-Based Material. Polymers (Basel) 2018; 10:E459. [PMID: 30966494 PMCID: PMC6415215 DOI: 10.3390/polym10040459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 01/22/2023] Open
Abstract
Silk-based materials are water-sensitive and show different physical properties at different humidities and under wet/dry conditions. To overcome the water sensitivity of silk-based materials, we developed a silk composite material with a fluoropolymer. Blending and coating the silk protein-based materials, such as films and textiles, with the fluoropolymer enhanced the surface hydrophobicity, water vapor barrier properties, and size stability during shrinkage tests. This material design with a protein biopolymer and a fluoropolymer is expected to broaden the applicability of protein-based materials.
Collapse
Affiliation(s)
- Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan.
| | - Nao Ifuku
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan.
| | - Akira Isogai
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
13
|
Srivastava CM, Purwar R, Gupta A, Sharma D. Dextrose modified flexible tasar and muga fibroin films for wound healing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:104-114. [DOI: 10.1016/j.msec.2017.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/29/2016] [Accepted: 02/06/2017] [Indexed: 12/19/2022]
|
14
|
Numata K, Ifuku N, Masunaga H, Hikima T, Sakai T. Silk Resin with Hydrated Dual Chemical-Physical Cross-Links Achieves High Strength and Toughness. Biomacromolecules 2017; 18:1937-1946. [DOI: 10.1021/acs.biomac.7b00376] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Keiji Numata
- Enzyme
Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi,
Saitama 351-0198, Japan
| | - Nao Ifuku
- Enzyme
Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi,
Saitama 351-0198, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho,
Sayo-gun, Hyogo 679-5198, Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takamasa Sakai
- Department
of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
15
|
Zhang Y, Li XS, Guex AG, Liu SS, Müller E, Malini RI, Zhao HJ, Rottmar M, Maniura-Weber K, Rossi RM, Spano F. A compliant and biomimetic three-layered vascular graft for small blood vessels. Biofabrication 2017; 9:025010. [PMID: 28382923 DOI: 10.1088/1758-5090/aa6bae] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Engineering a small diameter vascular graft with mechanical and biological properties comparable to living tissues remains challenging. Often, current devices lead to thrombosis and unsatisfactory long-term patency as a result of poor blood compatibility and a mismatch between the mechanical properties of the living tissue and the implanted biomaterial. Addressing all these requirements is essential to produce scaffolds able to survive throughout the life of the patient. For this purpose, we fabricated a novel three-layered vascular graft by combining electrospinning and braiding. Mirroring the structure of human blood vessels, the proposed device is composed of three layers: the intima, the media, and the adventitia. The intima and media layers were obtained by sequentially electrospinning silk fibroin (SF) and poly(L-lactide-co-ε-caprolactone), with ratios selected to match the mechanical properties of the native tissue. For the outer layer, the adventitia, SF yarns were braided on top of the electrospun tubes to create a structure able to withstand high pressures. Compliance, Young's modulus and deformability of the obtained scaffold were similar to that of human blood vessels. Additionally, cytocompatibility of the two layers, media and intima, was assessed in vitro by analysing cell metabolic activity and proliferation of endothelial cells and smooth muscle cells, respectively. Furthermore, heparin functionalization of the scaffolds led to improved anticoagulant properties upon incubation in whole blood. The obtained results indicate a potential application of the herewith designed three-layered construct as a vascular graft for small diameter blood vessel engineering.
Collapse
Affiliation(s)
- Y Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Balčytis A, Ryu M, Wang X, Novelli F, Seniutinas G, Du S, Wang X, Li J, Davis J, Appadoo D, Morikawa J, Juodkazis S. Silk: Optical Properties over 12.6 Octaves THz-IR-Visible-UV Range. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E356. [PMID: 28772716 PMCID: PMC5507002 DOI: 10.3390/ma10040356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/02/2017] [Accepted: 03/23/2017] [Indexed: 12/04/2022]
Abstract
Domestic (Bombyx mori) and wild (Antheraea pernyi) silk fibers were characterised over a wide spectral range from THz 8 cm -1 ( λ = 1.25 mm, f = 0.24 THz) to deep-UV 50 × 10 3 cm - 1 ( λ = 200 nm, f = 1500 THz) wavelengths or over a 12.6 octave frequency range. Spectral features at β-sheet, α-coil and amorphous fibroin were analysed at different spectral ranges. Single fiber cross sections at mid-IR were used to determine spatial distribution of different silk constituents and revealed an α-coil rich core and more broadly spread β-sheets in natural silk fibers obtained from wild Antheraea pernyi moths. Low energy T-ray bands at 243 and 229 cm -1 were observed in crystalline fibers of domestic and wild silk fibers, respectively, and showed no spectral shift down to 78 K temperature. A distinct 20±4 cm-1 band was observed in the crystalline Antheraea pernyi silk fibers. Systematic analysis and assignment of the observed spectral bands is presented. Water solubility and biodegradability of silk, required for bio-medical and sensor applications, are directly inferred from specific spectral bands.
Collapse
Affiliation(s)
- Armandas Balčytis
- School of Science, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania.
- These authors contributed equally to this work..
| | - Meguya Ryu
- Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.
- These authors contributed equally to this work..
| | - Xuewen Wang
- School of Science, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
- These authors contributed equally to this work..
| | - Fabio Novelli
- School of Science, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
- Current address: Ruhr-University Bochum, 44801 Bochum, Germany..
| | - Gediminas Seniutinas
- School of Science, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
- Current address: Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland..
| | - Shan Du
- Australian Future Fibres Research and Innovation Centre, Institute for Frontier Materials, Deakin University, Geelong, VIC 3220, Australia.
| | - Xungai Wang
- Australian Future Fibres Research and Innovation Centre, Institute for Frontier Materials, Deakin University, Geelong, VIC 3220, Australia.
| | - Jingliang Li
- Australian Future Fibres Research and Innovation Centre, Institute for Frontier Materials, Deakin University, Geelong, VIC 3220, Australia.
| | - Jeffrey Davis
- School of Science, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Dominique Appadoo
- Australian Synchrotron, Blackburn Road, Clayton, VIC 3168, Australia.
| | - Junko Morikawa
- Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.
| | - Saulius Juodkazis
- School of Science, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
- Melbourne Centre for Nanofabrication, the Victorian Node of the Australian National Fabrication Facility, 151 Wellington Rd., Clayton, VIC 3168, Australia.
| |
Collapse
|
17
|
Srivastava CM, Purwar R. Chitosan-finishedAntheraea mylittasilk fibroin nonwoven composite films for wound dressing. J Appl Polym Sci 2016. [DOI: 10.1002/app.44341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chandra Mohan Srivastava
- Department of Applied Chemistry and Polymer Technology; Delhi Technological University; Shahbad, Daulatpur Bawana Road Delhi 110042 India
| | - Roli Purwar
- Department of Applied Chemistry and Polymer Technology; Delhi Technological University; Shahbad, Daulatpur Bawana Road Delhi 110042 India
| |
Collapse
|
18
|
Boulet-Audet M, Holland C, Gheysens T, Vollrath F. Dry-Spun Silk Produces Native-Like Fibroin Solutions. Biomacromolecules 2016; 17:3198-3204. [PMID: 27526078 PMCID: PMC5059755 DOI: 10.1021/acs.biomac.6b00887] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Silk’s
outstanding mechanical properties and energy efficient
solidification mechanisms provide inspiration for biomaterial self-assembly
as well as offering a diverse platform of materials suitable for many
biotechnology applications. Experiments now reveal that the mulberry
silkworm Bombyx mori secretes its silk
in a practically “unspun” state that retains much of
the solvent water and exhibits a surprisingly low degree of molecular
order (β-sheet crystallinity) compared to the state found in
a fully formed and matured fiber. These new observations challenge
the general understanding of silk spinning and in particular the role
of the spinning duct for structure development. Building on this discovery
we report that silk spun in low humidity appears to arrest a molecular
annealing process crucial for β-sheet formation. This, in turn,
has significant positive implications, enabling the production of
a high fidelity reconstituted silk fibroin with properties akin to
the gold standard of unspun native silk.
Collapse
Affiliation(s)
- Maxime Boulet-Audet
- Department of Zoology, Oxford University , Oxford, United Kingdom.,Department of Life Sciences, Imperial College London , London, United Kingdom
| | - Chris Holland
- Department of Zoology, Oxford University , Oxford, United Kingdom.,Department of Materials Science and Engineering, The University of Sheffield , Sheffield, United Kingdom
| | - Tom Gheysens
- Department of Zoology, Oxford University , Oxford, United Kingdom.,Department of Organic and Macromolecular Chemistry, University of Ghent , Ghent, Belgium
| | - Fritz Vollrath
- Department of Zoology, Oxford University , Oxford, United Kingdom
| |
Collapse
|
19
|
Guan J, Wang Y, Mortimer B, Holland C, Shao Z, Porter D, Vollrath F. Glass transitions in native silk fibres studied by dynamic mechanical thermal analysis. SOFT MATTER 2016; 12:5926-5936. [PMID: 27320178 DOI: 10.1039/c6sm00019c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silks are a family of semi-crystalline structural materials, spun naturally by insects, spiders and even crustaceans. Compared to the characteristic β-sheet crystalline structure in silks, the non-crystalline structure and its composition deserves more attention as it is equally critical to the filaments' high toughness and strength. Here we further unravel the structure-property relationship in silks using Dynamic Mechanical Thermal Analysis (DMTA). This technique allows us to examine the most important structural relaxation event of the disordered structure the disordered structure, the glass transition (GT), in native silk fibres of the lepidopteran Bombyx mori and Antheraea pernyi and the spider Nephila edulis. The measured glass transition temperature Tg, loss tangent tan δ and dynamic storage modulus are quantitatively modelled based on Group Interaction Modelling (GIM). The "variability" issue in native silks can be conveniently explained by the different degrees of structural disorder as revealed by DMTA. The new insights will facilitate a more comprehensive understanding of the structure-property relations for a wide range of biopolymers.
Collapse
Affiliation(s)
- Juan Guan
- School of Materials Science and Engineering, International Research Center for Advanced Structural and Biomaterials, Beihang University, Beijing, 100191, China.
| | - Yu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Beth Mortimer
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - David Porter
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Fritz Vollrath
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| |
Collapse
|
20
|
Yoshioka T, Tashiro K, Ohta N. Molecular Orientation Enhancement of Silk by the Hot-Stretching-Induced Transition from α-Helix-HFIP Complex to β-Sheet. Biomacromolecules 2016; 17:1437-48. [PMID: 26974170 DOI: 10.1021/acs.biomac.6b00043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enhancing the molecular orientation of the regenerated silk fibroin (RF) up to a level comparable to the native silk is highly challenging. Our novel and promising strategy for the poststretching process is (1) creating at first an α-helix-HFIP complex with a hexagonal packing as an intermediate state and then (2) stretching it at a high temperature to induce the helix-to-sheet structural phase transition. Here we show for the first time the significantly high stretching efficiency of the proposed technique compared with the conventional wet-stretching techniques and the successful achievement of higher crystalline orientation and higher Young's modulus compared even with the native silk. The detailed structural analysis based on the time-resolved simultaneous measurement of stress-strain curve, synchrotron X-ray scatterings, and FTIR has revealed the structural transition mechanism from the hexagonally packed α-helix-HFIP complex to the highly oriented β-sheet crystalline state as well as the critical level of crystal orientation needed for the helix-to-sheet transition.
Collapse
Affiliation(s)
- Taiyo Yoshioka
- Department of Future Industry-oriented Basic Science and Materials, Graduate School of Engineering, Toyota Technological Institute , Tempaku, Nagoya 468-8511, Japan
| | - Kohji Tashiro
- Department of Future Industry-oriented Basic Science and Materials, Graduate School of Engineering, Toyota Technological Institute , Tempaku, Nagoya 468-8511, Japan
| | - Noboru Ohta
- Japan Synchrotron Radiation Research Institute , 1-1 Koto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
21
|
Yazawa K, Ishida K, Masunaga H, Hikima T, Numata K. Influence of Water Content on the β-Sheet Formation, Thermal Stability, Water Removal, and Mechanical Properties of Silk Materials. Biomacromolecules 2016; 17:1057-66. [DOI: 10.1021/acs.biomac.5b01685] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kenjiro Yazawa
- Enzyme
Research Team, RIKEN Center for Sustainable Resource Science, 2-1
Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kana Ishida
- Enzyme
Research Team, RIKEN Center for Sustainable Resource Science, 2-1
Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Spiber Inc., 234-1, Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron
Radiation Research Institute, 1-1-1,
Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8
Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takaaki Hikima
- RIKEN SPring-8
Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Keiji Numata
- Enzyme
Research Team, RIKEN Center for Sustainable Resource Science, 2-1
Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
22
|
Mortimer B, Guan J, Holland C, Porter D, Vollrath F. Linking naturally and unnaturally spun silks through the forced reeling of Bombyx mori. Acta Biomater 2015; 11:247-55. [PMID: 25242653 DOI: 10.1016/j.actbio.2014.09.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/18/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
The forced reeling of silkworms offers the potential to produce a spectrum of silk filaments, spun from natural silk dope and subjected to carefully controlled applied processing conditions. Here we demonstrate that the envelope of stress-strain properties for forced reeled silks can encompass both naturally spun cocoon silk and unnaturally processed artificial silk filaments. We use dynamic mechanical thermal analysis (DMTA) to quantify the structural properties of these silks. Using this well-established mechanical spectroscopic technique, we show high variation in the mechanical properties and the associated degree of disordered hydrogen-bonded structures in forced reeled silks. Furthermore, we show that this disorder can be manipulated by a range of processing conditions and even ameliorated under certain parameters, such as annealing under heat and mechanical load. We conclude that the powerful combination of forced reeling silk and DMTA has tied together native/natural and synthetic/unnatural extrusion spinning. The presented techniques therefore have the ability to define the potential of Bombyx-derived proteins for use in fibre-based applications and serve as a roadmap to improve fibre quality via post-processing.
Collapse
|
23
|
Wang Y, Guan J, Hawkins N, Porter D, Shao Z. Understanding the variability of properties in Antheraea pernyi silk fibres. SOFT MATTER 2014; 10:6321-6331. [PMID: 25030083 DOI: 10.1039/c4sm01172d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Variability is a common feature of natural silk fibres, caused by a range of natural processing conditions. Better understanding of variability will not only be favourable for explaining the enviable mechanical properties of animal silks but will provide valuable information for the design of advanced artificial and biomimetic silk-like materials. In this work, we have investigated the origin of variability in forcibly reeled Antheraea pernyi silks from different individuals using dynamic mechanical thermal analysis (DMTA) combined with the effect of polar solvent penetration. Quasi-static tensile curves in different media have been tested to show the considerable variability of tensile properties between samples from different silkworms. The DMTA profiles (as a function of temperature or humidity) through the glass transition region of different silks as well as dynamic mechanical properties after high temperature and water annealing are analysed in detail to identify the origin of silk variability in terms of molecular structures and interactions, which indicate that different hydrogen bonded structures exist in the amorphous regions and they are notably different for silks from different individuals. Solubility parameter effects of solvents are quantitatively correlated with the different glass transitions values. Furthermore, the overall ordered fraction is shown to be a key parameter to quantify the variability in the different silk fibres, which is consistent with DMTA and FTIR observations.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.
| | | | | | | | | |
Collapse
|
24
|
Liu L, Yang X, Yu H, Ma C, Yao J. Biomimicking the structure of silk fibers via cellulose nanocrystal as β-sheet crystallite. RSC Adv 2014. [DOI: 10.1039/c4ra01284d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Biomimic silk fibers with refined crystalline structure were produced via incorporating cellulose nanocrystals into silk fibroin matrix to mimic the β-sheet crystallites in natural silk. The fibers exhibit excellent thermal and mechanical properties, attributed to the strong hydrogen bonding interactions between cellulose nanocrystals and silk fibroin as well as cellulose nanocrystal-induced ordered structure.
Collapse
Affiliation(s)
- Lin Liu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018, China
- National Engineering Lab of Textile Fiber Materials & Processing Technology
| | - Xiaogang Yang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018, China
| | - Houyong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018, China
- National Engineering Lab of Textile Fiber Materials & Processing Technology
| | - Chao Ma
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018, China
| | - Juming Yao
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018, China
- National Engineering Lab of Textile Fiber Materials & Processing Technology
| |
Collapse
|
25
|
Zhou L, Wang Q, Wen J, Chen X, Shao Z. Preparation and characterization of transparent silk fibroin/cellulose blend films. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Guan J, Porter D, Vollrath F. Thermally Induced Changes in Dynamic Mechanical Properties of Native Silks. Biomacromolecules 2013; 14:930-7. [DOI: 10.1021/bm400012k] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan Guan
- Department
of Zoology, University of Oxford, OX1 3PS,
Oxford, U.K
| | - David Porter
- Department
of Zoology, University of Oxford, OX1 3PS,
Oxford, U.K
| | - Fritz Vollrath
- Department
of Zoology, University of Oxford, OX1 3PS,
Oxford, U.K
| |
Collapse
|
27
|
Mhuka V, Dube S, Nindi MM. Chemical, structural and thermal properties of Gonometa postica silk fibroin, a potential biomaterial. Int J Biol Macromol 2013; 52:305-11. [DOI: 10.1016/j.ijbiomac.2012.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
|