1
|
Lin C, Peng R, Shi J, Ge Z. Research progress and application of high efficiency organic solar cells based on benzodithiophene donor materials. EXPLORATION (BEIJING, CHINA) 2024; 4:20230122. [PMID: 39175891 PMCID: PMC11335474 DOI: 10.1002/exp.20230122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
In recent decades, the demand for clean and renewable energy has grown increasingly urgent due to the irreversible alteration of the global climate change. As a result, organic solar cells (OSCs) have emerged as a promising alternative to address this issue. In this review, we summarize the recent progress in the molecular design strategies of benzodithiophene (BDT)-based polymer and small molecule donor materials since their birth, focusing on the development of main-chain engineering, side-chain engineering and other unique molecular design paths. Up to now, the state-of-the-art power conversion efficiency (PCE) of binary OSCs prepared by BDT-based donor materials has approached 20%. This work discusses the potential relationship between the molecular changes of donor materials and photoelectric performance in corresponding OSC devices in detail, thereby presenting a rational molecular design guidance for stable and efficient donor materials in future.
Collapse
Affiliation(s)
- Congqi Lin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
- Faculty of Materials and Chemical EngineeringNingbo UniversityNingboPeople's Republic of China
| | - Ruixiang Peng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Jingyu Shi
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| |
Collapse
|
3
|
Sun L, Xu X, Song S, Zhang Y, Miao C, Liu X, Xing G, Zhang S. Medium‐Bandgap Conjugated Polymer Donors for Organic Photovoltaics. Macromol Rapid Commun 2019; 40:e1900074. [DOI: 10.1002/marc.201900074] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/30/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Liya Sun
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Xiangfei Xu
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Shan Song
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Yangqian Zhang
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Chunyang Miao
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Xiang Liu
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Guichuan Xing
- Institute of Applied Physics and Materials EngineeringUniversity of Macau Macao SAR 999078 China
| | - Shiming Zhang
- L. Sun, X. Xu, S. Song, Y. Zhang, Dr. C. Miao, Prof. X. Liu, Prof. S. ZhangKey Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 P. R. China
| |
Collapse
|
4
|
Synthesis and Characterization of Cyclopentadithiophene and Thienothiophene-Based Polymers for Organic Thin-Film Transistors and Solar Cells. Macromol Res 2018. [DOI: 10.1007/s13233-018-6130-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Goker S, Hizalan G, Aktas E, Kutkan S, Cirpan A, Toppare L. 2,1,3-Benzooxadiazole, thiophene and benzodithiophene based random copolymers for organic photovoltaics: thiophene versus thieno[3,2-b]thiophene as π-conjugated linkers. NEW J CHEM 2016. [DOI: 10.1039/c6nj02469f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Influence of spacers on the optoelectronic properties of polymers.
Collapse
Affiliation(s)
- Seza Goker
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara
- Turkey
| | - Gonul Hizalan
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara
- Turkey
| | - Ece Aktas
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara
- Turkey
| | - Seda Kutkan
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara
- Turkey
| | - Ali Cirpan
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara
- Turkey
- Department of Polymer Science and Technology
| | - Levent Toppare
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara
- Turkey
- Department of Polymer Science and Technology
| |
Collapse
|
7
|
Huo L, Liu T, Fan B, Zhao Z, Sun X, Wei D, Yu M, Liu Y, Sun Y. Organic Solar Cells Based on a 2D Benzo[1,2-b:4,5-b']difuran-Conjugated Polymer with High-Power Conversion Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:6969-6975. [PMID: 26422791 DOI: 10.1002/adma.201503023] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/30/2015] [Indexed: 06/05/2023]
Abstract
A novel 2D benzodifuran (BDF)-based copolymer (PBDF-T1) is synthesized. Polymer solar cells fabricated with PBDF-T1 show high power conversion efficiency of 9.43% and fill factor of 77.4%, which is higher than the performance of its benzothiophene (BDT) counterpart (PBDT-T1). These results provide important progress for BDF-based copolymers and demonstrate that BDF-based copolymers can be competitive with the well-studied BDT counterparts via molecular structure design and device optimization.
Collapse
Affiliation(s)
- Lijun Huo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Heeger Beijing Research and Development Center, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Tao Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Heeger Beijing Research and Development Center, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Bingbing Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Heeger Beijing Research and Development Center, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaobo Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Heeger Beijing Research and Development Center, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Mingming Yu
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanming Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Heeger Beijing Research and Development Center, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
8
|
Geng Y, Huang J, Tajima K, Zeng Q, Zhou E. A low band gap n-type polymer based on dithienosilole and naphthalene diimide for all-polymer solar cells application. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|