1
|
Kowalczuk K, Wegner VD, Mosig AS, Schacher FH. Tailoring the Degradation Time of Polycationic PEG-Based Hydrogels toward Dynamic Cell Culture Matrices. ACS APPLIED BIO MATERIALS 2024; 7:2402-2412. [PMID: 38470448 PMCID: PMC11022240 DOI: 10.1021/acsabm.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Poly(ethylene glycol)-based (PEG) hydrogels provide an ideal platform to obtain well-defined and tailor-made cell culture matrices to enhance in vitro cell culture conditions, although cell adhesion is often challenging when the cells are cultivated on the substrate surface. We herein demonstrate two approaches for the synthesis of polycationic PEG-based hydrogels which were modified to enhance cell-matrix interactions, to improve two-dimensional (2D) cell culture, and catalyze hydrolytic degradation. While the utilization of N,N-(bisacryloxyethyl) amine (BAA) as cross-linker for in situ gelation provides degradable scaffolds for dynamic cell culture, the incorporation of short segments of poly(N-(3-(dimethylamino)propyl)acrylamide) (PDMAPAam) provides high local cationic charge density leading to PEG-based hydrogels with high selectivity for fibroblastic cell lines. The adsorption of transforming growth factor (TGF-β) into the hydrogels induced stimulation of fibrosis and thus the formation of collagen as a natural ECM compound. With this, these dynamic hydrogels enhance in vitro cell culture by providing a well-defined, artificial, and degradable matrix that stimulates cells to produce their own natural scaffold within a defined time frame.
Collapse
Affiliation(s)
- Kathrin Kowalczuk
- Institute
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich-Schiller-University
Jena, Philosophenweg
7, D-07743 Jena, Germany
- Cluster
of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, D-07754 Jena, Germany
| | - Valentin D. Wegner
- Institute
of Biochemistry II, Jena University Hospital, Am Nonnenplan 2-4, 07743 Jena, Germany
| | - Alexander S. Mosig
- Cluster
of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, D-07754 Jena, Germany
- Institute
of Biochemistry II, Jena University Hospital, Am Nonnenplan 2-4, 07743 Jena, Germany
- Center
for Sepsis Control and Care, Jena University
Hospital, Am Klinikum
1, 07747 Jena, Germany
| | - Felix H. Schacher
- Institute
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich-Schiller-University
Jena, Philosophenweg
7, D-07743 Jena, Germany
- Cluster
of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, D-07754 Jena, Germany
| |
Collapse
|
2
|
Elzes MR, Mertens I, Sedlacek O, Verbraeken B, Doensen ACA, Mees MA, Glassner M, Jana S, Paulusse JMJ, Hoogenboom R. Linear Poly(ethylenimine-propylenimine) Random Copolymers for Gene Delivery: From Polymer Synthesis to Efficient Transfection with High Serum Tolerance. Biomacromolecules 2022; 23:2459-2470. [PMID: 35499242 DOI: 10.1021/acs.biomac.2c00210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Naturally occurring oligoamines, such as spermine, spermidine, and putrescine, are well-known regulators of gene expression. These oligoamines frequently have short alkyl spacers with varying lengths between the amines. Linear polyethylenimine (PEI) is a polyamine that has been widely applied as a gene vector, with various formulations currently in clinical trials. In order to emulate natural oligoamine gene regulators, linear random copolymers containing both PEI and polypropylenimine (PPI) repeat units were designed as novel gene delivery agents. In general, statistical copolymerization of 2-oxazolines and 2-oxazines leads to the formation of gradient copolymers. In this study, however, we describe for the first time the synthesis of near-ideal random 2-oxazoline/2-oxazine copolymers through careful tuning of the monomer structures and reactivity as well as polymerization conditions. These copolymers were then transformed into near-random PEI-PPI copolymers by controlled side-chain hydrolysis. The prepared PEI-PPI copolymers formed stable polyplexes with GFP-encoding plasmid DNA, as validated by dynamic light scattering. Furthermore, the cytotoxicity and transfection efficiency of polyplexes were evaluated in C2C12 mouse myoblasts. While the polymer chain length did not significantly increase the toxicity, a higher PPI content was associated with increased toxicity and also lowered the amount of polymers needed to achieve efficient transfection. The transfection efficiency was significantly influenced by the degree of polymerization of PEI-PPI, whereby longer polymers resulted in more transfected cells. Copolymers with 60% or lower PPI content exhibited a good balance between high plasmid-DNA transfection efficiency and low toxicity. Interestingly, these novel PEI-PPI copolymers revealed exceptional serum tolerance, whereby transfection efficiencies of up to 53% of transfected cells were achieved even under 50% serum conditions. These copolymers, especially PEI-PPI with DP500 and a 1:1 PEI/PPI ratio, were identified as promising transfection agents for plasmid DNA.
Collapse
Affiliation(s)
- M Rachèl Elzes
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Ine Mertens
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Ondrej Sedlacek
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Bart Verbraeken
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Aniek C A Doensen
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands.,Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Maarten A Mees
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Mathias Glassner
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Somdeb Jana
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Jos M J Paulusse
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Jerzykiewicz J, Czogalla A. Polyethyleneimine-Based Lipopolyplexes as Carriers in Anticancer Gene Therapies. MATERIALS 2021; 15:ma15010179. [PMID: 35009324 PMCID: PMC8746209 DOI: 10.3390/ma15010179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Recent years have witnessed rapidly growing interest in application of gene therapies for cancer treatment. However, this strategy requires nucleic acid carriers that are both effective and safe. In this context, non-viral vectors have advantages over their viral counterparts. In particular, lipopolyplexes—nanocomplexes consisting of nucleic acids condensed with polyvalent molecules and enclosed in lipid vesicles—currently offer great promise. In this article, we briefly review the major aspects of developing such non-viral vectors based on polyethyleneimine and outline their properties in light of anticancer therapeutic strategies. Finally, examples of current in vivo studies involving such lipopolyplexes and possibilities for their future development are presented.
Collapse
|
4
|
Targeted delivery of miR-218 via decorated hyperbranched polyamidoamine for liver cancer regression. Int J Pharm 2021; 610:121256. [PMID: 34732362 DOI: 10.1016/j.ijpharm.2021.121256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 01/28/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of most common causes of cancer death worldwide. MicroRNA (miRNA) replacement gene therapy is a novel approach for HCC management. MiR-218 is a promising tumor suppressor miRNA that is down-regulated in HCC. Here, our aim was the targeted delivery of miR-218 expressing DNA plasmid (pmiR-218) to suppress HCC in vitro and in vivo. Hyperbranched polyamidoamine was synthesized via simple and economically one-pot reaction followed by decoration with lactobionic acid (LA-PAMAM) to selectively deliver and restore miR-218 expression in HCC. In vitro cytotoxicity investigations revealed the high biocompatibility of LA-PAMAM. Furthermore, decoration of hyperbranched polymer with LA moieties enabled LA-PAMAM to deliver pmiR-218 more efficiently to HepG2 cells compared to both PMAMA and naked pmiR-218. Such efficient delivery of miR-218 resulted in suppression of HepG2 proliferation and down-regulation of its oncogenic HOXA1 target. In vivo, LA-PAMAM/pmiR-218 treatment of HCC induced by DEN and CCl4 in mice leads to an obvious decrease in the number and size of HCC nodules. In addition, LA-PAMAM/pmiR-218 significantly improved the liver histological features, as well as down-regulated the HOXA1 in liver tissue. In conclusion, this study showed the potential of LA-PAMAM carrier for the targeted delivery of tumor suppressor miR-218 as a therapeutic candidate for HCC.
Collapse
|
5
|
Ullah I, Zhao J, Su B, Rukh S, Guo J, Ren XK, Xia S, Zhang W, Feng Y. Redox stimulus disulfide conjugated polyethyleneimine as a shuttle for gene transfer. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:118. [PMID: 33247778 DOI: 10.1007/s10856-020-06457-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Redox-responsive cationic polymers have gained considerable attention in gene delivery due to low cytotoxicity and spatio-temporal release of DNA into the cells. Here, we reported the synthesis of reducible disulfide conjugated polyethyleneimine (1.8 kDa) (denoted as SS-PEI) and its application to transfer pEGFP-ZNF580 plasmid (pZNF580) into EA.hy926 cell. This reducible SS-PEI polymer was prepared by one-step polycondensation reaction of low molecular weight PEI with bis-(p-nitrophenyl)-3,3'-dithiodipropionate. The SS-PEI successfully condensed pZNF580 into nano-sized complexes (170 ± 1.5 nm to 255 ± 1.6 nm) with zeta potentials of 3 ± 0.4 mV to 17 ± 0.9 mV. The complexes could be triggered to release pZNF580 when exposed to the reducing environment of 5 mM dithiothreitol. Besides, the SS-PEI exhibited low cytotoxicity. In vitro transfection results showed that SS-PEI exhibited good transfection efficiency comparable to PEI25kDa. Thus, the SS-PEI could act as an reducible gene carrier with good transfection efficiency and low cytotoxicity.
Collapse
Affiliation(s)
- Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
| | - Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
| | - Bin Su
- Department of Clinical Research, Characteristic Medical Center of Chinese People's Armed Police Force, 220 Chenglin Road, Tianjin, 300162, China
| | - Shah Rukh
- Department of Chemistry, School of Science, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
- Collaborative Innovation Centre of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
- Collaborative Innovation Centre of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin, 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of People's Armed Police Force, Tianjin, 300309, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China.
- Department of Clinical Research, Characteristic Medical Center of Chinese People's Armed Police Force, 220 Chenglin Road, Tianjin, 300162, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| |
Collapse
|
6
|
Enhanced proliferation and differentiation of neural stem cells by peptide-containing temperature-sensitive hydrogel scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111258. [PMID: 32806302 DOI: 10.1016/j.msec.2020.111258] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/03/2023]
Abstract
Hydrogel has attracted great attention in the past few years as a widely used material for repairing central nerve damage. However, conventional hydrogel bio-scaffold, such as chitosan, gelatin, and sodium alginate, lack sufficient biological activity and have limited nerve repair capabilities. Therefore, to explore biologically active and intelligent hydrogel materials is particularly important and necessary for central nerve repair. Herein, we developed a temperature-sensitive hydrogel grafted with a bioactive peptide IKVAV (Ile-Lys-Val-Ala-Val, IKVAV). The hydrogel was prepared by copolymerization of N-propan-2-ylprop-2-enamide (NIPAM) and AC-PEG-IKVAV copolymers via reversible addition-fracture chain transfer (RAFT) polymerization, using polyethylene glycol (PEGDA) and N, N'-Methylenebisacrylamide (BISAM) as cross-linking agents. The prepared hydrogel scaffold demonstrates a series of excellent properties such as rapid (de)swelling performance, good biocompatibility, regular three-dimensional porous structure, and in particular good biological activity, which can guide cell fate and mediate neuron's differentiation. Therefore, the developed peptide hydrogel scaffold provides a new strategy for designing biomaterials that are widely used in tissue engineering for central nervous system injury.
Collapse
|
7
|
Xiao YP, Zhang J, Liu YH, Huang Z, Guo Y, Yu XQ. Bioinspired pyrimidine-containing cationic polymers as effective nanocarriers for DNA and protein delivery. J Mater Chem B 2020; 8:2275-2285. [PMID: 32100787 DOI: 10.1039/c9tb02528f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic polymers have shown great potential in the delivery of nucleic acids and proteins. In this study, a series of pyrimidine-based cationic polymers were synthesized via the Michael addition reaction from pyrimidine-based linkages and low molecular weight polyethyleneimine (PEI). The structure-activity relationship (SAR) of these materials in DNA and protein delivery was investigated. These materials could condense both DNA and protein into nanoparticles with proper sizes and zeta-potentials. In vitro experiments indicated that such polymers were efficient in transporting DNA and proteins into cells. Furthermore, the bioactivity of the genes and proteins encapsulated in these polymers were maintained during the delivery processes. Among the polymers, U-PEI600 synthesized from a uracil-containing linker and PEI 600 Da mediated comparable gene expression to PEI 25 kDa. Moreover, the activities of β-galactosidase delivered by U-PEI600 were well maintained after entering the cells. Evaluation using an immune response assay showed that the U-PEI600/OVA polyplex could stimulate greater production of immune factors with low cytotoxicity. Our study provides a strategy for the construction of cationic polymeric gene and cytosolic protein vectors with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yu Guo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
8
|
Wu XR, Zhang J, Zhang JH, Xiao YP, He X, Liu YH, Yu XQ. Amino Acid-Linked Low Molecular Weight Polyethylenimine for Improved Gene Delivery and Biocompatibility. Molecules 2020; 25:E975. [PMID: 32098282 PMCID: PMC7070781 DOI: 10.3390/molecules25040975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
The construction of efficient and low toxic non-viral gene delivery vectors is of great significance for gene therapy. Herein, two novel polycations were constructed via Michael addition from low molecular weight polyethylenimine (PEI) 600 Da and amino acid-containing linkages. Lysine and histidine were introduced for the purpose of improved DNA binding and pH buffering capacity, respectively. The ester bonds afforded the polymer biodegradability, which was confirmed by the gel permeation chromatography (GPC) measurement. The polymers could well condense DNA into nanoparticles and protect DNA from degradation by nuclease. Compared with PEI 25 kDa, these polymers showed higher transfection efficiency, lower toxicity, and better serum tolerance. Study of this mechanism revealed that the polyplexes enter the cells mainly through caveolae-mediated endocytosis pathway; this, together with their biodegradability, facilitates the internalization of polyplexes and the release of DNA. The results reveal that the amino acid-linked low molecular weight PEI polymers could serve as promising candidates for non-viral gene delivery.
Collapse
Affiliation(s)
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China; (X.-R.W.); (J.-H.Z.); (Y.-P.X.); (X.H.); (Y.-H.L.)
| | | | | | | | | | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China; (X.-R.W.); (J.-H.Z.); (Y.-P.X.); (X.H.); (Y.-H.L.)
| |
Collapse
|
9
|
Levy A, Goldstein H, Brenman D, Diesendruck CE. Effect of intramolecular crosslinker properties on the mechanochemical fragmentation of covalently folded polymers. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Avishai Levy
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Haifa 3200008 Israel
| | - Hadar Goldstein
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Haifa 3200008 Israel
| | - Dolev Brenman
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Haifa 3200008 Israel
| | - Charles E. Diesendruck
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Haifa 3200008 Israel
- Russell‐Berrie Nanotechnology InstituteTechnion – Israel Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
10
|
Liu L, Ni D, Yan Y, Wu S, Chen X, Guan J, Xiong X, Liu G. Development of a novel DNA delivery system based on rice bran polysaccharide-Fe(III) complexes. Int J Biol Macromol 2020; 142:600-608. [DOI: 10.1016/j.ijbiomac.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022]
|
11
|
Ullah I, Zhao J, Rukh S, Muhammad K, Guo J, Ren XK, Xia S, Zhang W, Feng Y. A PEG-b-poly(disulfide-l-lysine) based redox-responsive cationic polymer for efficient gene transfection. J Mater Chem B 2019; 7:1893-1905. [PMID: 32255052 DOI: 10.1039/c8tb03226b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gene therapy is concerned with the transfer of complement genes to functionally defective cells in a safe and directed manner for the treatment of the most challenging diseases. But safety issues and low transfection efficiency of the gene vectors are the major challenges, which need to be overcome. Recently, redox-responsive bioreducible polymers containing disulfide linkages have been considered as efficient gene vectors, owing to the selective degradation of the disulfide bond in the reducing environment of the cells. This enables spatiotemporal release of pDNA with no or minimum toxicity. Herein, we reported a bioreducible poly(ethyleneglycol)-b-poly(disulfide-l-lysine) cationic polymer (denoted as PEG-SSL) via a Michael addition reaction of poly(ethyleneglycol)tetraacrylate PEG(Ac)4 and the terminal amine group of poly(disulfide-l-lysine). PEG-SSL efficiently condensed the plasmid ZNF580 gene (pZNF580) forming nano-sized polyplexes (155 ± 4 to 285 ± 3 nm) with zeta potentials of 1.9 ± 0.1 to 26.7 ± 0.4 mV. PEG-SSL successfully retarded pZNF580 at a small polymer/pDNA weight ratio of 10/1 and higher. When exposed to a reducing environment of 5 mM DTT, it rapidly released genes even at higher weight ratios of the PEG-SSL polymer in the PEG-SSL/pDNA complexes. The PEG-SSL/pZNF580 complexes exhibited good stability when exposed to DNase I and efficiently protected pDNA from degradation. In vitro transfection and cytotoxicity were investigated in EA.hy926 cells. The results showed that PEG-SSL successfully delivered pZNF580 into the cells with less cytotoxicity compared to PEI25kDa. The flow cytometry and confocal scanning laser microscopy results indicated that PEG-SSL polyplexes exhibited good cellular uptake and nuclear co-localization rates. All these results implied that PEG-SSL had the potential as a non-viral vector for gene transfection.
Collapse
Affiliation(s)
- Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Schädel N, Gebhardt J, Löffler M, Garnier D, Hansen N, Laschat S. Rotational barriers of carbamate-protected amine crosslinkers for hydrogels: A combined experimental and computational study. J PHYS ORG CHEM 2019. [DOI: 10.1002/poc.3936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nicole Schädel
- Institut für Organische Chemie; Universität Stuttgart; Stuttgart Germany
| | - Julia Gebhardt
- Institut für Technische Thermodynamik und Thermische Verfahrenstechnik, Universität Stuttgart; Stuttgart Germany
| | - Max Löffler
- Institut für Organische Chemie; Universität Stuttgart; Stuttgart Germany
| | - Delphine Garnier
- Institut für Organische Chemie; Universität Stuttgart; Stuttgart Germany
- Plateforme d'Analyse Chimique de Strasbourg-Illkirch (PACSI - GDS 3670) and Laboratoire de Conception et Application de Molécules Bioactives (UMR7199), Faculté de Pharmacie; Université de Strasbourg/CNRS; 67401 Illkirch Cedex France
| | - Niels Hansen
- Institut für Technische Thermodynamik und Thermische Verfahrenstechnik, Universität Stuttgart; Stuttgart Germany
| | - Sabine Laschat
- Institut für Organische Chemie; Universität Stuttgart; Stuttgart Germany
| |
Collapse
|
13
|
Guo Y, Yu QY, Zhang J, Yang HZ, Huang Z, Yu XQ. Zn( ii)-cyclen complex-based liposomes for gene delivery: the advantage of Zn coordination. NEW J CHEM 2019. [DOI: 10.1039/c9nj03242h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zn-Coordination significantly improves the gene transfection efficiency and reduces the cytotoxicity of cyclen-based cationic liposomes.
Collapse
Affiliation(s)
- Yu Guo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Hui-Zhen Yang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
14
|
Luo Z, Li J, Qu J, Sheng W, Yang J, Li M. Cationized Bombyx mori silk fibroin as a delivery carrier of the VEGF165-Ang-1 coexpression plasmid for dermal tissue regeneration. J Mater Chem B 2018; 7:80-94. [PMID: 32254952 DOI: 10.1039/c8tb01424h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The angiogenesis of an implanted construct is among the most important issues in tissue engineering. In this study, spermine was used to modify Bombyx mori silk fibroin (BSF) to synthesize cationized BSF (CBSF). BSF and CBSF were coated in sequence on the surface of polyethyleneimine (PEI)/vascular endothelial growth factor 165/angiopoietin-1 coexpression plasmid DNA (pDNA) complexes to form CBSF/BSF/PEI/pDNA quaternary complexes. BSF scaffolds loaded with carrier/pDNA complexes were prepared as dermal regeneration scaffolds by freeze-drying. In one set of experiments, scaffolds were used to cover a chick embryo chorioallantoic membrane (CAM) to investigate the influence of carrier/pDNA complexes on angiogenesis; in another set of experiments, scaffolds were implanted into dorsal full-thickness wounds in Sprague-Dawley rats to evaluate the effect of carrier/pDNA complex-loaded BSF scaffolds on neovascularization and dermal tissue regeneration. After modification with spermine, the surface zeta potential value of BSF rose to +11 mV from an initial value of -9 mV, and the isoelectric point of BSF increased from 4.20 to 9.04. The in vitro transfection of human umbilical vein endothelial cells (EA.hy926) with quaternary complexes revealed that the CBSF/BSF/PEI/pDNA complexes clearly exhibited lower cytotoxicity and higher transfection efficiency than the PEI/pDNA complexes. The CAM assay showed a more abundant branching pattern of blood vessels in BSF scaffolds loaded with CBSF/BSF/PEI/pDNA complexes than in BSF scaffolds without complexes or loaded with PEI/pDNA complexes. The in vivo experimental results demonstrated that the incorporation of CBSF/BSF/PEI/pDNA complexes could effectively enhance angiogenesis in the implanted BSF scaffolds, thereby promoting the regeneration of dermal tissue, providing a new scaffold for the regeneration of dermal tissue and other tissues containing blood vessels.
Collapse
Affiliation(s)
- Zuwei Luo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | |
Collapse
|
15
|
Xiao YP, Zhang J, Liu YH, Zhang JH, Yu QY, Huang Z, Yu XQ. Low molecular weight PEI-based fluorinated polymers for efficient gene delivery. Eur J Med Chem 2018; 162:602-611. [PMID: 30472606 DOI: 10.1016/j.ejmech.2018.11.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 02/02/2023]
Abstract
Fluorinated biomaterials have been reported to have promising features as non-viral gene carriers. In this study, a series of fluorinated polymeric gene carriers were synthesized via Michael addition from low molecular weight polyethyleneimine (PEI) and fluorobenzoic acids (FBAs)-based linking compounds with different numbers of fluorine atoms. The structure-activity relationship (SAR) of these materials was systematically investigated. SAR studies showed that fluorine could screen the positive charge of these polymers. However, this shielding effect of fluorine would endow fluorinated polymers with good balance between DNA condensation and release. In vitro transfection results suggested that these fluorinated polymers could mediate efficient gene delivery. Flow cytometry and confocal microscopy studies demonstrated that more efficient cell uptake could be achieved by fluorinated materials with more fluorine atoms. Cytotoxicity assays showed that these fluorinated materials exhibited very low cytotoxicity even at high mass ratios. This study demonstrates that FBA-based fluorinated biopolymers have the potential for practical application.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
16
|
Xun MM, Huang Z, Xiao YP, Liu YH, Zhang J, Zhang JH, Yu XQ. Synthesis and Properties of Low-Molecular-Weight PEI-Based Lipopolymers for Delivery of DNA. Polymers (Basel) 2018; 10:E1060. [PMID: 30960985 PMCID: PMC6403936 DOI: 10.3390/polym10101060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/22/2018] [Accepted: 09/22/2018] [Indexed: 01/08/2023] Open
Abstract
Rapid enzymatic degradation and fragmentation during DNA administration can result in limited gene expression, and consequently, poor efficacy. It is necessary to use novel vectors for DNA delivery. Herein, we aimed to design useful carriers for enhancing transfection efficiency (TE). These lipopolymers were prepared through Michael addition reactions from low-molecular-weight (LMW) polyethyleneimine (PEI) and linkers with three kinds of steroids. Agarose gel electrophoresis assay results displayed that the three lipopolymers could condense plasmid DNA well, and the formed polyplexes had appropriate sizes around 200⁻300 nm, and zeta potentials of about +25⁻40 mV. The results of in vitro experiments using HeLa, HEK293, and MCF-7 cells showed that these lipopolymers present higher TE than 25-kDa PEI, both in the absence and presence of 10% serum. Flow cytometry and confocal microscopy studies also demonstrated that these lipopolymer/DNA complexes present higher cellular uptake and intracellular distribution. The measurement of critical micelle concentration (CMC) revealed that these lipopolymers could form micelles, which are suited for drug delivery. All results suggest that the three materials may serve as hopeful candidates for gene and drug delivery in future in vivo applications.
Collapse
Affiliation(s)
- Miao-Miao Xun
- National Demonstration Center for Experimental Chemical Engineering Comprehensive Education, School of Chemical Engineering and Technology, North University of China, Taiyuan 030000, China.
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
17
|
Lin GQ, Yi WJ, Liu Q, Yang XJ, Zhao ZG. Aromatic Thioacetal-Bridged ROS-Responsive Nanoparticles as Novel Gene Delivery Vehicles. Molecules 2018; 23:E2061. [PMID: 30126108 PMCID: PMC6225261 DOI: 10.3390/molecules23082061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 01/08/2023] Open
Abstract
In this report, a series of polycations are designed and synthesized by conjugating reactive oxygen species (ROS)-responsive thioacetal-linkers to low molecular weight (LMW) polyethylenimine (PEI) via ring-opening polymerization. Their structure⁻activity relationships (SARs) as gene delivery vectors are systematically studied. Although the MWs of the target polymers are only ~9 KDa, they show good DNA binding ability. The formed polyplexes, which are stable toward serum but decomposed under ROS-conditions, have appropriate sizes (180~300 nm) and positive zeta-potentials (+35~50 mV). In vitro experiments reveal that these materials have low cytotoxicity, and higher transfection efficiency (TE) than controls. Furthermore, the title polymers exhibit excellent serum tolerance. With the present of 10% serum, the TE of the polymers even increases up to 10 times higher than 25 KDa PEI and 9 times higher than Lipofectamine 2000. The SAR studies also reveal that electron-withdrawing groups on the aromatic ring in 4a may benefit to balance between the DNA condensation and release for efficient gene transfection.
Collapse
Affiliation(s)
- Guo-Qing Lin
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Wen-Jing Yi
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Qiang Liu
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Xue-Jun Yang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Zhi-Gang Zhao
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
18
|
Yao W, Fu S, Yang G, Wang J, Wang X, Tang R. Low molecular weight PEI-grafted carboxyl-modified soybean protein as gene carriers with reduced cytotoxicity and greatly improved transfection in vitro. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1482462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Weijing Yao
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing Anhui University, Hefei, Anhui Province, P. R. China
| | - Shengxiang Fu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing Anhui University, Hefei, Anhui Province, P. R. China
| | - Guanqing Yang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing Anhui University, Hefei, Anhui Province, P. R. China
| | - Jun Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing Anhui University, Hefei, Anhui Province, P. R. China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing Anhui University, Hefei, Anhui Province, P. R. China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing Anhui University, Hefei, Anhui Province, P. R. China
| |
Collapse
|
19
|
Yao W, Cheng X, Fu S, Yan G, Wang X, Tang R. Low molecular weight polyethylenimine-grafted soybean protein gene carriers with low cytotoxicity and greatly improved transfection in vitro. J Biomater Appl 2018; 32:957-966. [PMID: 29262753 DOI: 10.1177/0885328217748021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
A series of gene carriers (SP-PEI) have been synthesized by acylation reaction between soybean protein and branched polyethylenimine with low molecular weight of 600, 1200 and 1800 Da, and designed as SP-PEI600, SP-PEI1200 and SP-PEI1800, respectively. SP-PEI could effectively condense plasmid DNA into nanoscale polyplexes with size range of 100-200 nm, and exhibited much lower cytotoxicity against 293T and SH-SY5Y cells than that of branched polyethylenimine (25 kDa). In vitro gene transfection demonstrated that SP-PEI/DNA complex displayed increased transfection against 293T and SH-SY5Y cells with the increase of the weight ratio of SP-PEI/DNA complex with or without 10% serum. At weight ratio of 24, SP-PEI1800/DNA polyplexes showed the highest transfection on SH-SY5Y cells, which was almost three folds higher than PEI (25 kDa). Furthermore, these SP-PEIs/DNA polyplexes could effectively transfect 293T and SH-SY5Y cells with or without 10% serum, suggesting their excellent serum tolerance.
Collapse
Affiliation(s)
- Weijing Yao
- School of Life Science, Anhui University, Hefei, China
| | - Xu Cheng
- School of Life Science, Anhui University, Hefei, China
| | - Shengxiang Fu
- School of Life Science, Anhui University, Hefei, China
| | - Guoqing Yan
- School of Life Science, Anhui University, Hefei, China
| | - Xin Wang
- School of Life Science, Anhui University, Hefei, China
| | - Rupei Tang
- School of Life Science, Anhui University, Hefei, China
| |
Collapse
|
20
|
Yu QY, Zhan YR, Zhang J, Luan CR, Wang B, Yu XQ. Aromatic Modification of Low Molecular Weight PEI for Enhanced Gene Delivery. Polymers (Basel) 2017; 9:polym9080362. [PMID: 30971039 PMCID: PMC6418655 DOI: 10.3390/polym9080362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022] Open
Abstract
Low molecular weight polyethylenimine (1800 Da, also referred to as oligoethylenimines, OEI) was modified with amino acids, including two aromatic amino acids (tryptophan, phenylalanine) and an aliphatic amino acid (leucine). The substitution degree of amino acids could be controlled by adjusting the feeding mole ratio of the reactants. Fluorescence spectroscopy and circular dichroism experiments demonstrated that the indole ring of tryptophan may intercalate into the DNA base pairs and contribute to efficient DNA condensation. In vitro gene expression results revealed that the modified OEIs (OEI-AAs) may provide higher transfection efficiency even than high molecular weight polyethylenimine (25 kDa, PEI), especially the aromatic tryptophan substituted OEI. Moreover, OEI-AAs exhibited excellent serum tolerance, and up to 137 times higher transfection efficiency than PEI 25 kDa that was obtained in the presence of serum. The cytotoxicity of OEI-AAs is much lower than PEI 25 kDa. This study may afford a new method for the development of low molecular weight oligomeric non-viral gene vectors with both high efficiency and biocompatibility.
Collapse
Affiliation(s)
- Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yu-Rong Zhan
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Chao-Ran Luan
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Bing Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
21
|
Li T, Wu L, Zhang J, Xi G, Pang Y, Wang X, Chen T. Hydrothermal Reduction of Polyethylenimine and Polyethylene Glycol Dual-Functionalized Nanographene Oxide for High-Efficiency Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31311-31320. [PMID: 27813400 DOI: 10.1021/acsami.6b09915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this study, a physiologically stable dual-polymer-functionalized reduced nanographene oxide (nrGO) conjugate (PEG-nrGO-PEI, RGPP) with high efficiency of gene delivery is successfully synthesized through mixing PEGylated nanographene oxide (PEG-nGO, GP) and polyethylenimine (PEI, 25 kDa) solution under 80 °C for 2 h. This hydrothermal reduction of GP during PEIylation promotes the nucleophilic reaction between the amino moieties of PEI and the epoxy groups (or carboxylic groups) in GP and then forms C-NH- groups (or NH-CO groups) to covalently connect PEI and GP, which makes the RGPP nanocomposite more stable in physiological environments and has superior gene transfection efficiency compared with the nonhydrothermally reduced PEG-nGO/PEI conjugate (GPP) obtained by mixing GP and PEI under 20 °C for 2 h. Moreover, 808 nm laser irradiation (2 W/cm2) for 25 min increases ∼1.5-fold of gene transfection efficiency for RGPP but does not increase the gene transfection efficiency of GPP. Finally, RGPP is also able to efficiently deliver functional plasmid GFP-Bax (pGFP-Bax), exhibiting ∼43% of transfection efficiency in HepG2 cells. Collectively, the RGPP developed here is a highly efficient nanocarrier for gene delivery, and this work encourages further explorations of developing functionalized reduced nano-GO for high-efficiency gene therapy.
Collapse
Affiliation(s)
- Tan Li
- MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Liping Wu
- MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Jiang Zhang
- MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Gaina Xi
- MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Yilin Pang
- MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital of Jinan University , Guangzhou, 510632, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University , Guangzhou 510631, China
| |
Collapse
|
22
|
Liu J, Feng M, Liang D, Yang J, Tang X. Vitamin E-Labeled Polyethylenimine for in vitro and in vivo Gene Delivery. Biomacromolecules 2016; 17:3153-3161. [DOI: 10.1021/acs.biomac.6b00776] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinxing Liu
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Mengke Feng
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Duanwei Liang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Jiali Yang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| |
Collapse
|
23
|
Low-Molecular Weight Polyethylenimine Modified with Pluronic 123 and RGD- or Chimeric RGD-NLS Peptide: Characteristics and Transfection Efficacy of Their Complexes with Plasmid DNA. Molecules 2016; 21:molecules21050655. [PMID: 27213305 PMCID: PMC6273895 DOI: 10.3390/molecules21050655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 01/21/2023] Open
Abstract
To solve the problem of transfection efficiency vs. cytotoxicity and tumor-targeting ability when polyethylenimine (PEI) was used as a nonviral gene delivery vector, new degradable PEI polymers were synthesized via cross-linking low-molecular-weight PEI with Pluronic P123 and then further coupled with a targeting peptide R4 (RGD) and a bifunctional R11 (RGD-NLS), which were termed as P123-PEI-R4 and P123-PEI-R11, respectively. Agarose gel electrophoresis showed that both P123-PEI-R4 and P123-PEI-R11 efficaciously condense plasmid DNA at a polymer-to-pDNA w/w ratio of 3.0 and 0.4, respectively. The polyplexes were stable in the presence of serum and could protect plasmid DNA against DNaseI. They had uniform spherical nanoparticles with appropriate sizes around 100–280 nm and zeta-potentials about +40 mV. Furthermore, in vitro experiments showed that these polyplexes had lower cytotoxicity at any concentration compared with PEI 25 kDa, thus giving promise to high transfection efficiency as compared with another P123-PEI derivate conjugated with trifunctional peptide RGD-TAT-NLS (P123-PEI-R18). More importantly, compared with the other polymers, P123-PEI-R11 showed the highest transfection efficiency with relatively lower cytotoxicity at any concentration, indicating that the new synthetic polymer P123-PEI-R11 could be used as a safe and efficient gene deliver vector.
Collapse
|
24
|
Zhang L, Yu M, Wang J, Tang R, Yan G, Yao W, Wang X. Low Molecular Weight PEI-Based Vectors via Acid-Labile Ortho Ester Linkage for Improved Gene Delivery. Macromol Biosci 2016; 16:1175-87. [PMID: 27106866 DOI: 10.1002/mabi.201600071] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/29/2016] [Indexed: 12/18/2022]
Abstract
A series of novel pH-sensitive gene delivery vectors (POEI 1, 2, and 3) are synthesized through Michael addition from low molecular weight PEI (LMW PEI) via acid-labile ortho ester linkage with terminal acrylates (OEAc) by various feed molar ratios. The obtained POEI 1 and POEI 2 can efficiently condense plasmid DNA into nanoparticles with size range of 200-300 nm and zeta-potentials of about +15 mV while protecting DNA from enzymatic digestion compared with POEI 3. Significantly, ortho ester groups of POEI main-chains can make an instantaneous degradation-response to acidic endosomal pH (≈5.0), resulting in accelerated disruption of polyplexes and intracellular DNA release. MTT assay reveals that all POEIs exhibit much lower cytotoxicity in different cells than branched PEI (25 KDa). As expected, POEI 1 and POEI 2 perform improved gene transfection in vitro, suggesting that such polycations might be promising gene vectors based on overcoming toxicity-efficiency contradiction.
Collapse
Affiliation(s)
- Lei Zhang
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, P. R. China
| | - Min Yu
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, P. R. China
| | - Jun Wang
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, P. R. China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, P. R. China
| | - Guoqing Yan
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, P. R. China
| | - Weijing Yao
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, P. R. China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, P. R. China
| |
Collapse
|
25
|
Xun MM, Zhang JH, Liu YH, Zhang J, Xiao YP, Guo Q, Li S, Yu XQ. Polyethylenimine analogs for improved gene delivery: effect of the type of amino groups. RSC Adv 2016. [DOI: 10.1039/c5ra23715g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The 1°, 2° and 3° amine composition of PEI analogs could be easily adjusted by special synthetic method, and their effects on the gene transfection were studied.
Collapse
Affiliation(s)
- Miao-Miao Xun
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Qian Guo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Shuo Li
- School of Chemical Engineering
- Chongqing University of Technology
- Chongqing 400054
- PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| |
Collapse
|
26
|
Amino Acid-Modified Polyethylenimines with Enhanced Gene Delivery Efficiency and Biocompatibility. Polymers (Basel) 2015. [DOI: 10.3390/polym7111516] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|