1
|
Shi J, Zhou J, Liu L, Miao C. Molecular dynamics simulations of single polyethylene chain folding during fast quenching using all-atom and united-atom models. Phys Chem Chem Phys 2024; 26:24995-25004. [PMID: 39300936 DOI: 10.1039/d4cp02746a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Molecular dynamics simulations have been employed to investigate the folding behavior of a single linear polyethylene (PE) chain containing 1000 backbone carbon atoms under fast quenching based on all-atom and united-atom models. The single-chain folding characteristics were studied in detail for six different force fields by analyzing the evolution of chain conformations, folded structure characterisation, free energy and crystallisation. The results show that the all-trans chain undergoes a similar two-stage chain collapse mechanism during isothermal relaxation at T = 500 K, transitioning from local collapse to global collapse into a molten globule state under different force fields. During fast quenching at 100 K ns-1, the molten globule of all-atom model transitions into a folded, significantly anisotropic ordered structure under AMBER-AA or OPLS-AA force fields, while that of the united-atom model remains unchanged in its globular structure. The chain crystallization evolution indicates that the single chain folds into ordered lamellar structures with higher crystallinity under AMBER-AA and OPLS-AA force fields. In contrast, under the other four force fields, the single chain remains in a stable amorphous state.
Collapse
Affiliation(s)
- Jingfu Shi
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Jianqiu Zhou
- Institute of Basic Medical Sciences, Harbin Medical University, Harbin, 150086, P. R. China.
| | - Lei Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Changqing Miao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, P. R. China.
| |
Collapse
|
2
|
Wu Z, Wu JW, Michaudel Q, Jayaraman A. Investigating the Hydrogen Bond-Induced Self-Assembly of Polysulfamides Using Molecular Simulations and Experiments. Macromolecules 2023; 56:5033-5049. [PMID: 38362140 PMCID: PMC10865372 DOI: 10.1021/acs.macromol.3c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/08/2023] [Indexed: 02/17/2024]
Abstract
In this paper, we present a synergistic, experimental, and computational study of the self-assembly of N,N'-disubstituted polysulfamides driven by hydrogen bonds (H-bonds) between the H-bonding donor and acceptor groups present in repeating sulfamides as a function of the structural design of the polysulfamide backbone. We developed a coarse-grained (CG) polysulfamide model that captures the directionality of H-bonds between the sulfamide groups and used this model in molecular dynamics (MD) simulations to study the self-assembly of these polymers in implicit solvent. The CGMD approach was validated by reproducing experimentally observed trends in the extent of crystallinity for three polysulfamides synthesized with aliphatic and/or aromatic repeating units. After validation of our CGMD approach, we computationally predicted the effect of repeat unit bulkiness, length, and uniformity of segment lengths in the polymers on the extent of orientational and positional order among the self-assembled polysulfamide chains, providing key design principles for tuning the extent of crystallinity in polysulfamides in experiments. Those computational predictions were then experimentally tested through the synthesis and characterization of polysulfamide architectures.
Collapse
Affiliation(s)
- Zijie Wu
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
| | - Jiun Wei Wu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Quentin Michaudel
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Chen S, Chen W, Ren Y, Sun J, Wang J, Yang Y. Molecular Dynamics Simulation of the Nascent Polyethylene Crystallization in Confined Space: Nucleation and Lamella Orientation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Siyu Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wei Chen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ying Ren
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jingyuan Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jingdai Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yongrong Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
4
|
Nazarychev VM, Vaganov GV, Larin SV, Didenko AL, Elokhovskiy VY, Svetlichnyi VM, Yudin VE, Lyulin SV. Rheological and Mechanical Properties of Thermoplastic Crystallizable Polyimide-Based Nanocomposites Filled with Carbon Nanotubes: Computer Simulations and Experiments. Polymers (Basel) 2022; 14:polym14153154. [PMID: 35956666 PMCID: PMC9370852 DOI: 10.3390/polym14153154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
Recently, a strong structural ordering of thermoplastic semi-crystalline polyimides near single-walled carbon nanotubes (SWCNTs) was found that can enhance their mechanical properties. In this study, a comparative analysis of the results of microsecond-scale all-atom computer simulations and experimental measurements of thermoplastic semi-crystalline polyimide R-BAPB synthesized on the basis of dianhydride R (1,3-bis-(3′,4-dicarboxyphenoxy) benzene) and diamine BAPB (4,4′-bis-(4″-aminophenoxy) biphenyl) near the SWCNTs on the rheological properties of nanocomposites was performed. We observe the viscosity increase in the SWCNT-filled R-BAPB in the melt state both in computer simulations and experiments. For the first time, it is proven by computer simulation that this viscosity change is related to the structural ordering of the R-BAPB in the vicinity of SWCNT but not to the formation of interchain linkage. Additionally, strong anisotropy of the rheological properties of the R-BAPB near the SWCNT surface was detected due to the polyimide chain orientation. The increase in the viscosity of the polymer in the viscous-flow state and an increase in the values of the mechanical characteristics (Young’s modulus and yield peak) of the SWCNT-R-BAPB nanocomposites in the glassy state are stronger in the directions along the ordering of polymer chains close to the carbon nanofiller surface. Thus, the new experimental data obtained on the R-BAPB-based nanocomposites filled with SWCNT, being extensively compared with simulation results, confirm the idea of the influence of macromolecular ordering near the carbon nanotube on the mechanical characteristics of the composite material.
Collapse
|
5
|
Yamamoto T. Chiral selecting crystallization of helical polymers: A molecular dynamics simulation for the POM-like bare helix. J Chem Phys 2022; 157:014901. [DOI: 10.1063/5.0097112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polymer crystallization has long been a fascinating problem and is still attracting many researchers. Most of the previous simulations are concentrated on clarifying the universal aspects of polymer crystallization using model linear polymers such as polyethylene. We are recently focusing on a nearly untouched but very interesting problem of chiral selecting crystallization in helical polymers. We previously proposed a stepwise approach using two kinds of helical polymers, simple "bare" helical polymers made of backbone atoms only such as polyoxymethylene (POM) and "general" helical polymers containing complicated side groups such as isotactic polypropylene (iPP). We have already reported on the crystallization in oligomeric POM-like helix but have observed only weak chiral selectivity during crystallization. In the present paper, we investigate the crystallization of sufficiently long POM-like polymer both from the isotropic melt and from the highly stretched melt. We find in both cases that the polymer shows a clear chiral selecting crystallization. Especially the observation of a single crystal growing from the isotropic melt is very illuminating. It shows that the crystal thickness and the crystal chirality is closely correlated; thicker crystals show definite chirality while thinner ones are mostly mixtures of the R- and the L- handed stems. The single crystal is found to have a marked lenticular shape, where the thinner growth front, since being made of the mixture, shows no chiral selectivity. Final chiral crystal is found to be completed through helix reversal processes within thicker regions.
Collapse
Affiliation(s)
- Takashi Yamamoto
- Department of Physics and Informatics, Yamaguchi University, Japan
| |
Collapse
|
6
|
Majerczak K, Wadkin‐Snaith D, Magueijo V, Mulheran P, Liggat J, Johnston K. Polyhydroxybutyrate: a review of experimental and simulation studies on the effect of fillers on crystallinity and mechanical properties. POLYM INT 2022. [DOI: 10.1002/pi.6402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katarzyna Majerczak
- Department of Pure and Applied Chemistry Thomas Graham Building, 295 Cathedral Street, University of Strathclyde Glasgow G1 1XL United Kingdom
| | - Dominic Wadkin‐Snaith
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - Vitor Magueijo
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - Paul Mulheran
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - John Liggat
- Department of Pure and Applied Chemistry Thomas Graham Building, 295 Cathedral Street, University of Strathclyde Glasgow G1 1XL United Kingdom
| | - Karen Johnston
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| |
Collapse
|
7
|
Kawak P, Banks DS, Tree DR. Semiflexible oligomers crystallize via a cooperative phase transition. J Chem Phys 2021; 155:214902. [PMID: 34879681 DOI: 10.1063/5.0067788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Semicrystalline polymers are ubiquitous, yet despite their fundamental and industrial importance, the theory of homogeneous nucleation from a melt remains a subject of debate. A key component of the controversy is that polymer crystallization is a non-equilibrium process, making it difficult to distinguish between effects that are purely kinetic and those that arise from the underlying thermodynamics. Due to computational cost constraints, simulations of polymer crystallization typically employ non-equilibrium molecular dynamics techniques with large degrees of undercooling that further exacerbate the coupling between thermodynamics and kinetics. In a departure from this approach, in this study, we isolate the near-equilibrium nucleation behavior of a simple model of a melt of short, semiflexible oligomers. We employ several Monte Carlo methods and compute a phase diagram in the temperature-density plane along with two-dimensional free energy landscapes (FELs) that characterize the nucleation behavior. The phase diagram shows the existence of ordered nematic and crystalline phases in addition to the disordered melt phase. The minimum free energy path in the FEL for the melt-crystal transition shows a cooperative transition, where nematic order and monomer positional order move in tandem as the system crystallizes. This near-equilibrium phase transition mechanism broadly agrees with recent evidence that polymer stiffness plays an important role in crystallization but differs in the specifics of the mechanism from several recent theories. We conclude that the computation of multidimensional FELs for models that are larger and more fine-grained will be important for evaluating and refining theories of homogeneous nucleation for polymer crystallization.
Collapse
Affiliation(s)
- Pierre Kawak
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA
| | - Dakota S Banks
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA
| | - Douglas R Tree
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|
8
|
Nie C, Peng F, Xu T, Ding Y, Sheng J, Chen W, Li L. Biaxial Stretch-Induced Crystallization of Polymers: A Molecular Dynamics Simulation Study. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Cui Nie
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Fan Peng
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Tingyu Xu
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yiwei Ding
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Junfang Sheng
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei Chen
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liangbin Li
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Yagasaki T, Matubayasi N. Crystallization of Polyethylene Brushes and Its Effect on Interactions with Water. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takuma Yagasaki
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| |
Collapse
|
10
|
Sæther S, Falck M, Zhang Z, Lervik A, He J. Thermal Transport in Polyethylene: The Effect of Force Fields and Crystallinity. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sandra Sæther
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Merete Falck
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Zhiliang Zhang
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Anders Lervik
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Jianying He
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| |
Collapse
|
11
|
Anwar M, Graham RS. Direct observation of long chain enrichment in flow-induced nuclei from molecular dynamics simulations of bimodal blends. SOFT MATTER 2021; 17:2872-2882. [PMID: 33586745 DOI: 10.1039/d0sm01361g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modelling of flow-induced nucleation in polymers suggest that long chains are enriched in nuclei, relative to their melt concentration. This enrichment has important consequences for the nucleation rate and mechanism, but cannot be directly observed with current experimental techniques. Instead, we ran united atom molecular dynamics simulations of bimodal polyethylene blends, comprising linear chains at a 50 : 50 mix of long (1000 carbon) and short (500-125 carbon) chains, under shear flow. We developed a method to extract the nucleus composition during a transient start-up flow. Our simulations show significant and systematic enrichment of long-chains for all nucleus sizes up to and beyond the critical nucleus. This enrichment is quantitatively predicted by the recent polySTRAND model [Read et al. Phys. Rev. Lett. 2020, 124, 147802]. The same model parameters also correctly capture the nucleus induction time in our simulations. All parameters of the model were fitted to a small subset of our data in which long chain enhancement was absent. We conclude that long-chain enrichment is central to the mechanism of flow-induced nucleation and that this enrichment must be captured to correctly predict the nucleation rate.
Collapse
Affiliation(s)
- Muhammad Anwar
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG9 4DP, UK.
| | - Richard S Graham
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG9 4DP, UK.
| |
Collapse
|
12
|
Kos PI, Ivanov VA, Chertovich AV. Crystallization of semiflexible polymers in melts and solutions. SOFT MATTER 2021; 17:2392-2403. [PMID: 33480911 DOI: 10.1039/d0sm01545h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We studied the crystallization of semiflexible polymer chains in melts and poor-solvent solutions with different concentrations using dissipative particle dynamics (DPD) computer simulation techniques. We used the coarse-grained polymer model to reveal the general principles and microscopic scenario of crystallization in such systems at large time and length scales. It covers both primary and secondary nucleation as well as crystallites' merging. The parameters of the DPD model were chosen appropriately to reproduce the entanglements of polymer chains. We started from an initial homogeneous disordered solution of Gaussian chains and observed the initial stages of crystallization process caused in our model by orientational ordering of polymer chains and polymer-solvent phase separation. We found that the overall crystalline fraction at the end of the crystallization process decreases with the increasing polymer volume fraction while the steady-state crystallization speed at later stages does not depend on the polymer volume fraction. The average crystallite size has a maximal value in the systems with a polymer volume fraction from 0.7 to 0.95. In our model, these polymer concentrations represent an optimal value in the sense of balance between the amount of polymer material available to increase the crystallite size and chain entanglements, that prevent crystallites' growth and merging. On large time scales, our model allows us to observe lamellar thickening linear in logarithmic time scale.
Collapse
Affiliation(s)
- Pavel I Kos
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia. and N.N. Semenov Federal research center for Chemical Physics RAS, 119991 Moscow, Russia
| | - Viktor A Ivanov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia. and Institute of Physics, Martin Luther University, 06099 Halle (Saale), Germany
| | - Alexander V Chertovich
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia. and N.N. Semenov Federal research center for Chemical Physics RAS, 119991 Moscow, Russia
| |
Collapse
|
13
|
Hall KW, Percec S, Shinoda W, Klein ML. Chain-End Modification: A Starting Point for Controlling Polymer Crystal Nucleation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kyle Wm. Hall
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Simona Percec
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Michael L. Klein
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
14
|
Rowenczyk L, Dazzi A, Deniset-Besseau A, Beltran V, Goudounèche D, Wong-Wah-Chung P, Boyron O, George M, Fabre P, Roux C, Mingotaud AF, Halle AT. Microstructure Characterization of Oceanic Polyethylene Debris. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4102-4109. [PMID: 32150389 DOI: 10.1021/acs.est.9b07061] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plastic pollution has become a worldwide concern. It was demonstrated that plastic breaks down to nanoscale particles in the environment, forming so-called nanoplastics. It is important to understand their ecological impact, but their structure is not elucidated. In this original work, we characterize the microstructure of oceanic polyethylene debris and compare it to the nonweathered objects. Cross sections are analyzed by several emergent mapping techniques. We highlight deep modifications of the debris within a layer a few hundred micrometers thick. The most intense modifications are macromolecule oxidation and a considerable decrease in the molecular weight. The adsorption of organic pollutants and trace metals is also confined to this outer layer. Fragmentation of the oxidized layer of the plastic debris is the most likely source of nanoplastics. Consequently the nanoplastic chemical nature differs greatly from plastics.
Collapse
Affiliation(s)
- Laura Rowenczyk
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, Cedex 9, France
| | - Alexandre Dazzi
- Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Univ of Paris-Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Ariane Deniset-Besseau
- Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Univ of Paris-Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Victoria Beltran
- IPANEMA, CNRS, Ministère de la Culture, UVSQ, USR3461, Université Paris-Saclay, F-91192 Gif-sur-Yvette, France
| | - Dominique Goudounèche
- CMEAB, IFRBMT, Université de Toulouse, 133 route de Narbonne, Toulouse, 31062, France
| | | | - Olivier Boyron
- Université de Lyon, CPE Lyon, CNRS, UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Villeurbanne, 69100, France
| | - Matthieu George
- Laboratoire Charles Coulomb (L2C), Univ Montpellier, CNRS, Montpellier, 34095, France
| | - Pascale Fabre
- Laboratoire Charles Coulomb (L2C), Univ Montpellier, CNRS, Montpellier, 34095, France
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, Cedex 9, France
| | - Anne Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, Cedex 9, France
| | - Alexandra Ter Halle
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, Cedex 9, France
| |
Collapse
|
15
|
Wright T, Petel Y, Zellman CO, Sauvé ER, Hudson ZM, Michal CA, Wolf MO. Room temperature crystallization of amorphous polysiloxane using photodimerization. Chem Sci 2020; 11:3081-3088. [PMID: 34122813 PMCID: PMC8157530 DOI: 10.1039/c9sc06235a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/13/2020] [Indexed: 11/21/2022] Open
Abstract
Bulk crystallization in flexible polymeric systems is difficult to control due to the random orientation of the chains. Here we report a photo cross-linking strategy that results in simultaneous cross-linking and crystallization of polysiloxane chains into millimeter sized leaf-like polycrystalline structures. Polymers containing pendant anthracene groups are prepared and undergo [4+4] photocycloaddition under 365 nm irradiation at room temperature. The growth and morphology of the crystalline structures is studied using polarized optical microscopy (POM) and atomic force microscopy and is found to progress through three unique stages of nucleation, growth, and constriction. The mobility of the individual chains is probed using pulsed-field gradient (PFG) NMR to provide insights into the diffusion processes that may govern chain transport to the growing crystal fronts. The room temperature crystallization of this conventionally amorphous polymer system may allow for a new level of morphological control for silicone materials.
Collapse
Affiliation(s)
- Taylor Wright
- Department of Chemistry, University of British Columbia Vancouver BC Canada V6T 1Z1
| | - Yael Petel
- Department of Chemistry, University of British Columbia Vancouver BC Canada V6T 1Z1
| | - Carson O Zellman
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC Canada V5A 1S6
| | - Ethan R Sauvé
- Department of Chemistry, University of British Columbia Vancouver BC Canada V6T 1Z1
| | - Zachary M Hudson
- Department of Chemistry, University of British Columbia Vancouver BC Canada V6T 1Z1
| | - Carl A Michal
- Department of Chemistry, University of British Columbia Vancouver BC Canada V6T 1Z1
- Department of Physics and Astronomy, University of British Columbia Vancouver BC Canada V6T 1Z1
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia Vancouver BC Canada V6T 1Z1
| |
Collapse
|
16
|
Hall KW, Sirk TW, Percec S, Klein ML, Shinoda W. Monodisperse Polymer Melts Crystallize via Structurally Polydisperse Nanoscale Clusters: Insights from Polyethylene. Polymers (Basel) 2020; 12:E447. [PMID: 32074962 PMCID: PMC7077701 DOI: 10.3390/polym12020447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/21/2022] Open
Abstract
This study demonstrates that monodisperse entangled polymer melts crystallize via the formation of nanoscale nascent polymer crystals (i.e., nuclei) that exhibit substantial variability in terms of their constituent crystalline polymer chain segments (stems). More specifically, large-scale coarse-grain molecular simulations are used to quantify the evolution of stem length distributions and their properties during the formation of polymer nuclei in supercooled prototypical polyethylene melts. Stems can adopt a range of lengths within an individual nucleus (e.g., ∼1-10 nm) while two nuclei of comparable size can have markedly different stem distributions. As such, the attainment of chemically monodisperse polymer specimens is not sufficient to achieve physical uniformity and consistency. Furthermore, stem length distributions and their evolution indicate that polymer crystal nucleation (i.e., the initial emergence of a nascent crystal) is phenomenologically distinct from crystal growth. These results highlight that the tailoring of polymeric materials requires strategies for controlling polymer crystal nucleation and growth at the nanoscale.
Collapse
Affiliation(s)
- Kyle Wm. Hall
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; (S.P.); (M.L.K.)
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA
| | - Timothy W. Sirk
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA;
| | - Simona Percec
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; (S.P.); (M.L.K.)
| | - Michael L. Klein
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; (S.P.); (M.L.K.)
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
| |
Collapse
|
17
|
|
18
|
Hu Y, Shao Y, Liu Z, He X, Liu B. Dominant Effects of Short-Chain Branching on the Initial Stage of Nucleation and Formation of Tie Chains for Bimodal Polyethylene as Revealed by Molecular Dynamics Simulation. Polymers (Basel) 2019; 11:E1840. [PMID: 31717356 PMCID: PMC6918436 DOI: 10.3390/polym11111840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanism of short-chain branching (SCB), especially the effects of methylene sequence length (MSL) and short-chain branching distribution (SCBD) on the initial stage of nucleation, the crystallization process, and particularly the tie chain formation process of bimodal polyethylene (BPE), were explored using molecular dynamics simulation. This work constructed two kinds of BPE models in accordance with commercial BPE pipe resins: SCB incorporated in the long chain or in the short chains. The initial stage of nucleation was determined by the MSL of the system, as the critical MSL for a branched chain to nucleate is about 60 CH2. SCB incorporated in the long chain led to a delay of the initial stage of nucleation relative to the case of SCB incorporated in the short chains. The increase of branch length could accelerate the delay to nucleation. The location of short chain relative to the long chain depended on the MSL of the short chain. As the MSL of the system decreased, the crystallinity decreased, while the tie chains concentration increased. The tie chains concentration of the BPE model with branches incorporated in the long chain was higher than that with branches incorporated in the short chain.
Collapse
Affiliation(s)
- Yanling Hu
- Shanghai Key Laboratory of Multiphase Material Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.H.); (Y.S.); (Z.L.)
| | - Yunqi Shao
- Shanghai Key Laboratory of Multiphase Material Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.H.); (Y.S.); (Z.L.)
| | - Zhen Liu
- Shanghai Key Laboratory of Multiphase Material Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.H.); (Y.S.); (Z.L.)
| | - Xuelian He
- Shanghai Key Laboratory of Multiphase Material Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.H.); (Y.S.); (Z.L.)
| | - Boping Liu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
19
|
Single-chain folding of a quenched isotactic polypropylene chain through united atom molecular dynamics simulations. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Hall KW, Sirk TW, Klein ML, Shinoda W. A coarse-grain model for entangled polyethylene melts and polyethylene crystallization. J Chem Phys 2019; 150:244901. [PMID: 31255065 DOI: 10.1063/1.5092229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Shinoda-DeVane-Klein (SDK) model is herein demonstrated to be a viable coarse-grain model for performing molecular simulations of polyethylene (PE), affording new opportunities to advance molecular-level, scientific understanding of PE materials and processes. Both structural and dynamical properties of entangled PE melts are captured by the SDK model, which also recovers important aspects of PE crystallization phenomenology. Importantly, the SDK model can be used to represent a variety of materials beyond PE and has a simple functional form, making it unique among coarse-grain PE models. This study expands the suite of tools for studying PE in silico and paves the way for future work probing PE and PE-based composites at the molecular level.
Collapse
Affiliation(s)
- Kyle Wm Hall
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Timothy W Sirk
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
| | - Michael L Klein
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
21
|
Hall KW, Percec S, Klein ML. Polymer nucleation under high-driving force, long-chain conditions: Heat release and the separation of time scales. J Chem Phys 2019; 150:114901. [PMID: 30902014 DOI: 10.1063/1.5084773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study reveals important features of polymer crystal formation at high-driving forces in entangled polymer melts based on simulations of polyethylene. First and in contrast to small-molecule crystallization, the heat released during polymer crystallization does not appreciably influence structural details of early-stage, crystalline clusters (crystal nuclei). Second, early-stage polymer crystallization (crystal nucleation) can occur without substantial chain-level relaxation and conformational changes. This study's results indicate that local structures and environments guide crystal nucleation in entangled polymer melts under high-driving force conditions. Given that such conditions are often used to process polyethylene, local structures and the separation of time scales associated with crystallization and chain-level processes are anticipated to be of substantial importance to processing strategies. This study highlights new research directions for understanding polymer crystallization.
Collapse
Affiliation(s)
- Kyle Wm Hall
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Simona Percec
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Michael L Klein
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
22
|
Hagita K, Fujiwara S, Iwaoka N. An accelerated united-atom molecular dynamics simulation on the fast crystallization of ring polyethylene melts. J Chem Phys 2019; 150:074901. [PMID: 30795675 DOI: 10.1063/1.5080332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To investigate crystallinities based on trans-structures, we determined the differences in the crystallization properties of ring and linear polymers by performing united-atom-model molecular dynamics (MD) simulations of homogeneous polyethylene melts of equal length, N, which refers to the number of monomers per chain. Modified parameters based on the DREIDING force field for the CH2 units were used in order to accelerate the crystallization process. To detect polymer crystallization, we introduced some local-order parameters that relate to trans-segments in addition to common crystallinities using neighboring bond orders. Through quenching MD simulations at 5 K/ns, we roughly determined temperature thresholds, Tth, at which crystallization is observed although it was hard to determine the precise Tth as observed in the laboratory time frame with the present computing resources. When N was relatively small (100 and 200), Tth was determined to be 320 and 350 K for the linear- and ring-polyethylene melts, respectively, while Tth was found to be 330 and 350 K, respectively, when N was 1000. Having confirmed that the crystallization of a ring-polyethylene melt occurs faster than that of the analogous linear melt, we conclude that the trans-segment-based crystallinities are effective for the analysis of local crystal behavior.
Collapse
Affiliation(s)
- Katsumi Hagita
- Department of Applied Physics, National Defense Academy, Yokosuka 239-8686, Japan
| | - Susumu Fujiwara
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Nobuyuki Iwaoka
- Tsuruoka College, National Institute of Technology, Tsuruoka 997-8511, Japan
| |
Collapse
|
23
|
Anwar M, Graham RS. Molecular dynamics simulations of crystal nucleation in entangled polymer melts under start-up shear conditions. J Chem Phys 2019; 150:084905. [DOI: 10.1063/1.5082244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Muhammad Anwar
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Richard S. Graham
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
24
|
Shakirov T, Paul W. Folded alkane chains and the emergence of the lamellar crystal. J Chem Phys 2019; 150:084903. [PMID: 30823774 DOI: 10.1063/1.5087640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The competition between chain stiffness and chain collapse gives rise to complex low temperature morphologies of single polymer chains, in our case alkanes. These structures are characterized by specific sequences of dihedral angles along the chain, i.e., dihedral angle correlations extending beyond local steric effects. To describe and classify these morphologies, one can transfer concepts from protein science, where this creation of dihedral angle correlations underlies the formation of α-helices and β-sheets. We show here by means of flat-histogram Monte Carlo simulations that, although lacking in primary structure being simple homopolymers, short alkane chains fold into non-trivial ground states (tertiary structure) consisting of chain segments of defined secondary structures. The folded lamellar crystal typical for polyethylene chains requires a minimum chain length to occur as the ground state folded structure, which we identify to be around 150 repeat units.
Collapse
Affiliation(s)
- T Shakirov
- Institute of Physics, Martin Luther University, 06099 Halle, Germany
| | - W Paul
- Institute of Physics, Martin Luther University, 06099 Halle, Germany
| |
Collapse
|
25
|
Yamamoto T. Molecular Dynamics Simulation of Stretch-Induced Crystallization in Polyethylene: Emergence of Fiber Structure and Molecular Network. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02569] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Takashi Yamamoto
- Graduate School of Science and Engineering Yamaguchi University, Yamaguchi 753-8512, Japan
| |
Collapse
|
26
|
Larin SV, Nazarychev VM, Dobrovskiy AY, Lyulin AV, Lyulin SV. Structural Ordering in SWCNT-Polyimide Nanocomposites and Its Influence on Their Mechanical Properties. Polymers (Basel) 2018; 10:E1245. [PMID: 30961170 PMCID: PMC6401868 DOI: 10.3390/polym10111245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/01/2022] Open
Abstract
Using fully-atomistic models, tens-microseconds-long molecular-dynamic modelling was carried out for the first time to simulate the kinetics of polyimides ordering induced by the presence of single-walled carbon nanotube (SWCNT) nanofillers. Three polyimides (PI) were considered with different dianhydride fragments, namely 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 2,3',3,4'-biphenyltetracarboxylic dianhydride (aBPDA), and 3,3',4,4'-oxidiphthalic dianhydride (ODPA) and same diamine 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene (diamine P3). Both crystallizable PI BPDA-P3 and two amorphous polyimides ODPA-P3 and aBPDA-P3 reinforced by SWCNTs were studied. The structural properties of the nanocomposites at temperature close to the bulk polymer melting point were studied. The mechanical properties were determined for the nanocomposites cooled down to the glassy state. It was found that the SWCNT nanofiller initiates' structural ordering not only in the crystallizable BPDA-P3 but also in the amorphous ODPA-P3 samples were in agreement with previously obtained experimental results. Two stages of the structural ordering were detected in the presence of SWCNTs, namely the orientation of the planar moieties followed by the elongation of whole polymer chains. The first type of local ordering was observed on the microsecond time scale and did not lead to the change of the mechanical properties of a polymer binder in considered nanocomposites. At the end of the second stage, both BPDA-P3 and ODPA-P3 PI chains extended completely along the SWCNT surface, which in turn led to enhanced mechanical characteristics in their glassy state.
Collapse
Affiliation(s)
- Sergey V Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia.
| | - Victor M Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia.
| | - Alexey Yu Dobrovskiy
- Faculty of Physics, St. Petersburg State University, Petrodvorets, St. Petersburg 198504, Russia.
| | - Alexey V Lyulin
- Theory of Polymers and Soft Matter Group and Center for Computational Energy Research, Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Sergey V Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia.
- Faculty of Physics, St. Petersburg State University, Petrodvorets, St. Petersburg 198504, Russia.
| |
Collapse
|
27
|
Shakirov T, Paul W. Crystallization in melts of short, semiflexible hard polymer chains: An interplay of entropies and dimensions. Phys Rev E 2018; 97:042501. [PMID: 29758595 DOI: 10.1103/physreve.97.042501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 12/19/2022]
Abstract
What is the thermodynamic driving force for the crystallization of melts of semiflexible polymers? We try to answer this question by employing stochastic approximation Monte Carlo simulations to obtain the complete thermodynamic equilibrium information for a melt of short, semiflexible polymer chains with purely repulsive nonbonded interactions. The thermodynamics is obtained based on the density of states of our coarse-grained model, which varies by up to 5600 orders of magnitude. We show that our polymer melt undergoes a first-order crystallization transition upon increasing the chain stiffness at fixed density. This crystallization can be understood by the interplay of the maximization of different entropy contributions in different spatial dimensions. At sufficient stiffness and density, the three-dimensional orientational interactions drive the orientational ordering transition, which is accompanied by a two-dimensional translational ordering transition in the plane perpendicular to the chains resulting in a hexagonal crystal structure. While the three-dimensional ordering can be understood in terms of Onsager theory, the two-dimensional transition can be understood in terms of the liquid-hexatic transition of hard disks. Due to the domination of lateral two-dimensional translational entropy over the one-dimensional translational entropy connected with columnar displacements, the chains form a lamellar phase. Based on this physical understanding, orientational ordering and translational ordering should be separable for polymer melts. A phenomenological theory based on this understanding predicts a qualitative phase diagram as a function of volume fraction and stiffness in good agreement with results from the literature.
Collapse
Affiliation(s)
- T Shakirov
- Institute of Physics, Martin-Luther-University, 06099 Halle, Germany
| | - W Paul
- Institute of Physics, Martin-Luther-University, 06099 Halle, Germany
| |
Collapse
|
28
|
Hu Y, Shao Y, Liu Z, He X, Liu B. Effect of short-chain branching on the tie chains and dynamics of bimodal polyethylene: Molecular dynamics simulation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Ramos J, Vega J, Martínez-Salazar J. Predicting experimental results for polyethylene by computer simulation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Brunel F, Billuart G, Dugas PY, Lansalot M, Bourgeat-Lami E, Monteil V. Crystallization of Nanodomains in Polyethylene Latexes. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fabrice Brunel
- Université de Lyon,
Univ. Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bvd. du 11
Novembre 1918, F-69615 Villeurbanne, France
| | - Guilhem Billuart
- Université de Lyon,
Univ. Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bvd. du 11
Novembre 1918, F-69615 Villeurbanne, France
| | - Pierre-Yves Dugas
- Université de Lyon,
Univ. Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bvd. du 11
Novembre 1918, F-69615 Villeurbanne, France
| | - Muriel Lansalot
- Université de Lyon,
Univ. Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bvd. du 11
Novembre 1918, F-69615 Villeurbanne, France
| | - Elodie Bourgeat-Lami
- Université de Lyon,
Univ. Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bvd. du 11
Novembre 1918, F-69615 Villeurbanne, France
| | - Vincent Monteil
- Université de Lyon,
Univ. Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bvd. du 11
Novembre 1918, F-69615 Villeurbanne, France
| |
Collapse
|
31
|
Wang X, Ouyang J, Liu Y. Prediction of Flow Effect on Crystal Growth of Semi-Crystalline Polymers Using a Multi-Scale Phase-Field Approach. Polymers (Basel) 2017; 9:E634. [PMID: 30965937 PMCID: PMC6418937 DOI: 10.3390/polym9120634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 01/20/2023] Open
Abstract
A multi-scale phase-field approach, which couples the mesoscopic crystallization with the microscopic orientation of chain segments and macroscopic viscoelastic melt flow, is proposed to study how the crystal growth of semi-crystalline polymers is affected by flows. To make the simulation feasible, we divide the problem into three parts. In the first part, a finitely extensible nonlinear elastic (FENE) dumbbell model is used to simulate the flow induced molecular structure. In the second part, formulas for estimating the density, orientation and aspect ratio of nuclei upon the oriented molecular structure are derived. Finally, in the third part, a massive mathematical model that couples the phase-field, temperature field, flow field and orientation field is established to model the crystal growth with melt flow. Two-dimensional simulations are carried out for predicting the flow effect on the crystal growth of isotactic polystyrene under a plane Poiseuille flow. In solving the model, a semi-analytical method is adopted to avoid the numerical difficult of a "high Weissenberg number problem" in the first part, and an efficient fractional step method is used to reduce the computing complexity in the third part. The simulation results demonstrate that flow strongly affects the morphology of single crystal but does not bring a significant influence on the holistic morphology of bulk crystallization.
Collapse
Affiliation(s)
- Xiaodong Wang
- School of Mathematical Sciences, Peking University, Beijing 100871, China.
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Jie Ouyang
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Ying Liu
- School of Arts and Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
32
|
Clark MD, Morris KR, Tomassone MS. Correlation of Solubility with the Metastable Limit of Nucleation Using Gauge-Cell Monte Carlo Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9081-9090. [PMID: 28812905 DOI: 10.1021/acs.langmuir.7b01939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a novel simulation-based investigation of the nucleation of nanodroplets from solution and from vapor. Nucleation is difficult to measure or model accurately, and predicting when nucleation should occur remains an open problem. Of specific interest is the "metastable limit", the observed concentration at which nucleation occurs spontaneously, which cannot currently be estimated a priori. To investigate the nucleation process, we employ gauge-cell Monte Carlo simulations to target spontaneous nucleation and measure thermodynamic properties of the system at nucleation. Our results reveal a widespread correlation over 5 orders of magnitude of solubilities, in which the metastable limit depends exclusively on solubility and the number density of generated nuclei. This three-way correlation is independent of other parameters, including intermolecular interactions, temperature, molecular structure, system composition, and the structure of the formed nuclei. Our results have great potential to further the prediction of nucleation events using easily measurable solute properties alone and to open new doors for further investigation.
Collapse
Affiliation(s)
- Michael D Clark
- Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Kenneth R Morris
- College of Pharmacy and Health Sciences, Long Island University , Brooklyn, New York 11201, United States
| | - Maria Silvina Tomassone
- Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| |
Collapse
|
33
|
Markina A, Ivanov V, Komarov P, Larin S, Kenny JM, Lyulin S. Effect of polymer chain stiffness on initial stages of crystallization of polyetherimides: Coarse-grained computer simulation. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Viktor Ivanov
- Moscow State University; Moscow 119991 Russian Federation
| | - Pavel Komarov
- Institute of Organoelement Compounds RAS; Moscow 119991 Russian Federation
- Tver State University; Tver 170100 Russian Federation
| | - Sergey Larin
- Institute of Macromolecular Compounds, RAS; St. Petersburg 199004 Russian Federation
| | - José Maria Kenny
- Institute of Macromolecular Compounds, RAS; St. Petersburg 199004 Russian Federation
- Materials Science and Technology Center, University of Perugia; Terni Italy
| | - Sergey Lyulin
- Institute of Macromolecular Compounds, RAS; St. Petersburg 199004 Russian Federation
| |
Collapse
|
34
|
Strength of Alkane–Fluid Attraction Determines the Interfacial Orientation of Liquid Alkanes and Their Crystallization through Heterogeneous or Homogeneous Mechanisms. CRYSTALS 2017. [DOI: 10.3390/cryst7030086] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|