1
|
Tu CH, Steinhart M, Berger R, Kappl M, Butt HJ, Floudas G. When crystals flow. SCIENCE ADVANCES 2023; 9:eadg8865. [PMID: 37163585 PMCID: PMC10171800 DOI: 10.1126/sciadv.adg8865] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
Semicrystalline polymers are solids that are supposed to flow only above their melting temperature. By using confinement within nanoscopic cylindrical pores, we show that a semicrystalline polymer can flow at temperatures below the melting point with a viscosity intermediate to the melt and crystal states. During this process, the capillary force is strong and drags the polymer chains in the pores without melting the crystal. The unexpected enhancement in flow, while preserving the polymer crystallites, is of importance in the design of polymer processing conditions applicable at low temperatures, e.g., cold drawn polymers such as polytetrafluoroethylene, self-healing, and in nanoconfined donor/acceptor polymers used in organic electronics.
Collapse
Affiliation(s)
- Chien-Hua Tu
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Michael Kappl
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - George Floudas
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of Ioannina (URCI) - Institute of Materials Science and Computing, 45110 Ioannina, Greece
| |
Collapse
|
2
|
Terzioğlu İ, Ventura-Hunter C, Ulbrich J, Saldívar-Guerra E, Schubert US, Guerrero-Sánchez C. Automated Parallel Dialysis for Purification of Polymers. Polymers (Basel) 2022; 14:polym14224835. [PMID: 36432962 PMCID: PMC9697721 DOI: 10.3390/polym14224835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
The implementation of a dialysis method for the simultaneous purification of different polymer materials in a commercially available automated parallel synthesizer (APS) is discussed. The efficiency of this "unattended" automated parallel dialysis (APD) method was investigated by means of proton nuclear magnetic resonance (1H-NMR) measurements, which confirmed that the method enables the removal of up to 99% of the unreacted monomer derived from the synthesis of the corresponding polymers in the APS. Size-exclusion chromatography (SEC) revealed that the molar mass and molar mass distribution of the investigated polymers did not undergo significant changes after the application of the APD method. The method discussed herein can be regarded as a good alternative to the "unattended" and reliable purification of polymer libraries prepared in APS. This method may be useful for overcoming current limitations of high-throughput/-output (HT/O) synthesis of polymer libraries, where purification of the generated materials currently represents a significant constraint for establishing fully automated experimental workflows necessary to advance towards a full digitalization of research and development of new polymers for diverse applications.
Collapse
Affiliation(s)
- İpek Terzioğlu
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Carolina Ventura-Hunter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Polymerization Processes Department, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna No. 140, Saltillo 25294, Coahuila, Mexico
| | - Jens Ulbrich
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Enrique Saldívar-Guerra
- Polymerization Processes Department, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna No. 140, Saltillo 25294, Coahuila, Mexico
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Carlos Guerrero-Sánchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
3
|
The Transition of Molecular Alignment of Poly(ethylene oxide) Film via Thermal Annealing. Macromol Res 2022. [DOI: 10.1007/s13233-022-0032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Sangroniz L, Wang B, Su Y, Liu G, Cavallo D, Wang D, Müller AJ. Fractionated crystallization in semicrystalline polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101376] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Thitisomboon W, Gu Q, Weng LT, Gao P. Surface confinement induced amorphization of polyethylene oxide in high-performance porous polyethylene films. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Lin YL, Tsai SY, He HC, Lee LR, Ho JH, Wang CL, Chen JT. Crystallization of Poly(methyl methacrylate) Stereocomplexes under Cylindrical Nanoconfinement. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-Liang Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Song-Yu Tsai
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hung-Chieh He
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Lin-Ruei Lee
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jhih-Hao Ho
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chien-Lung Wang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
7
|
Zhang Z, Ding J, Ocko BM, Lhermitte J, Strzalka J, Choi CH, Fisher FT, Yager KG, Black CT. Nanoconfinement and Salt Synergistically Suppress Crystallization in Polyethylene Oxide. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zheng Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Junjun Ding
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Benjamin M. Ocko
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Julien Lhermitte
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Joseph Strzalka
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Frank T. Fisher
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Kevin G. Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Charles T. Black
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
8
|
Chen Z, Lau KKS. Suppressing Crystallinity by Nanoconfining Polymers Using Initiated Chemical Vapor Deposition. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhengtao Chen
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Kenneth K. S. Lau
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Grefe AK, Kuttich B, Stühn L, Stark R, Stühn B. Oriented crystallization of PEG induced by confinement in cylindrical nanopores: structural and thermal properties. SOFT MATTER 2019; 15:3149-3159. [PMID: 30860542 DOI: 10.1039/c9sm00053d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoporous ion track-etched polycarbonate is ideally suited for the study of confined polymers via small angle X-ray scattering (SAXS) due to the strictly parallel orientation of the pores as well as their uncorrelated lateral distribution. Nanopores with radii ranging from 17 to 213 nm are prepared and coated with SiO2via atomic layer deposition in order to obtain a well-defined and homogeneous surface. A low molecular weight polyethylene glycol (PEG) homopolymer with a semicrystalline lamellar bulk structure is introduced into the nanopores via melt infiltration. At high temperatures SAXS measurements confirm a uniform filling of the pores with amorphous polymer. Upon cooling below the melting point of PEG, a concentrical structure of semicrystalline lamellae is revealed for large pore radii. We introduce models which successfully describe the combined scattering from nanopores and semicrystalline or amorphous PEG inside. DSC measurements of the confined polymer show a decrease of melting temperature and heat of fusion per gram polymer upon reduction of the pore radius and hint at a change in the lamellar configuration.
Collapse
Affiliation(s)
- Ann-Kathrin Grefe
- Experimental Condensed Matter Physics, Department of Physics, TU Darmstadt, Germany.
| | | | | | | | | |
Collapse
|
10
|
Song Z, Qian M, Zhang H, Wang T, Ding G, Liu J. The fabrication and molecular alignment of poly(ethylene oxide) grating film based on hot embossing technology. NEW J CHEM 2019. [DOI: 10.1039/c9nj03753e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fabrication and alignment transition of poly(ethylene oxide) grating film via hot embossing technology are demonstrated.
Collapse
Affiliation(s)
- Zhanhua Song
- College of Chemistry and Materials Science
- Huaibei Normal University
- Huaibei 235000
- China
- Anhui Key Laboratory of Energetic Materials
| | - Menxiang Qian
- College of Chemistry and Materials Science
- Huaibei Normal University
- Huaibei 235000
- China
- Anhui Key Laboratory of Energetic Materials
| | - Hangyu Zhang
- College of Chemistry and Materials Science
- Huaibei Normal University
- Huaibei 235000
- China
- Anhui Key Laboratory of Energetic Materials
| | - Tao Wang
- College of Chemistry and Materials Science
- Huaibei Normal University
- Huaibei 235000
- China
- Anhui Key Laboratory of Energetic Materials
| | - Guangzhu Ding
- College of Chemistry and Materials Science
- Huaibei Normal University
- Huaibei 235000
- China
- Anhui Key Laboratory of Energetic Materials
| | - Jieping Liu
- College of Chemistry and Materials Science
- Huaibei Normal University
- Huaibei 235000
- China
- Anhui Key Laboratory of Energetic Materials
| |
Collapse
|
11
|
Combined effects of confinement size and chain-end tethering on the crystallization of poly(ε-caprolactone) chains in nanolamellae. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Su C, Shi G, Li X, Zhang X, Müller AJ, Wang D, Liu G. Uniaxial and Mixed Orientations of Poly(ethylene oxide) in Nanoporous Alumina Studied by X-ray Pole Figure Analysis. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Cui Su
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyu Shi
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolu Li
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Xiuqin Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque
Foundation for Science, Bilbao, Spain
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Guoming Liu
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
13
|
Samanta P, Srivastava R, Nandan B. Block copolymer compatibilization driven frustrated crystallization in electrospun nanofibers of polystyrene/poly(ethylene oxide) blends. RSC Adv 2018; 8:17989-18007. [PMID: 35542103 PMCID: PMC9080552 DOI: 10.1039/c8ra02391c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022] Open
Abstract
The confined crystallization behaviour of poly(ethylene oxide) (PEO) has been studied in electrospun nanofibers of the phase-separated blends of polystyrene (PS) and PEO compatibilized with polystyrene-block-poly(ethylene oxide) (PS-b-PEO) block copolymer. The PS was present as the majority component such that the electrospun nanofibers consisted of PEO domains dispersed in the PS matrix. The phase separation in the blend occurred under the radial constraint of the nanofibers which led to the formation of small-sized fibrillar PEO domains. The use of block copolymer compatibilizer resulted in a noticeable decrease in the PEO domain size in the as-spun nanofibers. Moreover, the decrease in the domain size and domain connectivity was more substantial in the thermally annealed blend nanofibers due to the suppression of the domain coalescence mechanism resulting from the localization of the PS-b-PEO block copolymer at the interface. Consequently, the fraction of PEO domains crystallizing via homogeneous nucleation increased in the compatibilized blend nanofibers due to the presence of higher number of heterogeneity free PEO domains and disruption in their spatial connectivity. Interestingly, in the compatibilized blend nanofibers consisting of low molecular weight PEO, additional crystallization event attributed to surface nucleation was observed. The surface nucleation, plausibly, resulted from the formation of wet-brush structures where the PEO homopolymers homogeneously wet the PEO blocks present at the interface. In such a scenario, the PEO crystallization occurred via surface nucleation at the domain interface. The surface nucleated crystallization was absent in the compatibilized blend nanofibers composed of high molecular weight PEO presumably due to the formation of morphology with dry-brush structures. Confined crystallization behaviour of poly(ethylene oxide) (PEO) was studied in electrospun nanofibers of the phase-separated blends of polystyrene (PS) and PEO compatibilized with polystyrene-block-poly(ethylene oxide) (PS-b-PEO) block copolymer.![]()
Collapse
Affiliation(s)
- Pratick Samanta
- Department of Textile Technology, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Rajiv Srivastava
- Department of Textile Technology, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Bhanu Nandan
- Department of Textile Technology, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
14
|
Yao Y, Butt HJ, Zhou J, Doi M, Floudas G. Capillary Imbibition of Polymer Mixtures in Nanopores. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02724] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yang Yao
- Max Planck Institute for Polymer
Research, 55128 Mainz, Germany
| | | | | | | | - George Floudas
- Max Planck Institute for Polymer
Research, 55128 Mainz, Germany
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
15
|
Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Shi G, Liu G, Su C, Chen H, Chen Y, Su Y, Müller AJ, Wang D. Reexamining the Crystallization of Poly(ε-caprolactone) and Isotactic Polypropylene under Hard Confinement: Nucleation and Orientation. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02284] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Guangyu Shi
- CAS
Key Laboratory of Engineering Plastics, CAS Research/Education Center
for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of
Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guoming Liu
- CAS
Key Laboratory of Engineering Plastics, CAS Research/Education Center
for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Cui Su
- CAS
Key Laboratory of Engineering Plastics, CAS Research/Education Center
for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of
Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haiming Chen
- CAS
Key Laboratory of Engineering Plastics, CAS Research/Education Center
for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of
Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Chen
- Institute
of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunlan Su
- CAS
Key Laboratory of Engineering Plastics, CAS Research/Education Center
for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Alejandro J. Müller
- POLYMAT
and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque
Foundation for Science, Bilbao, Spain
| | - Dujin Wang
- CAS
Key Laboratory of Engineering Plastics, CAS Research/Education Center
for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of
Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
17
|
Zou SF, Wang RY, Fan B, Xu JT, Fan ZQ. Effect of interface and confinement size on the crystallization behavior of PLLA confined in coaxial electrospun fibers. J Appl Polym Sci 2017. [DOI: 10.1002/app.45980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shu-Fen Zou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| | - Rui-Yang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| | - Bin Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhi-Qiang Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
18
|
Yao Y, Suzuki Y, Seiwert J, Steinhart M, Frey H, Butt HJ, Floudas G. Capillary Imbibition, Crystallization, and Local Dynamics of Hyperbranched Poly(ethylene oxide) Confined to Nanoporous Alumina. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01843] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yang Yao
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - Yasuhito Suzuki
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - Jan Seiwert
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, D-55099 Mainz, Germany
| | - Martin Steinhart
- Institut
für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, D-55099 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - George Floudas
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
- Department
of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| |
Collapse
|
19
|
Zou SF, Guo XS, Wang RY, Fan B, Xu JT, Fan ZQ. Effect of annealing-induced interfacial demixing on crystallization of PEO confined in coaxial electrospun nanofibers. J Appl Polym Sci 2017. [DOI: 10.1002/app.45760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shu-Fen Zou
- Department of Polymer Science & Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Xiao-Shuai Guo
- Department of Polymer Science & Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Rui-Yang Wang
- Department of Polymer Science & Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Bin Fan
- Department of Polymer Science & Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Jun-Ting Xu
- Department of Polymer Science & Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Zhi-Qiang Fan
- Department of Polymer Science & Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
20
|
Schlegel I, Muñoz-Espí R, Renz P, Lieberwirth I, Floudas G, Suzuki Y, Crespy D, Landfester K. Crystallinity Tunes Permeability of Polymer Nanocapsules. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Isabel Schlegel
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Rafael Muñoz-Espí
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
- Institute
of Materials Science (ICMUV), Universitat de València, C/Catedràtic
José Beltrán 2, Paterna, 46980 València, Spain
| | - Patricia Renz
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - George Floudas
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
- Department
of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| | - Yasuhito Suzuki
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
- Chemical
and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Daniel Crespy
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Katharina Landfester
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| |
Collapse
|
21
|
Yao Y, Alexandris S, Henrich F, Auernhammer G, Steinhart M, Butt HJ, Floudas G. Complex dynamics of capillary imbibition of poly(ethylene oxide) melts in nanoporous alumina. J Chem Phys 2017; 146:203320. [DOI: 10.1063/1.4978298] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Samanta P, Srivastava R, Nandan B, Chen HL. Crystallization behavior of crystalline/crystalline polymer blends under confinement in electrospun nanofibers of polystyrene/poly(ethylene oxide)/poly(ε-caprolactone) ternary mixtures. SOFT MATTER 2017; 13:1569-1582. [PMID: 28127604 DOI: 10.1039/c6sm02748b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have studied the crystallization behavior of crystalline/crystalline blends of poly(ethylene oxide) (PEO) and poly(ε-caprolactone) (PCL) in electrospun nanofibers fabricated from ternary blends of polystyrene (PS), PEO, and PCL, where PS was present as the majority component. It was demonstrated previously that PEO in PS/PEO binary blend nanofibers with a low PEO weight fraction (≦0.2) crystallized predominantly through homogenous nucleation due to the small PEO domain size which excluded the presence of heterogeneities (Soft Matter, 2016, 12, 5110). Here, it was found that PCL in PS/PCL binary blend nanofibers exhibited similar behavior, but at a much lower weight fraction of PCL (≦0.1) due to the presence of an inherently higher concentration of heterogeneities in the PCL homopolymer. In the PS/PEO/PCL ternary blend nanofibers, where the combined weight fraction of PEO and PCL was kept at 0.2 or less, the crystallization of the two components took place separately through both heterogeneous and homogenous nucleation mechanisms. The phase segregated crystallization behavior was further confirmed by the melting behavior of the blend nanofibers and wide angle X-ray diffraction (WAXD) measurements. Most significantly, the homogenous nucleation of both PEO and PCL was suppressed whereas the heterogeneous nucleation was enhanced in the ternary blend nanofibers even at very low weight fraction of PEO or PCL. This was plausibly attributed to the coupling between the crystallization and the liquid-liquid phase separation (LLPS) of the PEO/PCL mixture dispersed in the PS matrix during non-isothermal cooling of the blend nanofibers. Furthermore, it was observed that thermal treatment of the PS/PEO/PCL blend nanofibers above the glass transition temperature of PS further promoted the heterogeneous nucleation-initiated crystallization of PEO because of a complex interplay between Plateau-Rayleigh instability-induced domain breakup and its further coalescence and demixing within the PEO/PCL domains embedded in the PS matrix.
Collapse
Affiliation(s)
- Pratick Samanta
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Rajiv Srivastava
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Bhanu Nandan
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Hsin-Lung Chen
- Department of Chemical Engineering and Frontier Centre of Fundamental and Applied Sciences of Matters, National Tsing-Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
23
|
Li L, Liu J, Qin L, Zhang C, Sha Y, Jiang J, Wang X, Chen W, Xue G, Zhou D. Crystallization kinetics of syndiotactic polypropylene confined in nanoporous alumina. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Alexandris S, Papadopoulos P, Sakellariou G, Steinhart M, Butt HJ, Floudas G. Interfacial Energy and Glass Temperature of Polymers Confined to Nanoporous Alumina. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01484] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Stelios Alexandris
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| | - Periklis Papadopoulos
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| |
Collapse
|
25
|
Yao Y, Sakai T, Steinhart M, Butt HJ, Floudas G. Effect of Poly(ethylene oxide) Architecture on the Bulk and Confined Crystallization within Nanoporous Alumina. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01406] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yang Yao
- Max Planck Institute
for Polymer Research, 55128 Mainz, Germany
| | - Takamasa Sakai
- Department
of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan
| | - Martin Steinhart
- Institut
für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | | | - George Floudas
- Department
of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| |
Collapse
|