1
|
Zhang L, Biesold GM, Zhao C, Xu H, Lin Z. Necklace-Like Nanostructures: From Fabrication, Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200776. [PMID: 35749232 DOI: 10.1002/adma.202200776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The shape-controlled synthesis of nanocrystals remains a hot research topic in nanotechnology. Particularly, the fabrication of 1D structures such as wires, rods, belts, and tubes has been an interesting and important subject within nanoscience in the last few decades. 1D necklace-like micro/nanostructures are a sophisticated geometry that has attracted increasing attention due to their anisotropic and periodic structure, intrinsic high surface area, abundant transport channels, exposure of each component to the surface, and multiscale roughness of the surface. These characteristics enable their unique electrical, optical, and catalytic properties. This review provides a comprehensive summary of the advanced research progress on the fabrication strategies, novel properties, and various applications of necklace-like structures. It begins with the main fabrication methods of necklace-like structures and subsequently details a variety of their properties and applications. It concludes with the authors' perspectives on future research and development of the necklace-like structures.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chunyan Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hui Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
2
|
Arkaban H, Shervedani RK, Torabi M, Norouzi-Barough L. Fabrication of a biocompatible & biodegradable targeted theranostic nanocomposite with pH-Controlled drug release ability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Fakhri LA, Ghanbarzadeh B, Dehghannya J, Dadashi S. Central composite design based statistical modeling for optimization of barrier and thermal properties of polystyrene based nanocomposite sheet for packaging application. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Wang Y, Coppel Y, Lepetit C, Marty JD, Mingotaud C, Kahn ML. Anisotropic growth of ZnO nanoparticles driven by the structure of amine surfactants: the role of surface dynamics in nanocrystal growth. NANOSCALE ADVANCES 2021; 3:6088-6099. [PMID: 36133935 PMCID: PMC9418458 DOI: 10.1039/d1na00566a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 05/15/2023]
Abstract
Herein, we elucidate the key role of amine surfactants in the controlled anisotropic growth of ZnO nanoparticles that is achieved under mild conditions by organometallic hydrolysis. The structuring influence of alkyl substituents on the nitrogen atom of amines is jointly analyzed theoretically by DFT modeling, and experimentally by multinuclear NMR (1H, 13C and 17O) spectroscopy. We demonstrate that in initial steps leading to the growth of colloidal ZnO particles, the nature of molecular species that are involved in the solution strongly depends on the structure of the amine surfactant. By using tertiary, secondary or primary amines, no or weak adducts between the amine and zinc, or stable adducts, or adduct oligomers were identified, respectively. Afterwards, following the course of the reaction, the dynamic behavior of the amines on the grown ZnO nanocrystal surfaces is also strongly correlated with their structure. We identified that in the presence of tertiary, secondary or primary amines, no significant [Zn⋯N] adsorption, or surface adsorption with notable surface mobility, or a very strong adsorption is achieved, respectively. The last case, primary amines, significantly involves the structuring of a hydrogen bonding network. Therefore, such surface dynamic behavior has a predominant role in driving the nanocrystal growth, and orienting the ZnO material final morphology. By forming hydrogen bonds at the nanoparticle surface during the growth process, primary amines specifically lead to the formation of nanorods. Conversely, isotropic nanoparticles and aggregates are obtained when secondary and tertiary amines are used, respectively. These findings shed light on the role of weak surface interactions, herein H-bonding, that rule the growth of nano-objects and are as such crucial to identify, study, and control for achieving progress in nanoscience.
Collapse
Affiliation(s)
- Yinping Wang
- Laboratoire de Chimie de Coordination, CNRS, UPR-8241 205 route de Narbonne 31077 Toulouse Cedex 04 France
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination, CNRS, UPR-8241 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Christine Lepetit
- Laboratoire de Chimie de Coordination, CNRS, UPR-8241 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Myrtil L Kahn
- Laboratoire de Chimie de Coordination, CNRS, UPR-8241 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
5
|
Cui R, Fan C, Dong X, Fang K, Li L, Qin Y. Effect of ultrahigh-pressure treatment on the functional properties of poly(lactic acid)/ZnO nanocomposite food packaging film. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4925-4933. [PMID: 33543471 DOI: 10.1002/jsfa.11136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Our living environment is being increasingly polluted by petroleum-based plastics and there is an increasing demand for biodegradable food packaging. In this study, the effect of various ultrahigh-pressure (UHP) treatments (0, 200 and 400 MPa) on the microstructure and thermal, barrier and mechanical properties of poly(lactic acid) (PLA)/ZnO nanocomposite films was studied. RESULTS The film-forming solution was processed using UHP technology. The crystallinity, strength and stiffness of the composite film after UHP treatment increased. In addition, barrier property analysis showed that the UHP treatment significantly (P < 0.05) reduced the oxygen permeability and water vapor permeability (WVP) coefficient of the PLA/ZnO nanocomposite film. Furthermore, the WVP value of the film treated at 400 MPa (50 g kg-1 nano-ZnO content) was the lowest and reduced by 47.3% compared with that of pure PLA film. The improvement in these properties might be due to the interaction between nano-ZnO and PLA matrix promoted by UHP treatment. CONCLUSIONS Therefore, the application of UHP technology on the film-forming solution could improve the crystallinity and functional properties of the nanocomposite film, and has great potential in the production of food packaging films with ideal functions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Cui
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming, China
| | - Chunli Fan
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xuelan Dong
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming, China
| | - Ke Fang
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming, China
| | - Lin Li
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Yuyue Qin
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
6
|
|
7
|
Liu Y, Wang J, Zhang M, Li H, Lin Z. Polymer-Ligated Nanocrystals Enabled by Nonlinear Block Copolymer Nanoreactors: Synthesis, Properties, and Applications. ACS NANO 2020; 14:12491-12521. [PMID: 32975934 DOI: 10.1021/acsnano.0c06936] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The past several decades have witnessed substantial advances in synthesis and self-assembly of inorganic nanocrystals (NCs) due largely to their size- and shape-dependent properties for use in optics, optoelectronics, catalysis, energy conversion and storage, nanotechnology, and biomedical applications. Among various routes to NCs, the nonlinear block copolymer (BCP) nanoreactor technique has recently emerged as a general yet robust strategy for crafting a rich diversity of NCs of interest with precisely controlled dimensions, compositions, architectures, and surface chemistry. It is notable that nonlinear BCPs are unimolecular micelles, where each block copolymer arm of nonlinear BCP is covalently connected to a central core or polymer backbone. As such, their structures are static and stable, representing a class of functional polymers with complex architecture for directing the synthesis of NCs. In this review, recent progress in synthesizing NCs by capitalizing on two sets of nonlinear BCPs as nanoreactors are discussed. They are star-shaped BCPs for producing 0D spherical nanoparticles, including plain, hollow, and core-shell nanoparticles, and bottlebrush-like BCPs for creating 1D plain and core/shell nanorods (and nanowires) as well as nanotubes. As the surface of these NCs is intimately tethered with the outer blocks of nonlinear BCPs used, they can thus be regarded as polymer-ligated NCs (i.e., hairy NCs). First, the rational design and synthesis of nonlinear BCPs via controlled/living radical polymerizations is introduced. Subsequently, their use as the NC-directing nanoreactors to yield monodisperse nanoparticles and nanorods with judiciously engineered dimensions, compositions, and surface chemistry is examined. Afterward, the intriguing properties of such polymer-ligated NCs, which are found to depend sensitively on their sizes, architectures, and functionalities of surface polymer hairs, are highlighted. Some practical applications of these polymer-ligated NCs for energy conversion and storage and drug delivery are then discussed. Finally, challenges and opportunities in this rapidly evolving field are presented.
Collapse
Affiliation(s)
- Yijiang Liu
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Jialin Wang
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Mingyue Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huaming Li
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Qin X, Xu H, Zhang G, Wang J, Wang Z, Zhao Y, Wang Z, Tan T, Bockstaller MR, Zhang L, Matyjaszewski K. Enhancing the Performance of Rubber with Nano ZnO as Activators. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48007-48015. [PMID: 33040537 DOI: 10.1021/acsami.0c15114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The vulcanization of rubber is a chemical process to improve the mechanical properties by cross-linking unsaturated polymer chains. Zinc oxide (ZnO) acts as an activator, boosting the rubbers' sulfur vulcanization. Maintaining the level of ZnO content in the rubber compounds as low as possible is desirable, not only for economic reasons but also to reduce the environmental footprint of the process. In this contribution, octylamine (OA) capped ZnO nanoparticles (5 nm diameter), prepared through a thermal decomposition method, were demonstrated to be efficient activators for the sulfur vulcanization of natural rubber, enabling the reduction of the required amount of ZnO as compared to commercial systems. The effect of different ZnO activators (OA capped ZnO/commercial indirect process ZnO) on the curing characteristics, cross-linking densities, and mechanical performance, as well as the thermal behavior of rubber compounds, were investigated. Compared to the commercial indirect process ZnO, OA capped ZnO nanoparticles not only effectively enhanced the curing efficiency of natural rubber but also improved the mechanical performance of the composites after vulcanization. This was interpreted as, by applying the OA capped ZnO nanoparticles, the ZnO levels in rubber compounding were significantly reduced under the industrial vulcanization condition (151 °C, 30 min).
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Haoshu Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ganggang Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiadong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuqi Zhao
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tianwei Tan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Michael R Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
9
|
Wei Q, Sun M, Wang Z, Yan J, Yuan R, Liu T, Majidi C, Matyjaszewski K. Surface Engineering of Liquid Metal Nanodroplets by Attachable Diblock Copolymers. ACS NANO 2020; 14:9884-9893. [PMID: 32649179 DOI: 10.1021/acsnano.0c02720] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Liquid metal (LM) micro/nano droplets have promising applications in various fields such as flexible electronics, catalysis, and soft composites as well as biomedicines. However, the preparation of highly stable LM nanodroplets suspension based on eutectic gallium/indium (EGaIn) alloys is still challenging. Herein, we report a general and robust strategy to fabricate EGaIn nanodroplets stabilized by polymer brushes (polymer brushes/EGaIn nanodroplets) via in situ attachment of well-defined diblock copolymers with short poly(acrylic acid) (PAA) anchoring segments. Under ultrasonication, the anchoring PAA block is in situ attached onto the gallium oxide "skin" layer of EGaIn nanodroplets to form polymer brushes. The attachable diblock copolymer surfactants allow for highly efficient formation of EGaIn nanodroplets in high yield and with narrow size distribution. The polymer brushes/EGaIn nanodroplets contain very low fractions of attached polymer (<1 wt %) and exhibit high colloidal stability (>30 days) and good redispersibility. Precise control of polymer architecture by atom-transfer radical polymerization was employed to prepare various block copolymers for suspensions in a variety of solvents.
Collapse
Affiliation(s)
- Qiangbing Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiajun Yan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rui Yuan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Wang Y, Liu L, Jiang S, Li S, Lan T, Zu L, Dong S. Synthesis of Modified TiO
2
Nanoparticles with Polyacrylonitrile and Poly(hydroxyethyl acrylate) via ATRP. ChemistrySelect 2020. [DOI: 10.1002/slct.202000134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yazhen Wang
- College of Chemistry and Chemical EngineeringQiqihar University Qiqihar 161006 China
- College of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry University Harbin 150040 China
| | - Li Liu
- College of Chemistry and Chemical EngineeringQiqihar University Qiqihar 161006 China
| | - Shengyue Jiang
- College of Chemistry and Chemical EngineeringQiqihar University Qiqihar 161006 China
| | - Shuang Li
- College of Materials Science and EngineeringHeilongjiang Province Key Laboratory of Polymeric Composition MaterialQiqihar University Qiqihar 161006 China
| | - Tianyu Lan
- College of Materials Science and EngineeringHeilongjiang Province Key Laboratory of Polymeric Composition MaterialQiqihar University Qiqihar 161006 China
| | - Liwu Zu
- College of Materials Science and EngineeringHeilongjiang Province Key Laboratory of Polymeric Composition MaterialQiqihar University Qiqihar 161006 China
| | - Shaobo Dong
- College of Materials Science and EngineeringHeilongjiang Province Key Laboratory of Polymeric Composition MaterialQiqihar University Qiqihar 161006 China
| |
Collapse
|
11
|
Brush-modified materials: Control of molecular architecture, assembly behavior, properties and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101180] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Mocny P, Klok HA. Complex polymer topologies and polymer—nanoparticle hybrid films prepared via surface-initiated controlled radical polymerization. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101185] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Flejszar M, Chmielarz P. Surface-Initiated Atom Transfer Radical Polymerization for the Preparation of Well-Defined Organic-Inorganic Hybrid Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3030. [PMID: 31540468 PMCID: PMC6766320 DOI: 10.3390/ma12183030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
Surface-initiated atom transfer radical polymerization (SI-ATRP) is a powerful tool that allows for the synthesis of organic-inorganic hybrid nanomaterials with high potential applications in many disciplines. This review presents synthetic achievements and modifications of nanoparticles via SI-ATRP described in literature last decade. The work mainly focuses on the research development of silica, gold and iron polymer-grafted nanoparticles as well as nature-based materials like nanocellulose. Moreover, typical single examples of nanoparticles modification, i.e., ZnO, are presented. The organic-inorganic hybrid systems received according to the reversible deactivation radical polymerization (RDRP) approach with drastically reduced catalyst complex concentration indicate a wide range of applications of materials including biomedicine and microelectronic devices.
Collapse
Affiliation(s)
- Monika Flejszar
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| |
Collapse
|
14
|
Xie G, Martinez MR, Olszewski M, Sheiko SS, Matyjaszewski K. Molecular Bottlebrushes as Novel Materials. Biomacromolecules 2018; 20:27-54. [DOI: 10.1021/acs.biomac.8b01171] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Guojun Xie
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Martinez
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mateusz Olszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
15
|
Xie G, Martinez MR, Daniel WFM, Keith AN, Ribelli TG, Fantin M, Sheiko SS, Matyjaszewski K. Benefits of Catalyzed Radical Termination: High-Yield Synthesis of Polyacrylate Molecular Bottlebrushes without Gelation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00849] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guojun Xie
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Martinez
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - William F. M. Daniel
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Andrew N. Keith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Thomas G. Ribelli
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Marco Fantin
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
16
|
Controlled synthesis of modified polyacrylamide grafted nano-sized silica supported Pd nanoparticles via RAFT polymerization through “grafting to” approach: application to the Heck reaction. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4349-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Pietrasik J, Budzałek K, Zhang Y, Hałagan K, Kozanecki M. Macromolecular Templates for Synthesis of Inorganic Nanoparticles. ACS SYMPOSIUM SERIES 2018. [DOI: 10.1021/bk-2018-1285.ch010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Joanna Pietrasik
- Institute of Polymer and Dye Technology, Lodz University of Technology, Zeromskiego 116, 90 924 Lodz, Poland
| | - Katarzyna Budzałek
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90 924 Lodz, Poland
| | - Yaoming Zhang
- Institute of Polymer and Dye Technology, Lodz University of Technology, Zeromskiego 116, 90 924 Lodz, Poland
| | - Krzysztof Hałagan
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90 924 Lodz, Poland
| | - Marcin Kozanecki
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90 924 Lodz, Poland
| |
Collapse
|
18
|
Lin J, Ding J, Dai Y, Wang X, Wei J, Chen Y. Antibacterial zinc oxide hybrid with gelatin coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:321-326. [PMID: 28887979 DOI: 10.1016/j.msec.2017.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022]
Abstract
ZnO has been widely investigated as important biomaterials and antibacterial materials. However, the aggregation of nanoparticles and its potential toxicity may hinder its final application. Herein, biocompatible gelatin chains were grafted on the surface of ZnO via mussel inspired method to prevent the aggregation of the ZnO nanoparticles. The in vitro test showed that the gelatin can greatly improve the biocompatibility of ZnO, while the antibacterial properties of ZnO against both E. coli and S. aureus were maintained.
Collapse
Affiliation(s)
- Jun Lin
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Yanfeng Dai
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Xiaolei Wang
- College of Chemistry, Nanchang University, Nanchang 330031, PR China; Institue of Translational Medicine, Nanchang University, Nanchang 330031, PR China
| | - Junchao Wei
- College of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Yiwang Chen
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| |
Collapse
|
19
|
Wang Z, Mahoney C, Yan J, Lu Z, Ferebee R, Luo D, Bockstaller MR, Matyjaszewski K. Preparation of Well-Defined Poly(styrene-co-acrylonitrile)/ZnO Hybrid Nanoparticles by an Efficient Ligand Exchange Strategy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13207-13213. [PMID: 27951696 DOI: 10.1021/acs.langmuir.6b03827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Poly(styrene-co-acrylonitrile) (PSAN)-capped ZnO nanoparticles (NPs) were synthesized by a "ligand exchange" method. First, octylamine (OA)-capped ZnO NPs were prepared by reaction of OA and zinc 2-ethylhexanoate (Zn(EH)2). Then PSAN polymer ligands were synthesized by activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP) and were efficiently exchanged with OA ligands on the ZnO particle surface benefiting from the relatively low boiling point of OA (175 °C). The morphology, content of ZnO, and grafting density of the nanocomposite were well controlled by altering the ratio between OA and polymer ligands as well as the molecular weight of PSAN-NH2 used in the exchange reaction. The resulting ZnO/polymer nanocomposites were stable in THF with narrow size distributions and varying grafting densities from 0.9 to 2.5 nm-2. With excess amount of polymer ligands, individual dispersed ZnO NPs were observed. However, with a limited amount of ligands, NPs clusters were formed, as confirmed by TEM and DLS.
Collapse
Affiliation(s)
- Zongyu Wang
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Clare Mahoney
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jiajun Yan
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zhao Lu
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rachel Ferebee
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Danli Luo
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R Bockstaller
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|