1
|
Medhi R, Cintora A, Guazzelli E, Narayan N, Leonardi AK, Galli G, Oliva M, Pretti C, Finlay JA, Clare AS, Martinelli E, Ober CK. Nitroxide-Containing Amphiphilic Random Terpolymers for Marine Antifouling and Fouling-Release Coatings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11150-11162. [PMID: 36802475 DOI: 10.1021/acsami.2c23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two types of amphiphilic random terpolymers, poly(ethylene glycol methyl ether methacrylate)-ran-poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate)-ran-poly(polydimethyl siloxane methacrylate) (PEGMEMA-r-PTMA-r-PDMSMA), were synthesized and evaluated for antifouling (AF) and fouling-release (FR) properties using diverse marine fouling organisms. In the first stage of production, the two respective precursor amine terpolymers containing (2,2,6,6-tetramethyl-4-piperidyl methacrylate) units (PEGMEMA-r-PTMPM-r-PDMSMA) were synthesized by atom transfer radical polymerization using various comonomer ratios and two initiators: alkyl halide and fluoroalkyl halide. In the second stage, these were selectively oxidized to introduce nitroxide radical functionalities. Finally, the terpolymers were incorporated into a PDMS host matrix to create coatings. AF and FR properties were examined using the alga Ulva linza, the barnacle Balanus improvisus, and the tubeworm Ficopomatus enigmaticus. The effects of comonomer ratios on surface properties and fouling assay results for each set of coatings are discussed in detail. There were marked differences in the effectiveness of these systems against the different fouling organisms. The terpolymers had distinct advantages over monopolymeric systems across the different organisms, and the nonfluorinated PEG and nitroxide combination was identified as the most effective formulation against B. improvisus and F. enigmaticus.
Collapse
Affiliation(s)
- Riddhiman Medhi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alicia Cintora
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Nila Narayan
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Amanda K Leonardi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Matteo Oliva
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", Livorno 57128, Italy
| | - Carlo Pretti
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", Livorno 57128, Italy
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa 56124, Italy
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Martinsen M, Economopoulos S, Jakobsen M, Lein H, Diget J. Synthesis of PDMS/PEG graft-like and block copolymers via industrially relevant reverse iodine transfer polymerization. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Sarkar PK, Pawar SS, Rath SK, Kandasubramanian B. Anti-barnacle biofouling coatings for the protection of marine vessels: synthesis and progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26078-26112. [PMID: 35076840 DOI: 10.1007/s11356-021-18404-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Marine biofouling has gnawed both mobile and non-mobile marine structures since time immemorial, leading to the deterioration of designed operational capabilities as well as a loss of valuable economic revenues. Mitigation of biofouling has been the primary focus of researchers and scientists from across the globe to save billions of dollars wasted due to the biological fouling of marine structures. The availability of an appropriate environment along with favorable substrata initiates biofilm formation within a few minutes. The crucial element in establishing a gelatinous biofilm is the excreted metabolites of destructive nature and exopolymeric substances (EPSs). These help in securing as well as signaling numerous foulants to establish themselves on this substrate. The larvae of various benthic invertebrates adhere to these suitable surfaces and transform from juveniles to adult barnacles depending upon the environment. Despite biofouling being characteristically witnessed for a month or lengthier timeframe, the preliminary phases of the fouling process typically transpire on a much lesser timescale. A few natural and synthetic additives had demonstrated excellent non-toxic anti barnacle establishment capability; however, further development into commercial products is still far-fetched. This review collates the specific anti-barnacle coatings, emphasizing natural additives, their sources of extraction, general life cycle analysis, and concluding future perspectives of this niche product.
Collapse
Affiliation(s)
- Pramit Kumar Sarkar
- Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced, Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, India
- Mazagon Dock Shipbuilders Ltd, Ministry of Defence, Dockyard Road, Mumbai, 400010, Maharashtra, India
| | - Sushil S Pawar
- Protective Coatings Department, Naval Materials Research Laboratory, Ministry of Defence, DRDO, Ambernath, 421506, Maharashtra, India
| | - Sangram K Rath
- Protective Coatings Department, Naval Materials Research Laboratory, Ministry of Defence, DRDO, Ambernath, 421506, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced, Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, India.
| |
Collapse
|
4
|
Qiu H, Feng K, Gapeeva A, Meurisch K, Kaps S, Li X, Yu L, Mishra YK, Adelung R, Baum M. Functional Polymer Materials for Modern Marine Biofouling Control. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101516] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Jiang Y, Zhang Z, Qi Y. The Compatibility of Three Silicone Oils with Polydimethylsiloxane and the Microstructure and Properties of Their Composite Coatings. Polymers (Basel) 2021; 13:polym13142355. [PMID: 34301112 PMCID: PMC8309578 DOI: 10.3390/polym13142355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
The compatibility of three types of silicone oil with polydimethylsiloxane, the phase separation of their mixture and the microstructure and properties of their composite coatings were investigated. The existing form of silicone oil in the coating and the precipitation behavior were also studied. The compatibility observed experimentally of the three silicone oils with PDMS is consistent with the results of the thermodynamic calculation. The silicone oil droplet produced by phase separation in the mixture solution can keep its shape in the cured coating, also affecting the microstructure and mechanical properties of the coating. It was found that methyl silicone oil and methyl fluoro silicone oil do not precipitate on the surface, and they have no effect on the surface properties of the coating. In contrast, phenyl silicone oil has obvious effect on the surface, which makes the water contact angle and diiodomethane contact angle of the coating decrease significantly.
Collapse
|
6
|
Leonardi A, Zhang AC, Düzen N, Aldred N, Finlay JA, Clarke JL, Clare AS, Segalman RA, Ober CK. Amphiphilic Nitroxide-Bearing Siloxane-Based Block Copolymer Coatings for Enhanced Marine Fouling Release. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28790-28801. [PMID: 34105932 DOI: 10.1021/acsami.1c05266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The buildup of organic matter and organisms on surfaces exposed to marine environments, known as biofouling, is a disruptive and costly process affecting maritime operations. Previous research has identified some of the surface characteristics particularly suited to the creation of antifouling and fouling-release surfaces, but there remains room for improvement against both macrofouling and microfouling organisms. Characterization of their adhesives has shown that many rely on oxidative chemistries. In this work, we explore the incorporation of the stable radical 2,2,6,6-tetramethylpipiderin-1-oxyl (TEMPO) as a component in an amphiphilic block copolymer system to act as an inhibitor for marine cements, disrupting adhesion of macrofouling organisms. Using polystyrene-b-poly(dimethylsiloxane-r-vinylmethysiloxane) block copolymers, pendent vinyl groups were functionalized with TEMPO and poly(ethylene glycol) to construct an amphiphilic material with redox active character. The antifouling and fouling-release performance of these materials was investigated through settlement and removal assays of three model fouling organisms and correlated to surface structure and chemistry. Surfaces showed significant antifouling character and fouling-release performance was increased substantially toward barnacles by the incorporation of stable radicals, indicating their potential for marine antifouling applications.
Collapse
Affiliation(s)
- Amanda Leonardi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Aria C Zhang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nilay Düzen
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Jessica L Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Rachel A Segalman
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93110, United States
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Du Y, Zeng Q, Yuan L, He L. Post-polymerization modification based on reactive fluorinated polymers reaction. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1903328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yiying Du
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiugui Zeng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Yuan
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, China
| | - Lirong He
- Polymer Research Insititute, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Investigation of the LCST-Thermoresponsive Behavior of Novel Oligo(Ethylene Glycol)-Modified Pentafluorostyrene Homopolymers. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amphiphilic tetrafluorostyrene monomers (EFS8) carrying in the para position an oligoethylene glycol chain containing 8 oxyethylenic units on average were synthesized and used for preparation via activator regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP) of the corresponding amphiphilic homopolymers (pEFS8-x) with different degrees of polymerization (x = 26 and 46). Combining light transmittance and nano-differential scanning calorimetry (n-DSC) measurements revealed that pEFS8-x homopolymers displayed a lower critical solution temperature (LCST) thermoresponsive behavior in water solutions. Moreover, n-DSC measurements revealed the presence in heating scans of a broad endothermic peak ascribable to the dehydration process of the polymer single chains (unimers) and their collapse into aggregates. Consistently, dynamic light scattering (DLS) measurements showed below the LCST the presence of small nanostructures with a hydrodynamic diameter size Dh of 6–7 nm, which collapsed into concentration-dependent larger multichain aggregates (Dh = 300–3000 nm) above LCST. Interestingly, n-DSC data showed that the unimer-aggregate transition was reversible up to a specific temperature (Trev) of each homopolymer, which in any case was higher than Tmax. When heating above Trev the transition was no longer reversible, causing the shift of Tonset and Tmax at lower values, thus suggesting an increase in hydrophobicity of the polymer systems associated with a temperature-dependent dehydration process.
Collapse
|
9
|
Guazzelli E, Perondi F, Criscitiello F, Pretti C, Oliva M, Casu V, Maniero F, Gazzera L, Galli G, Martinelli E. New amphiphilic copolymers for PDMS-based nanocomposite films with long-term marine antifouling performance. J Mater Chem B 2020; 8:9764-9776. [PMID: 33021610 DOI: 10.1039/d0tb01905d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amphiphilic methacrylate copolymers (Si-co-EF) containing polysiloxane (Si) and mixed poly(oxyethylene)-perfluorohexyl (EF) side chains were synthesized with different compositions and used together with polysiloxane-functionalized nanoparticles as additives of condensation cured nanocomposite poly(siloxane) films. The mechanical properties of the nanocomposite films were consistent with the elastomeric behavior of the poly(siloxane) matrix without significant detriment from either the copolymer or the nanoparticles. Films were found to be markedly hydrophobic and liphophobic, with both properties being maximized at an intermediate content of EF units. The high enrichment in fluorine at the film surface was proven by angle-resolved X-ray photoelectron spectroscopy (AR-XPS). Long-term marine antifouling performance was evaluated in field immersion trials of test panels for up to 10 months of immersion. Both nanoparticles and amphiphilic copolymer were found to be highly effective in reducing the colonization of foulants, especially hard macrofoulants, when compared with control panels. Lowest percentage of surface coverage was 20% after 10 months of immersion (films with 4 wt% copolymer and 0.5 wt% nanoparticles), which was further decreased to less than 10% after exposure to a water jet for 10 s. The enhanced antifouling properties of coatings containing both nanoparticles and copolymer were confirmed by laboratory assays against the polychaete Ficopomatus enigmaticus and the diatom Navicula salinicola.
Collapse
Affiliation(s)
- Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy.
| | - Federico Perondi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy.
| | | | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy and Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", 57128 Livorno, Italy
| | - Matteo Oliva
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", 57128 Livorno, Italy
| | - Valentina Casu
- Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy
| | | | | | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy.
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy.
| |
Collapse
|
10
|
Guazzelli E, Galli G, Martinelli E. The Effect of Poly(ethylene glycol) (PEG) Length on the Wettability and Surface Chemistry of PEG-Fluoroalkyl-Modified Polystyrene Diblock Copolymers and Their Two-Layer Films with Elastomer Matrix. Polymers (Basel) 2020; 12:E1236. [PMID: 32485870 PMCID: PMC7361959 DOI: 10.3390/polym12061236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 01/10/2023] Open
Abstract
Diblock copolymers composed of a polystyrene first block and a PEG-fluoroalkyl chain-modified polystyrene second block were synthesized by controlled atom transfer radical polymerization (ATRP), starting from the same polystyrene macroinitiator. The wettability of the polymer film surfaces was investigated by measurements of static and dynamic contact angles. An increase in advancing water contact angle was evident for all the films after immersion in water for short times (10 and 1000 s), consistent with an unusual contraphilic switch of the PEG-fluoroalkyl side chains. Such a contraphilic response also accounted for the retained wettability of the polymer films upon prolonged contact with water, without an anticipated increase in the hydrophilic character. The copolymers were then used as surface-active modifiers of elastomer poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS)-based two-layer films. The elastomeric behavior of the films was varied by using SEBS matrices with different amounts of polystyrene. Whereas the mechanical properties strictly resembled those of the nature of the SEBS matrix, the surface properties were imposed by the additive. The contraphilic switch of the PEG-fluoroalkyl side chains resulted in an exceptionally high enrichment in fluorine of the film surface after immersion in water for seven days.
Collapse
Affiliation(s)
| | | | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy; (E.G.); (G.G.)
| |
Collapse
|
11
|
Guazzelli E, Martinelli E, Pelloquet L, Briand JF, Margaillan A, Bunet R, Galli G, Bressy C. Amphiphilic hydrolyzable polydimethylsiloxane- b-poly(ethyleneglycol methacrylate- co-trialkylsilyl methacrylate) block copolymers for marine coatings. II. Antifouling laboratory tests and field trials. BIOFOULING 2020; 36:378-388. [PMID: 32425065 DOI: 10.1080/08927014.2020.1762868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Poly(dimethylsiloxane) (PDMS) elastomer coatings containing an amphiphilic hydrolyzable diblock copolymer additive were prepared and their potential as marine antifouling and antiadhesion materials was tested. The block copolymer additive consisted of a PDMS first block and a random poly(trialkylsilyl methacrylate (TRSiMA, R = butyl, isopropyl)-co-poly(ethyleneglycol) methacrylate (PEGMA) copolymer second block. PDMS-b-TRSiMA block copolymer additives without PEGMA units were also used as additives. The amphiphilic character of the coating surface was assessed in water using the captive air bubble technique for measurements of static and dynamic contact angles. The attachment of macro- and microorganisms on the coatings was evaluated by field tests and by performing adhesion tests to the barnacle Amphibalanus amphitrite and the green alga Ulva rigida. All the additive-based PDMS coatings showed better antiadhesion properties to A. amphitrite larvae than to U. rigida spores. Field tests provided meaningful information on the antifouling and fouling release activity of coatings over an immersion period of 23 months.
Collapse
Affiliation(s)
- Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Lucile Pelloquet
- Laboratoire MAPIEM, E.A.4323, SeaTech Ecole d'Ingénieur, Université de Toulon, Toulon Cedex 9, France
| | - Jean-François Briand
- Laboratoire MAPIEM, E.A.4323, SeaTech Ecole d'Ingénieur, Université de Toulon, Toulon Cedex 9, France
| | - André Margaillan
- Laboratoire MAPIEM, E.A.4323, SeaTech Ecole d'Ingénieur, Université de Toulon, Toulon Cedex 9, France
| | - Robert Bunet
- Institut Océanographique Paul Ricard, Six-Fours-les-Plages, France
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Christine Bressy
- Laboratoire MAPIEM, E.A.4323, SeaTech Ecole d'Ingénieur, Université de Toulon, Toulon Cedex 9, France
| |
Collapse
|
12
|
Hu P, Xie Q, Ma C, Zhang G. Silicone-Based Fouling-Release Coatings for Marine Antifouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2170-2183. [PMID: 32013443 DOI: 10.1021/acs.langmuir.9b03926] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Marine biofouling profoundly influences marine industries and activities. It slows the speed and increases the fuel consumption of ships, corrodes offshore platforms, and blocks seawater pipelines. The most effective and economical antifouling approach uses coatings. Fouling-release coatings (FRCs) with low surface free energy and high elasticity weakly adhere to marine organisms, so they can be readily removed by the water shear force. FRCs have attracted increasing interest because they are biocide-free and hence ecofriendly. However, traditional silicone-based FRCs have weak adhesion to substrates, low mechanical strength, and low fouling resistance, limiting their applications. In recent years, many attempts have been made to improve their mechanical properties and fouling resistance. This review deals with the progress in the construction of high-performance silicone-based fouling-release surfaces.
Collapse
Affiliation(s)
- Peng Hu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
13
|
Antibiofouling potential of 1-alkyl-3-methylimidazolium ionic liquids: Studies against biofouling barnacle larvae. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Fluorinated vs. Zwitterionic-Polymer Grafted Surfaces for Adhesion Prevention of the Fungal Pathogen Candida albicans. Polymers (Basel) 2020; 12:polym12020398. [PMID: 32050664 PMCID: PMC7077729 DOI: 10.3390/polym12020398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 11/17/2022] Open
Abstract
Fluorinated (F6) and zwitterionic, as well as phosphorylcholine (MPC) and sulfobetaine (MSA), copolymers containing a low amount (1 and 5 mol%) of 3-(trimethoxysilyl)propyl methacrylate (PTMSi) were prepared and covalently grafted to glass slides by using the trimethoxysilyl groups as anchorage points. Glass-surface functionalization and polymer-film stability upon immersion in water were proven by contact angle and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) measurements. Antifouling performance of the grafted films was assayed against the yeast Candida albicans, the most common Candida species, which causes over 80% of candidiasis. Results revealed that the F6 fluorinated, hydrophobic copolymers performed much better in reducing the adhesion of C. albicans, with respect to both corresponding zwitterionic, hydrophilic MPC and MSA counterparts, and were similar to the glass negative control, which is well-known to inhibit the adhesion of C. albicans. A composition-dependent activity was also found, with the films of copolymer with 99 mol% F6 fluorinated co-units performing best.
Collapse
|
15
|
Carve M, Scardino A, Shimeta J. Effects of surface texture and interrelated properties on marine biofouling: a systematic review. BIOFOULING 2019; 35:597-617. [PMID: 31298039 DOI: 10.1080/08927014.2019.1636036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/09/2019] [Accepted: 06/19/2019] [Indexed: 05/22/2023]
Abstract
This systematic review examines effects of surface texture on marine biofouling and characterizes key research methodologies. Seventy-five published articles met selection criteria for qualitative analysis; experimental data from 36 underwent quantitative meta-analysis. Most studies investigated fouling mechanisms and antifouling performance only in laboratory assays with one to several test species. Textures were almost exclusively a single layer of regularly arranged geometric features rather than complex hierarchical or irregular designs. Textures in general had no effect or an inconclusive effect on fouling in 46% of cases. However, effective textures more often decreased (35%) rather than increased (19%) fouling. Complex designs were more effective against fouling (51%) than were regular geometric features (32%). Ratios of feature height, width, or pitch to organism body length were significant influences. The authors recommend further research on promising complex and hierarchical texture designs with more test species, as well as field studies to ground-truth laboratory results.
Collapse
Affiliation(s)
- Megan Carve
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Andrew Scardino
- Maritime Division, Defence Science and Technology, Fishermans Bend, Victoria, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
16
|
Leonardi AK, Ober CK. Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification. Annu Rev Chem Biomol Eng 2019; 10:241-264. [DOI: 10.1146/annurev-chembioeng-060718-030401] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In marine industries, the accumulation of organic matter and marine organisms on ship hulls and instruments limits performance, requiring frequent maintenance and increasing fuel costs. Current coatings technology to combat this biofouling relies heavily on the use of toxic, biocide-containing paints. These pose a serious threat to marine ecosystems, affecting both target and nontarget organisms. Innovation in the design of polymers offers an excellent platform for the development of alternatives, but the creation of a broad-spectrum, nontoxic material still poses quite a hurdle for researchers. Surface chemistry, physical properties, durability, and attachment scheme have been shown to play a vital role in the construction of a successful coating. This review explores why these characteristics are important and how recent research accounts for them in the design and synthesis of new environmentally benign antifouling and fouling release materials.
Collapse
Affiliation(s)
- Amanda K. Leonardi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Christopher K. Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
17
|
Martinelli E, Pretti C, Oliva M, Glisenti A, Galli G. Sol-gel polysiloxane films containing different surface-active trialkoxysilanes for the release of the marine foulant Ficopomatus enigmaticus. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Effect of CNT/PDMS Nanocomposites on the Dynamics of Pioneer Bacterial Communities in the Natural Biofilms of Seawater. MATERIALS 2018; 11:ma11060902. [PMID: 29843363 PMCID: PMC6025298 DOI: 10.3390/ma11060902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 11/17/2022]
Abstract
In this study, the antifouling (AF) performance of different carbon nanotubes (CNTs)-modified polydimethylsiloxane (PDMS) nanocomposites (PCs) was examined directly in the natural seawater, and further analyzed using the Multidimensional Scale Analyses (MDS) method. The early-adherent bacterial communities in the natural biofilms adhering to different PC surfaces were investigated using the single-stranded conformation polymorphism (SSCP) technique. The PCs demonstrated differences and reinforced AF properties in the field, and they were prone to clustering according to the discrepancies within different CNT fillers. Furthermore, most PC surfaces only demonstrated weak modulating effects on the biological colonization and successional process of the early bacterial communities in natural biofilms, indicating that the presence of the early colonized prokaryotic microbes would be one of the primary causes of colonization and deterioration of the PCs. C6 coating seems to be promising for marine AF applications, since it has a strong perturbation effect on pioneer prokaryotic colonization.
Collapse
|
19
|
Zhou J, Zhang X, Lan Y, Zhao Y, Lei F, Li H, Li P, Xu H, Huang Q. Adsorption behavior and conformational changes of acrylpimaric acid polyglycol esters at the air-water interface. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
La Manna P, Musto P, Galli G, Martinelli E. In Situ FT-IR Spectroscopy Investigation of the Water Sorption of Amphiphilic PDMS Crosslinked Networks. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pietro La Manna
- Institute of Chemistry and Technology of Polymers; National Research Council of Italy; 80078 Pozzuoli Naples Italy
| | - Pellegrino Musto
- Institute of Chemistry and Technology of Polymers; National Research Council of Italy; 80078 Pozzuoli Naples Italy
| | - Giancarlo Galli
- Department of Chemistry and Industrial Chemistry; University of Pisa; 56124 Pisa Italy
| | - Elisa Martinelli
- Department of Chemistry and Industrial Chemistry; University of Pisa; 56124 Pisa Italy
| |
Collapse
|