1
|
Zou Z, Hu Z, Pu H. Lithium-ion battery separators based-on nanolayer co-extrusion prepared polypropylene nanobelts reinforced cellulose. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Cheng J, Lin Z, Wu D, Liu C, Cao Z. Aramid textile with near-infrared laser-induced graphene for efficient adsorption materials. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129150. [PMID: 35642999 DOI: 10.1016/j.jhazmat.2022.129150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Porous carbon materials show great application potential in the field of adsorption. However, the preparation process of carbon adsorption materials relies on high temperature, high energy consumption, many steps, and long time. Most of them exist in the form of powder or block, and the practical application scenarios are limited and difficult to recycle. In this study, based on in-situ carbonization of polymer precursor, we directly generated laser-induced graphene (LIG) on the surface of commercial aramid textile using a low-energy near-infrared laser in air, and prospected the application prospect of the prepared aramid/graphene textile in the field of adsorption. Under a certain laser energy, the photothermal reaction promotes the breaking of the CO and CN bonds in the surface layer of the aramid fiber, and reorganizes into a graphene structure at an instantaneous high temperature, while the overall flexible structure of the textile was not destroyed. Further, adsorption materials based on the as-prepared aramid/graphene textiles were also designed, including VOC-adsorbing textile in air and dye-adsorbing textile in water. Using low-energy near-infrared laser to directly achieve LIG writing in commercial textiles under air condition will provide an efficient, environmentally friendly, and designable direction for the large-scale fabrication of textile adsorption products.
Collapse
Affiliation(s)
- Junfeng Cheng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Zhixiong Lin
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Dun Wu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China; National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou 213164, China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China; Changzhou University Huaide College, Changzhou 213016, China.
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
3
|
Cheng J, You X, Li H, Zhou J, Lin Z, Wu D, Liu C, Cao Z, Pu H. Laser irradiation method to prepare polyethylene porous fiber membrane with ultrahigh xylene gas filtration capacity. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124395. [PMID: 33191024 DOI: 10.1016/j.jhazmat.2020.124395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 05/23/2023]
Abstract
In recent years, volatile organic compound (VOC) gases have caused potential harm to people's health. This study reveals the preparation of polyethylene porous fiber membrane with excellent low-concentration VOCs filtration performance via laser irradiation technology. A neodymium-doped yttrium aluminum garnet (Nd:YAG) pulsed laser beam was used to scan the laser-sensitive low-density polyethylene/carbon black (LDPE/CB) fibers prepared by nanolayer coextrusion in the air. The controllable thermal energy generated by laser irradiation makes the surface of the fiber membrane to produce a porous carbon layer in situ. Laser power and scanning speed are important parameters for controlling laser-induced carbonization. The results indicate that the rich "fluffy" carbon structures on the surface of the porous fiber membrane can efficiently adsorb xylene gas. This study can provide a positive reference for the large-scale preparation of polyolefin porous fiber membrane with VOCs filtration by simple and efficient laser irradiation method.
Collapse
Affiliation(s)
- Junfeng Cheng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Xinghua You
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Hao Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jun Zhou
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Zhixiong Lin
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Dun Wu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China; National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou 213164, China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China; Changzhou University Huaide College, Jingjiang 214500, China.
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Hongting Pu
- Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China.
| |
Collapse
|
4
|
Pongmuksuwan P, Harnnarongchai W. In Situ Assembly of LDPE/PA6 Multilayer Structure by Stirring. INT POLYM PROC 2020. [DOI: 10.3139/217.3849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- P. Pongmuksuwan
- Department of Materials and Production Technology Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - W. Harnnarongchai
- Department of Materials and Production Technology Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| |
Collapse
|
5
|
Yu H, Li J, Guo S. Three‐dimensional isothermal simulation of PP melt flow in laminating‐multiplying elements based on the finite element method. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huaning Yu
- The State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu Sichuan 610065 China
| | - Jiang Li
- The State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu Sichuan 610065 China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu Sichuan 610065 China
| |
Collapse
|
6
|
Non-Isothermal Crystallization Kinetic of Polyethylene/Carbon Nanotubes Nanocomposites Using an Isoconversional Method. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Behavior studies of thermoplastic polymers during non-isothermal crystallization are extremely important since most of their properties are influenced by degree of crystallinity and the crystallization process. In general, an approach based on a model-fitting method is used to perform crystallization kinetic studies. Due to their inability to uniquely determine the reaction mode, many studies have used the isoconversional method, where it is not necessary to assume a crystallization model to obtain the kinetic parameters. Therefore, in this work, the influence of acid and octadecylamine functionalized carbon nanotubes (CNTs) in the crystallization kinetic of polyethylene (PE) was studied using an isoconversional method with differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The kinetic parameters and the crystallization model were determined. The incorporation of functionalized and non-functionalized CNTs into PE did not change the Johnson-Mehl-Avrami crystallization model. However, the CNTs increased the crystallization temperature and reduced the activation energy for crystallization. In addition, the Avrami coefficient values were lower for the nanocomposites when compared to pure PE. The incorporation of CNTs accelerated the crystallization of PE, reducing the crystallite sizes and modifying their morphology.
Collapse
|
7
|
Toh GY, Ong HL, Bindumadhavan K, Doong RA. Physicochemical properties of reduced graphite oxide conglomerated polyethylene nanocomposites. POLYM INT 2018. [DOI: 10.1002/pi.5687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guat Yee Toh
- School of Materials Engineering; Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 2; Arau Malaysia
- Department of Biomedical Engineering and Environmental Sciences; National Tsing Hua University; Hsinchu Taiwan
| | - Hui Lin Ong
- School of Materials Engineering; Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 2; Arau Malaysia
| | - Kartick Bindumadhavan
- Institute of Environmental Engineering, National Chiao Tung University; Hsinchu Taiwan
| | - Ruey-an Doong
- Department of Biomedical Engineering and Environmental Sciences; National Tsing Hua University; Hsinchu Taiwan
| |
Collapse
|
8
|
Cheng J, Li H, Cao Z, Wu D, Liu C, Pu H. Nanolayer coextrusion: An efficient and environmentally friendly micro/nanofiber fabrication technique. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 95:292-301. [PMID: 30573253 DOI: 10.1016/j.msec.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/25/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022]
Abstract
Researchers have developed many types of nanoscale materials with different properties. Among them, nanofibers have recently attracted increasing interest and attention due to their functional versatility and potential applications in diverse industries, including tapes, filtration, energy generation, and biomedical technologies. Nanolayer coextrusion, a novel polymer melt fiber processing technology, has gradually received attention due to its environmental friendliness, efficiency, simplicity and ability to be mass-produced. Compared with conventional techniques, nanolayer coextruded non-woven nanofibrous mats offer advantages such as a tunable fiber diameter, high porosity, high surface area to volume ratio, and the potential to manufacture composite nanofibers with different components to achieve desired structures and properties. Dozens of thermoplastic polymers have been coextruded for various applications, and the variety of polymers has gradually continued to increase. This review presents an overview of the nanolayer coextrusion technique and its promising advantages and potential applications. We discuss nanolayer coextrusion theory and the parameters (polymer and processing) that significantly affect the fiber morphology and properties. We focus on varied applications of nanolayer coextruded fibers in different fields and conclude by describing the future potential of this novel technology.
Collapse
Affiliation(s)
- Junfeng Cheng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Hao Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Dun Wu
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou 213164, China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China; Changzhou University Huaide College, Changzhou 213016, China.
| | - Hongting Pu
- Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China.
| |
Collapse
|
9
|
Cheng J, Pu H. A facile method to prepare polyvinylidene fluoride composite nanofibers with high photocatalytic activity via nanolayer coextrusion. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Polypropylene/polyethylene multilayer separators with enhanced thermal stability for lithium-ion battery via multilayer coextrusion. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Chen J, Liu B, Gao X, Xu D. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv 2018; 8:28048-28085. [PMID: 35542749 PMCID: PMC9083916 DOI: 10.1039/c8ra04205e] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
This paper provides an overview of recent advances in research on the interfacial characteristics of carbon nanotube–polymer nanocomposites. The state of knowledge about the chemical functionalization of carbon nanotubes as well as the interaction at the interface between the carbon nanotube and the polymer matrix is presented. The primary focus of this paper is on identifying the fundamental relationship between nanocomposite properties and interfacial characteristics. The progress, remaining challenges, and future directions of research are discussed. The latest developments of both microscopy and scattering techniques are reviewed, and their respective strengths and limitations are briefly discussed. The main methods available for the chemical functionalization of carbon nanotubes are summarized, and particular interest is given to evaluation of their advantages and disadvantages. The critical issues related to the interaction at the interface are discussed, and the important techniques for improving the properties of carbon nanotube–polymer nanocomposites are introduced. Additionally, the mechanism responsible for the interfacial interaction at the molecular level is briefly described. Furthermore, the mechanical, electrical, and thermal properties of the nanocomposites are discussed separately, and their influencing factors are briefly introduced. Finally, the current challenges and opportunities for efficiently translating the remarkable properties of carbon nanotubes to polymer matrices are summarized in the hopes of facilitating the development of this emerging area. Potential topics of oncoming focus are highlighted, and several suggestions concerning future research needs are also presented. The state of research on the characteristics at the interface in polymer nanocomposites is reviewed. Special emphasis is placed on the recent advances in the fundamental relationship between interfacial characteristics and nanocomposite properties.![]()
Collapse
Affiliation(s)
- Junjie Chen
- Department of Energy and Power Engineering
- School of Mechanical and Power Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Baofang Liu
- Department of Energy and Power Engineering
- School of Mechanical and Power Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Xuhui Gao
- Department of Energy and Power Engineering
- School of Mechanical and Power Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Deguang Xu
- Department of Energy and Power Engineering
- School of Mechanical and Power Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| |
Collapse
|
12
|
Li Y, Pu H, Cheng J, Du J, Pan H, Chang Z. A continuous method to prepare porous polystyrene membranes with high adsorption ability for polycyclic aromatic hydrocarbons. J Appl Polym Sci 2017. [DOI: 10.1002/app.45917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yajie Li
- Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science & Engineering; Tongji University; Shanghai 201804 China
| | - Hongting Pu
- Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science & Engineering; Tongji University; Shanghai 201804 China
| | - Junfeng Cheng
- Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science & Engineering; Tongji University; Shanghai 201804 China
| | - Jiang Du
- Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science & Engineering; Tongji University; Shanghai 201804 China
| | - Haiyan Pan
- Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science & Engineering; Tongji University; Shanghai 201804 China
| | - Zhihong Chang
- Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science & Engineering; Tongji University; Shanghai 201804 China
| |
Collapse
|
13
|
Jouni M, Djurado D, Massardier V, Boiteux G. A representative and comprehensive review of the electrical and thermal properties of polymer composites with carbon nanotube and other nanoparticle fillers. POLYM INT 2017. [DOI: 10.1002/pi.5378] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mohammad Jouni
- Université de Lyon, Université Lyon 1, IMP@LYON1, UMR CNRS 5223; Villeurbanne France
- INSA de Lyon, IMP@INSA, UMR CNRS 5223; Villeurbanne France
| | - David Djurado
- INAC SPrAM (CEA CNRS Univ. Grenoble, UMR 5819), CEA Grenoble; Grenoble France
| | | | - Gisèle Boiteux
- Université de Lyon, Université Lyon 1, IMP@LYON1, UMR CNRS 5223; Villeurbanne France
| |
Collapse
|
14
|
Cheng J, Pu H. Influences of matrix viscosity on alignment of multi-walled carbon nanotubes in one-dimensional confined space. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.02.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|