1
|
Luan P, Liu T, Wang J, Yan B, Chen G, Cheng Z. Catalytic pyrolysis of oxygen-containing waste polycarbonate for the preparation of carbon nanotubes and H 2-rich syngas. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:398-408. [PMID: 39719820 DOI: 10.1016/j.wasman.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
In this study, ex-situ catalytic pyrolysis of oxygen-containing polycarbonate (PC) was conducted to prepare carbon nanotubes (CNTs) and H2-rich syngas. This study examined the influence of the active metal components (Ni and Fe), catalyst pre-reduction, and pre-deoxygenation of pyrolysis volatiles on the catalytic performance and mechanism. Results show that the reductive constituents in pyrolysis volatiles make it difficult to reduce the Fe oxides, thus hindering the CNTs growth on Fe catalysts, compared to Ni catalysts. H2 pre-reduction of Ni and Fe catalysts enhances the generation of CNTs and syngas. The pre-reduced Fe catalyst exhibits better carbon deposit performance, reaching 263 mg/gplastics. The pre-reduced Ni catalyst better facilitates the reforming reaction of CO2 and H2O, resulting in higher syngas yields of 32.75 mmol/gplastics, with a volume proportion of 94.4 vol%. The addition of the deoxygenation catalyst Ni/HZSM-5 promotes the growth of CNTs with fewer defects and higher graphitization on Ni catalysts. The excess CO2 and H2O generated by the introduction of Ni/HZSM-5 may oxidize the Fe0 on pre-reduced Fe catalysts, inhibiting the growth of CNTs. The mechanism of the growth of CNTs and syngas from PC is also explored. The findings can provide theoretical guidance for the disposal of waste plastics.
Collapse
Affiliation(s)
- Pengpeng Luan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tiecheng Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jinglan Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Biomass/waste Utilization, Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Biomass/waste Utilization, Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Biomass/waste Utilization, Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Biomass/waste Utilization, Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin 300072, China.
| |
Collapse
|
2
|
Padhi G, Pansare VR, Bajpai P, Krishna GR, Vanka K, Barsu N. Depolymerization of Waste Polycarbonates to Value-Added Products. CHEMSUSCHEM 2025; 18:e202400756. [PMID: 39150689 DOI: 10.1002/cssc.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Additive free aminolysis method developed for the depolymerization/upcycling of polycarbonates. We report here chemical recycling of polycarbonate under ambient conditions to get its monomer bisphenol A, monoaminocarbamate and biscarbamates in 1 : 2 : 1 ratio respectively. By employing the secondary amine as the aminating reagent, facilitates the depolymerization to work under additive/catalyst free conditions. The developed method deals with depolymerization of waste polycarbonates and works even with late-stage amine derivatives such as amoxapine and desloratadine which are drugs molecules known to treat neurotic disorders and allergies respectively. The reaction can be scaled up and works with similar efficacy which depicts the efficiency of the depolymerization of wasteend-of-life polycarbonate plastic waste. The biscarbamate and bisphenol-A was further subjected for the post functionalization to obtain amides and phenol in good yields.
Collapse
Affiliation(s)
- Ganeshdev Padhi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Physical and Materials Chemistry Division, CSIR-NCL, Dr Homi Bhabha Road, Pune, 411008, India
| | - Vaibhav Ramachandra Pansare
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Physical and Materials Chemistry Division, CSIR-NCL, Dr Homi Bhabha Road, Pune, 411008, India
| | - Priyam Bajpai
- Physical and Materials Chemistry Division, CSIR-NCL, Dr Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gamidi Rama Krishna
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-NCL, Dr Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nagaraju Barsu
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Physical and Materials Chemistry Division, CSIR-NCL, Dr Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
3
|
Losito O, Pisani P, De Cataldo A, Annese C, Clausi M, Comparelli R, Pinto D, D’Accolti L. Demonstrating the Efficacy of Core-Shell Silica Catalyst in Depolymerizing Polycarbonate. Polymers (Basel) 2024; 16:3209. [PMID: 39599299 PMCID: PMC11598560 DOI: 10.3390/polym16223209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Polycarbonate (PC) is a highly versatile plastic material that is extensively utilized across various industries due to its superior properties, including high impact strength and heat resistance. However, its durability presents significant challenges for recycling and waste management. Polycarbonate is a thermoplastic polymer representative of the class of condensation reaction polymers obtained from the reaction of bisphenol A (BPA) and a carbonyl source, such as phosgene or alkyl and aryl carbonate. The recycling processes for PC waste include mechanical recycling, blending with other materials, pyrolysis, and chemical recycling. The latter is based on the cleavage of carbonate units to their corresponding monomers or derivatives through alcoholysis and/or hydrolysis and ammonolysis, normally under basic conditions and without catalysts. This study investigates the efficacy of the use of several heterogeneous catalysts based on silica gel as a robust support, including Sc(III)silicate (thortveitite), which has been previously reported for the preparation of polyesters, core-shell Si-ILs, and core-shell Si-ILs-ZnO, which has never been used before in the depolymerization of polycarbonate, proposing a sustainable and efficient method for recycling this valuable polymer. We chose to explore core-shell catalysts because these catalysts are robust and recyclable, and have been used in very harsh industrial processes. The core-shell silica catalysts used in this study were characterized by XRD; SEM_EDX, FT-IR, and ICP-OES analysis. In our experimental protocol, polycarbonate samples were exposed to the catalyst under controlled conditions (60-150 °C, for 12-24 h) using both oxygen and nitrogen nucleophiles. The depolymerization process was systematically monitored using advanced analytical techniques (GC/MS and GPC chromatography). The experimental results indicated that core-shell silica catalyst exhibits high efficacy, with up to 75% yield for the ammonolysis reaction, producing monomers of high purity. These monomers can be reused for the synthesis of new polycarbonate materials, contributing to a more sustainable approach to polycarbonate recycling.
Collapse
Affiliation(s)
- Onofrio Losito
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy; (O.L.); (P.P.); (A.D.C.)
| | - Pasquale Pisani
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy; (O.L.); (P.P.); (A.D.C.)
| | - Alessia De Cataldo
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy; (O.L.); (P.P.); (A.D.C.)
- Dipartimento di Meccanica, Matematica e Management (DMMM), Politecnico di Bari, Via E. Orabona 4, 70126 Bari, Italy
| | - Cosimo Annese
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi Link, Via del Casale di San Pio V, 44, 00165 Roma, Italy;
- CNR-ICCOM-SS, BARI (I), Via Orabona 4, 70125 Bari, Italy
| | - Marina Clausi
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy; (M.C.); (D.P.)
| | | | - Daniela Pinto
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy; (M.C.); (D.P.)
| | - Lucia D’Accolti
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy; (O.L.); (P.P.); (A.D.C.)
| |
Collapse
|
4
|
Watanabe Y, Fukushima K, Kato T. Degradation of a Wholly Aromatic Main-Chain Thermotropic Liquid-Crystalline Polymer Mediated by Superbases. JACS AU 2024; 4:2944-2956. [PMID: 39211589 PMCID: PMC11350567 DOI: 10.1021/jacsau.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Plastic circular economy needs to be established to solve environmental issues related to plastic waste. Superengineering plastics such as liquid-crystalline (LC) polymers exhibit excellent thermal and mechanical properties, resulting in poor degradability in natural environment. Herein, we report the degradation of a wholly aromatic thermotropic LC polyester, poly(4-hydroxybenzoic acid-co-6-hydroxy-2-naphthoic acid) (Vectra) mediated by superbases. Methanolysis and hydrolysis of Vectra yield its monomeric compounds, 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, and their methyl esters. Among several transesterification catalysts explored, 1,5,7-triazabicylco[4.4.0]dec-5-ene (TBD) is the most suitable for the methanolysis of Vectra. The complete degradation of Vectra is achieved under reflux. The degradation proceeds heterogeneously via a surface erosion mechanism, preferentially starting from less chain-packed regions. Model reactions using aryl arylates reveal that monomeric compound-superbase complexes could mediate the cleavage of the ester bonds in both homogeneous and heterogeneous systems. The ester bonds of Vectra have inherent poor reactivity and are protected by oriented robust structures of the polymer. Nevertheless, the superbases enable the degradation of Vectra via the cleavage of the ester bonds by methanol. These outcomes open the way for recycling high-performance plastics as well as demonstrate the feasibility of recovering precious aromatic compounds from plastic waste as aromatic feedstock.
Collapse
Affiliation(s)
- Yuya Watanabe
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuki Fukushima
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Japan
Science and Technology Agency (JST), PRESTO, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Kato
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research
Initiative for Supra-Materials, Shinshu
University, Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
5
|
Clark R, Shaver MP. Depolymerization within a Circular Plastics System. Chem Rev 2024; 124:2617-2650. [PMID: 38386877 PMCID: PMC10941197 DOI: 10.1021/acs.chemrev.3c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The societal importance of plastics contrasts with the carelessness with which they are disposed. Their superlative properties lead to economic and environmental efficiency, but the linearity of plastics puts the climate, human health, and global ecosystems at risk. Recycling is fundamental to transitioning this linear model into a more sustainable, circular economy. Among recycling technologies, chemical depolymerization offers a route to virgin quality recycled plastics, especially when valorizing complex waste streams poorly served by mechanical methods. However, chemical depolymerization exists in a complex and interlinked system of end-of-life fates, with the complementarity of each approach key to environmental, economic, and societal sustainability. This review explores the recent progress made into the depolymerization of five commercial polymers: poly(ethylene terephthalate), polycarbonates, polyamides, aliphatic polyesters, and polyurethanes. Attention is paid not only to the catalytic technologies used to enhance depolymerization efficiencies but also to the interrelationship with other recycling technologies and to the systemic constraints imposed by a global economy. Novel polymers, designed for chemical depolymerization, are also concisely reviewed in terms of their underlying chemistry and potential for integration with current plastic systems.
Collapse
Affiliation(s)
- Robbie
A. Clark
- Department
of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United
Kingdom
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Michael P. Shaver
- Department
of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United
Kingdom
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
6
|
Zhang Q, Hu C, Li PY, Bai FQ, Pang X, Chen X. Solvent-Promoted Catalyst-Free Recycling of Waste Polyester and Polycarbonate Materials. ACS Macro Lett 2024:151-157. [PMID: 38227974 DOI: 10.1021/acsmacrolett.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Polymeric materials are indispensable in our daily lives. However, the generation of vast amounts of waste polymers poses significant environmental and ecological challenges. Instead of resorting to landfilling or incineration, strategies for polymer recycling offer a promising approach to mitigate environmental pollution. Pioneering studies have demonstrated the alcoholysis of waste polyesters and polycarbonates; however, these processes typically require the use of catalysts. Moreover, the development of strategies for catalyst removal and recycling is crucial, particularly in some industrial applications. In contrast, we present a catalyst-free method for the alcoholysis of common polyester and polycarbonate materials into small organic molecules. Certain polar organic solvents exhibit remarkable efficiency in polymer degradation under catalyst-free conditions. Employing these polar solvents, both polymer resins and commercially available products could be effectively degraded via alcoholysis. Our design contributes a straightforward route for recycling waste polymeric materials.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Peng-Yuan Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Fu-Quan Bai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
7
|
Munyaneza NE, Posada C, Xu Z, De Altin Popiolek V, Paddock G, McKee C, Liu G. A Generic Platform for Upcycling Polystyrene to Aryl Ketones and Organosulfur Compounds. Angew Chem Int Ed Engl 2023; 62:e202307042. [PMID: 37439282 DOI: 10.1002/anie.202307042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Polystyrene (PS) is one of the least recycled large-volume commodity plastics due to bulkiness of foam products and associated contaminants. PS recycling is also severely hampered by the lack of financial incentive, limited versatility, and poor selectivity of existing methods. To this end, herein we report a thermochemical recycling strategy of "degradation-upcycling" to synthesize a library of high-value aromatic chemicals from PS wastes with high versatility and selectivity. Two cascade reactions are selected to first degrade PS to benzene under mild temperatures, followed by the derivatization thereof utilizing a variety of acyl/alkyl and sulfinyl chloride additives. To demonstrate the versatility, nine ketones and sulfides of cosmetic and pharmaceutical relevance were prepared, including propiophenone, benzophenone, and diphenyl sulfide. The approach is also amenable to sophisticated upcycling reaction designs and can produce desired products stepwise. The facile and versatile approach will provide a scalable and profitable methodology for upcycling PS waste into value-added chemicals.
Collapse
Affiliation(s)
| | - Carlos Posada
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhen Xu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Vincenzo De Altin Popiolek
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Griffin Paddock
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Charles McKee
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Academy of Integrated Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Guoliang Liu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Academy of Integrated Science, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Chemical Engineering and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Li XL, Ma K, Xu F, Xu TQ. Advances in the Synthesis of Chemically Recyclable Polymers. Chem Asian J 2023; 18:e202201167. [PMID: 36623942 DOI: 10.1002/asia.202201167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Indexed: 01/11/2023]
Abstract
The development of modern society is closely related to polymer materials. However, the accumulation of polymer materials and their evolution in the environment causes not only serious environmental problems, but also waste of resources. Although physical processing can be used to reuse polymers, the properties of the resulting polymers are significantly degraded. Chemically recyclable polymers, a type of polymer that degrades into monomers, can be an effective solution to the degradation of polymer properties caused by physical recycling of polymers. The ideal chemical recycling of polymers, i. e., quantitative conversion of the polymer to monomers at low energy consumption and repolymerization of the formed monomers into polymers with comparable properties to the original, is an attractive research goal. In recent years, significant progress has been made in the design of recyclable polymers, enabling the regulation of the "polymerization-depolymerization" equilibrium and closed-loop recycling under mild conditions. This review will focus on the following aspects of closed-loop recycling of poly(sulfur) esters, polycarbonates, polyacetals, polyolefins, and poly(disulfide) polymer, illustrate the challenges in this area, and provide an outlook on future directions.
Collapse
Affiliation(s)
- Xin-Lei Li
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kai Ma
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fei Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Tie-Qi Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
9
|
Fukushima K, Watanabe Y, Ueda T, Nakai S, Kato T. Organocatalytic depolymerization of poly(trimethylene carbonate). JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Kazuki Fukushima
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
- Japan Science and Technology Agency (JST), PRESTO Saitama Japan
| | - Yuya Watanabe
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
| | - Tetsuya Ueda
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
| | - So Nakai
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
- Research Initiative for Supra‐Materials Shinshu University Nagano Japan
| |
Collapse
|
10
|
Chemical recycling and upcycling of poly(bisphenol A carbonate) via metal acetate catalyzed glycolysis. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Hikmah Zulkafli A, Hassan H, Azmier Ahmad M, Taufik Mohd Din A, Maryam Wasli S. Co-pyrolysis of biomass and waste plastics for production of chemicals and liquid fuel: A review on the role of plastics and catalyst types. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
12
|
Saito K, Eisenreich F, Türel T, Tomović Ž. Closed-Loop Recycling of Poly(Imine-Carbonate) Derived from Plastic Waste and Bio-based Resources. Angew Chem Int Ed Engl 2022; 61:e202211806. [PMID: 36074694 PMCID: PMC9828757 DOI: 10.1002/anie.202211806] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 01/12/2023]
Abstract
Closed-loop recycling of polymers represents the key technology to convert plastic waste in a sustainable fashion. Efficient chemical recycling and upcycling strategies are thus highly sought-after to establish a circular plastic economy. Here, we present the selective chemical depolymerization of polycarbonate by employing a vanillin derivative as bio-based feedstock. The resulting di-vanillin carbonate monomer was used in combination with various amines to construct a library of reprocessable poly(imine-carbonate)s, which show tailor-made thermal and mechanical properties. These novel poly(imine-carbonate)s exhibit excellent recyclability under acidic and energy-efficient conditions. This allows the recovery of monomers in high yields and purity for immediate reuse, even when mixed with various commodity plastics. This work provides exciting new insights in the design of bio-based circular polymers produced by upcycling of plastic waste with minimal environmental impact.
Collapse
Affiliation(s)
- Keita Saito
- Polymer Performance Materials GroupDepartment of Chemical Engineering and ChemistryEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Fabian Eisenreich
- Polymer Performance Materials GroupDepartment of Chemical Engineering and ChemistryEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Tankut Türel
- Polymer Performance Materials GroupDepartment of Chemical Engineering and ChemistryEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Željko Tomović
- Polymer Performance Materials GroupDepartment of Chemical Engineering and ChemistryEindhoven University of Technology5600 MBEindhovenThe Netherlands,Institute for Complex Molecular SystemsEindhoven University of Technology5600 MBEindhovenThe Netherlands
| |
Collapse
|
13
|
Jiang Z, Guo L, Wang H, Zheng R, Ran W, Han L, Li J. Preparation of Basic Lithium Imidazolium Salt and Their Application for Synthesis of Polycarbonate. Catal Letters 2022. [DOI: 10.1007/s10562-022-04183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Fritz-Langhals E. Unique Superbase TBD (1,5,7-Triazabicyclo[4.4.0]dec-5-ene): From Catalytic Activity and One-Pot Synthesis to Broader Application in Industrial Chemistry. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elke Fritz-Langhals
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstraße 4, D-85747 Garching, Germany
| |
Collapse
|
15
|
Lou L, Xu T, Li Y, Zhang C, Wang B, Zhang X, Zhang H, Qiu Y, Yang J, Wang D, Cao H, He W, Yang Z. H-Bonding Room Temperature Phosphorescence Materials via Facile Preparation for Water-Stimulated Photoluminescent Ink. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196482. [PMID: 36235020 PMCID: PMC9571649 DOI: 10.3390/molecules27196482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Pure organic room-temperature phosphorescence (RTP) materials built upon noncovalent interactions have attracted much attention because of their high efficiency, long lifetime, and stimulus-responsive behavior. However, there are limited reports of noncovalent RTP materials because of the lack of specific design principles and clear mechanisms. Here, we report on a noncovalent material prepared via facile grinding that can emit fluorescence and RTP emission differing from their components’ photoluminescent behavior. Exciplex can be formed during the preparation process to act as the minimum emission unit. We found that H-bonds in the RTP system provide restriction to nonradiative transition but also enhance energy transformation and energy level degeneracy in the system. Moreover, water-stimulated photoluminescent ink is produced from the materials to achieve double-encryption application with good resolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zhou Yang
- Correspondence: ; Tel.: +86-010-62333759
| |
Collapse
|
16
|
Feng L, Cui C, Li Z, Zhang M, Zhang Q, Wu Y, Ge Z, Cheng Y, Zhang Y. Kinetics of catalyzed thermal degradation of polylactide and its application as sacrificial templates. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li Feng
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Chenhui Cui
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Zhen Li
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Mengyuan Zhang
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Qiang Zhang
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Youshen Wu
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Zhishen Ge
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Yilong Cheng
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
17
|
Saito K, Eisenreich F, Türel T, Tomović Ž. Closed‐loop Recycling of Poly(Imine‐Carbonate) Derived from Plastic Waste and Bio‐based Resources. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Keita Saito
- Eindhoven University of Technology: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Fabian Eisenreich
- Eindhoven University of Technology: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Tankut Türel
- Eindhoven University of Technology: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Željko Tomović
- Eindhoven University of Technology: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| |
Collapse
|
18
|
Gilbert EA, Polo ML, Maffi JM, Guastavino JF, Vaillard SE, Estenoz DA. The organic chemistry behind the recycling of poly(bisphenol‐A carbonate) for the preparation of chemical precursors: A review. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Elangeni Ana Gilbert
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| | - Mara Lis Polo
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| | | | - Javier Fernando Guastavino
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| | - Santiago Eduardo Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| | - Diana Alejandra Estenoz
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| |
Collapse
|
19
|
Liu Y, Lu X. Chemical recycling to monomers: Industrial
Bisphenol‐A‐Polycarbonates
to novel aliphatic polycarbonate materials. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ye Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Xiao‐Bing Lu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| |
Collapse
|
20
|
Payne JM, Kamran M, Davidson MG, Jones MD. Versatile Chemical Recycling Strategies: Value-Added Chemicals from Polyester and Polycarbonate Waste. CHEMSUSCHEM 2022; 15:e202200255. [PMID: 35114081 PMCID: PMC9306953 DOI: 10.1002/cssc.202200255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 06/14/2023]
Abstract
ZnII -complexes bearing half-salan ligands were exploited in the mild and selective chemical upcycling of various commercial polyesters and polycarbonates. Remarkably, we report the first example of discrete metal-mediated poly(bisphenol A carbonate) (BPA-PC) methanolysis being appreciably active at room temperature. Indeed, Zn(2)2 and Zn(2)Et achieved complete BPA-PC consumption within 12-18 mins in 2-Me-THF, noting high bisphenol A (BPA) yields (SBPA =85-91 %) within 2-4 h. Further kinetic analysis found such catalysts to possess kapp values of 0.28±0.040 and 0.47±0.049 min-1 respectively at 4 wt%, the highest reported to date. A completely circular upcycling approach to plastic waste was demonstrated through the production of several renewable poly(ester-amide)s (PEAs), based on a terephthalamide monomer derived from bottle-grade poly(ethylene terephthalate) (PET), which exhibited excellent thermal properties.
Collapse
Affiliation(s)
- Jack M. Payne
- Centre for Sustainable and Circular TechnologiesUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| | - Muhammad Kamran
- Centre for Sustainable and Circular TechnologiesUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| | - Matthew G. Davidson
- Centre for Sustainable and Circular TechnologiesUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| | - Matthew D. Jones
- Centre for Sustainable and Circular TechnologiesUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| |
Collapse
|
21
|
Jehanno C, Alty JW, Roosen M, De Meester S, Dove AP, Chen EYX, Leibfarth FA, Sardon H. Critical advances and future opportunities in upcycling commodity polymers. Nature 2022; 603:803-814. [PMID: 35354997 DOI: 10.1038/s41586-021-04350-0] [Citation(s) in RCA: 279] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
The vast majority of commodity plastics do not degrade and therefore they permanently pollute the environment. At present, less than 20% of post-consumer plastic waste in developed countries is recycled, predominately for energy recovery or repurposing as lower-value materials by mechanical recycling. Chemical recycling offers an opportunity to revert plastics back to monomers for repolymerization to virgin materials without altering the properties of the material or the economic value of the polymer. For plastic waste that is either cost prohibitive or infeasible to mechanically or chemically recycle, the nascent field of chemical upcycling promises to use chemical or engineering approaches to place plastic waste at the beginning of a new value chain. Here state-of-the-art methods are highlighted for upcycling plastic waste into value-added performance materials, fine chemicals and specialty polymers. By identifying common conceptual approaches, we critically discuss how the advantages and challenges of each approach contribute to the goal of realizing a sustainable plastics economy.
Collapse
Affiliation(s)
- Coralie Jehanno
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain.,POLYKEY, Donostia-San Sebastian, Spain
| | - Jill W Alty
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martijn Roosen
- Laboratory for Circular Process Engineering, Ghent University, Kortrijk, Belgium
| | - Steven De Meester
- Laboratory for Circular Process Engineering, Ghent University, Kortrijk, Belgium.
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain.
| |
Collapse
|
22
|
Roy PS, Garnier G, Allais F, Saito K. Strategic Approach Towards Plastic Waste Valorization: Challenges and Promising Chemical Upcycling Possibilities. CHEMSUSCHEM 2021; 14:4007-4027. [PMID: 34132056 DOI: 10.1002/cssc.202100904] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Plastic waste, which is one of the major sources of pollution in the landfills and oceans, has raised global concern, primarily due to the huge production rate, high durability, and the lack of utilization of the available waste management techniques. Recycling methods are preferable to reduce the impact of plastic pollution to some extent. However, most of the recycling techniques are associated with different drawbacks, high cost and downgrading of product quality being among the notable ones. The sustainable option here is to upcycle the plastic waste to create high-value materials to compensate for the cost of production. Several upcycling techniques are constantly being investigated and explored, which is currently the only economical option to resolve the plastic waste issue. This Review provides a comprehensive insight on the promising chemical routes available for upcycling of the most widely used plastic and mixed plastic wastes. The challenges inherent to these processes, the recent advances, and the significant role of the science and research community in resolving these issues are further emphasized.
Collapse
Affiliation(s)
- Pallabi Sinha Roy
- School of Chemistry, Monash University, Clayton, 3800, VIC, Australia
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
| | - Gil Garnier
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Florent Allais
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Kei Saito
- School of Chemistry, Monash University, Clayton, 3800, VIC, Australia
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Higashi-Ichijo-Kan, Yoshida-nakaadachicho 1, Sakyo-ku, Kyoto, 606-8306, Japan
| |
Collapse
|
23
|
Chen H, Wan K, Zhang Y, Wang Y. Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future. CHEMSUSCHEM 2021; 14:4123-4136. [PMID: 33998153 DOI: 10.1002/cssc.202100652] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The linear approach to resource utilization has led to the accumulation of waste plastic in the environment for decades. Unfortunately, both traditional mechanical recycling and incineration have faced their bottlenecks that have always resulted in quality deterioration and value recovery failures. Recently, chemical recycling and upcycling processes, including the conversion of plastics into their virgin monomers, liquid fuels, or chemical feedstocks to produce value-added products, have been identified as the most promising strategy for recovering value from waste plastics. However, these methods are often cost prohibitive and relying on stringent conditions compared to current recycling methods. Accordingly, this Minireview summarizes recent trends and achievements in the chemical recycling and upcycling of waste plastics. We highlight three research topics: depolymerization of plastics into monomers; degradation of plastics into liquid fuels and waxes; and conversion of plastics into hydrogen, fine chemical feedstocks, and value-added functional materials. Indeed, chemical recycling and upcycling is a bright path to a circular and environmentally friendly plastic economy.
Collapse
Affiliation(s)
- Huan Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Kun Wan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Yayun Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
24
|
Jung HJ, Park S, Lee HS, Shin HG, Yoo Y, Baral ER, Lee JH, Kwak J, Kim JG. Chemical Upcycling of Waste Poly(bisphenol A carbonate) to 1,4,2-Dioxazol-5-ones and One-Pot C-H Amidation. CHEMSUSCHEM 2021; 14:4301-4306. [PMID: 34129287 DOI: 10.1002/cssc.202100885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Chemical upcycling of poly(bisphenol A carbonate) (PC) was achieved in this study with hydroxamic acid nucleophiles, giving rise to synthetically valuable 1,4,2-dioxazol-5-ones and bisphenol A. Using 1,5,7-triazabicyclo[4.4.0]-dec-5-ene (TBD), non-green carbodiimidazole or phosgene carbonylation agents used in conventional dioxazolone synthesis were successfully replaced with PC, and environmentally harmful bisphenol A was simultaneously recovered. Assorted hydroxamic acids exhibited good-to-excellent efficiencies and green chemical features, promising broad synthetic application scope. In addition, a green aryl amide synthesis process was developed, involving one-pot depolymerization from polycarbonate to dioxazolone followed by rhodium-catalyzed C-H amidation, including gram-scale examples with used compact discs.
Collapse
Affiliation(s)
- Hyun Jin Jung
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sora Park
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun Sub Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun Gyu Shin
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yeji Yoo
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Ek Raj Baral
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Jaesung Kwak
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Deajeon, 34114, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
25
|
Kosloski-Oh SC, Wood ZA, Manjarrez Y, de Los Rios JP, Fieser ME. Catalytic methods for chemical recycling or upcycling of commercial polymers. MATERIALS HORIZONS 2021; 8:1084-1129. [PMID: 34821907 DOI: 10.1039/d0mh01286f] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymers (plastics) have transformed our lives by providing access to inexpensive and versatile materials with a variety of useful properties. While polymers have improved our lives in many ways, their longevity has created some unintended consequences. The extreme stability and durability of most commercial polymers, combined with the lack of equivalent degradable alternatives and ineffective collection and recycling policies, have led to an accumulation of polymers in landfills and oceans. This problem is reaching a critical threat to the environment, creating a demand for immediate action. Chemical recycling and upcycling involve the conversion of polymer materials into their original monomers, fuels or chemical precursors for value-added products. These approaches are the most promising for value-recovery of post-consumer polymer products; however, they are often cost-prohibitive in comparison to current recycling and disposal methods. Catalysts can be used to accelerate and improve product selectivity for chemical recycling and upcycling of polymers. This review aims to not only highlight and describe the tremendous efforts towards the development of improved catalysts for well-known chemical recycling processes, but also identify new promising methods for catalytic recycling or upcycling of the most abundant commercial polymers.
Collapse
Affiliation(s)
- Sophia C Kosloski-Oh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | | | |
Collapse
|
26
|
Quaranta E, Dibenedetto A, Nocito F, Fini P. Chemical recycling of poly-(bisphenol A carbonate) by diaminolysis: A new carbon-saving synthetic entry into non-isocyanate polyureas (NIPUreas). JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123957. [PMID: 33265001 DOI: 10.1016/j.jhazmat.2020.123957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
The present study describes an unprecedented approach to valorize potentially hazardous poly-(bisphenol A carbonate) (PC) wastes. In THF, under non-severe conditions (120 °C), the reaction of PC with long-chain diamines H2NRNH2 (2 equivalents) provided a tool to regenerate the monomer bisphenol A (BPA; 83-95%, isolated) and repurpose waste PC into [-NHRNHCO-]n polyureas (PUs; 78-99%, isolated) through a non-isocyanate route. Basic diamines (1,6-diaminohexane, 4,7,10-trioxa-1,13-tridecanediamine, meta-xylylenediamine, para-xylylenediamine) reacted with PC without any auxiliary catalyst; less reactive aromatic diamines (4,4'-diaminodiphenylmethane, 2,4-diaminotoluene) required the assistance of a base catalyst (1,8-diazabicyclo[5.4.0]undec-7-ene, NaOH). The formation of [-NHRNHCO-]n goes through a carbamation step affording BPA and carbamate intermediates H[-OArOC(O)NHRNHC(O)-]nOArOH (Ar=4,4'-C6H4C(Me)2C6H4-) that, in a subsequent step, convert into [-NHRNHCO-]n and more BPA. All the PUs were characterized in the solid state by CP/MAS 13C NMR (δ(CO) = 152-161 ppm) and IR spectroscopy. The positions of ν(N-H) and ν(CO) absorptions are typical of "hydrogen-bonded ordered" bands suggesting the presence of H-bonded groups in network structures characterized by some degree of order or regularity. DSC and TGA analyses showed that the PUs are thermally stable (Td,5%: 212-270 °C) and suitable for being processed since their degradation begins at temperatures about 100 °C higher than their Tg or Tm.
Collapse
Affiliation(s)
- Eugenio Quaranta
- Università degli Studi di Bari "Aldo Moro", Dipartimento di Chimica, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; Consorzio Interuniversitario "Reattività e Catalisi", via Celso Ulpiani, 27, 70126 Bari, Italy.
| | - Angela Dibenedetto
- Università degli Studi di Bari "Aldo Moro", Dipartimento di Chimica, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; Consorzio Interuniversitario "Reattività e Catalisi", via Celso Ulpiani, 27, 70126 Bari, Italy
| | - Francesco Nocito
- Università degli Studi di Bari "Aldo Moro", Dipartimento di Chimica, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy
| | - Paola Fini
- Istituto per i Processi Chimico Fisici (IPCF-CNR) c/o Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy
| |
Collapse
|
27
|
Quaranta E, Mesto E, Lacalamita M, Malitesta C, Mazzotta E, Scelsi E, Schingaro E. Using a natural chlorite as catalyst in chemical recycling of waste plastics: Hydrolytic depolymerization of poly-[bisphenol A carbonate] promoted by clinochlore. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:642-649. [PMID: 33208292 DOI: 10.1016/j.wasman.2020.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/24/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The present study describes the first example of utilization of a natural clay mineral as catalyst in a process addressed to chemical valorization of poly-[bisphenol A carbonate] (PC; (1)) wastes. A natural clinochlore was investigated for the first time as the catalyst of the hydrolysis reaction of 1, a potential route to chemical recycling of wastes of this polymeric material. At 473 K, in tetrahydrofuran (THF) as the solvent, the mineral promoted effectively the depolymerization (up to 99%, after 6 h) of 1 by H2O and the selective (~99%) regeneration of the monomer bisphenol A (BPA, (2)). Temperature, catalyst loading, reaction time, H2O/PC weight ratio affected markedly the productivity of the process. The role of the catalyst was also focused: the experimental data showed that the exposed brucite-like sheets of clinochlore are involved in the hydrolysis reaction and take active part in promoting the depolymerization process.
Collapse
Affiliation(s)
- Eugenio Quaranta
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Campus Universitario, Via E. Orabona 4, 70126 Bari, Italy.
| | - Ernesto Mesto
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari "Aldo Moro", Campus Universitario, via E. Orabona 4, 70125 Bari, Italy
| | - Maria Lacalamita
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari "Aldo Moro", Campus Universitario, via E. Orabona 4, 70125 Bari, Italy
| | - Cosimino Malitesta
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, via Monteroni, 73100 Lecce, Italy
| | - Elisabetta Mazzotta
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, via Monteroni, 73100 Lecce, Italy
| | - Enrico Scelsi
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Campus Universitario, Via E. Orabona 4, 70126 Bari, Italy
| | - Emanuela Schingaro
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari "Aldo Moro", Campus Universitario, via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
28
|
Huang W, Wang H, Hu W, Yang D, Yu S, Liu F, Song X. Degradation of polycarbonate to produce bisphenol A catalyzed by imidazolium-based DESs under metal-and solvent-free conditions. RSC Adv 2021; 11:1595-1604. [PMID: 35424130 PMCID: PMC8693630 DOI: 10.1039/d0ra09215k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 01/17/2023] Open
Abstract
Bisphenol A (BPA) is an important chemical raw material, but the traditional preparation process of BPA is costly and complicated, so it is necessary to find an efficient and environmentally friendly method for the production of BPA. Deep eutectic solvents (DESs) have attracted widespread attention due to their low cost, low toxicity, low melting point, non-volatilization, easy preparation, recyclablility and biodegradability. In this work, a series of imidazolium-based DESs were synthesized and used for the degradation of polycarbonate (PC), and BPA was obtained from the methanolysis of PC catalyzed by DESs under metal- and solvent-free conditions. It was found that imidazolium-based DES [EmimOH]Cl-2Urea showed excellent catalytic activity and reusability. Under the optimized reaction conditions (the mass ratio of DES to PC is 0.1 : 1, the molar ratio of CH3OH to PC is 5 : 1, 120 °C, reaction time 2 h), the PC conversion and BPA yield were almost 100% and 98%, respectively. Moreover, the kinetics of methanolysis catalyzed by [EmimOH]Cl-2Urea was investigated in the temperature range 100-120 °C, and the results indicated that it is a pseudo-first order reaction with an activation energy of 133.59 kJ mol-1. In addition, a possible catalytic mechanism of PC methanolysis is proposed.
Collapse
Affiliation(s)
- Wenwen Huang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Hui Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University Qingdao 266109 China
| | - Weiyue Hu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Daoshan Yang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Shitao Yu
- College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Fusheng Liu
- College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Xiuyan Song
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
29
|
Huang YC, Huang YH, Chen LY, Dai CA, Dai SA, Chen YH, Wu CH, Jeng RJ. Robust thermoplastic polyurethane elastomers prepared from recycling polycarbonate. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Worch JC, Dove AP. 100th Anniversary of Macromolecular Science Viewpoint: Toward Catalytic Chemical Recycling of Waste (and Future) Plastics. ACS Macro Lett 2020; 9:1494-1506. [PMID: 35617072 DOI: 10.1021/acsmacrolett.0c00582] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The current global materials economy has long been inefficient due to unproductive reuse and recycling efforts. Within the wider materials portfolio, plastics have been revolutionary to many industries but they have been treated as disposable commodities leading to their increasing accumulation in the environment as waste. The field of chemistry has had significant bearing in ushering in the current plastics industry and will undoubtedly have a hand in transforming it to become more sustainable. Existing approaches include the development of synthetic biodegradable plastics and turning to renewable raw materials in order to produce plastics similar to our current petrol-based materials or to create new polymers. Additionally, chemists are confronting the environmental crisis by developing alternative recycling methods to deal with the legacy of plastic waste. Important emergent technologies, such as catalytic chemical recycling or upcycling, have the potential to alleviate numerous issues related to our current and future refuse and, in doing so, help pivot our materials economy from linearity to circularity.
Collapse
Affiliation(s)
- Joshua C. Worch
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
31
|
Feghali E, Tauk L, Ortiz P, Vanbroekhoven K, Eevers W. Catalytic chemical recycling of biodegradable polyesters. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109241] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Alberti C, Fedorenko E, Enthaler S. Hydrogenative Depolymerization of End-of-Life Polycarbonates by an Iron Pincer Complex. ChemistryOpen 2020; 9:818-821. [PMID: 32789104 PMCID: PMC7418100 DOI: 10.1002/open.202000161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Indexed: 11/22/2022] Open
Abstract
Chemical recycling processes can contribute to a resource-efficient plastic economy. Herein, a procedure for the iron-catalyzed hydrogenation of the carbonate function of end-of-life polycarbonates under simultaneous depolymerization is presented. The use of a straightforward iron pincer complex leads to high rate of depolymerization of poly(bisphenol A carbonate) and poly(propylene carbonate) yielding the monomers bisphenol A and 1,2-propanediol, respectively, as products under mild reaction conditions. Furthermore, the iron complex was able to depolymerize polycarbonates containing goods and mixture of plastics containing polycarbonates.
Collapse
Affiliation(s)
- Christoph Alberti
- Universität HamburgInstitut für Anorganische und Angewandte ChemieMartin-Luther-King-Platz 6D-20146HamburgGermany
| | - Elena Fedorenko
- Universität HamburgInstitut für Anorganische und Angewandte ChemieMartin-Luther-King-Platz 6D-20146HamburgGermany
| | - Stephan Enthaler
- Universität HamburgInstitut für Anorganische und Angewandte ChemieMartin-Luther-King-Platz 6D-20146HamburgGermany
| |
Collapse
|
33
|
Wang J, Jiang J, Meng X, Li M, Wang X, Pang S, Wang K, Sun Y, Zhong Z, Ruan R, Ragauskas AJ. Promoting Aromatic Hydrocarbon Formation via Catalytic Pyrolysis of Polycarbonate Wastes over Fe- and Ce-Loaded Aluminum Oxide Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8390-8400. [PMID: 32490670 DOI: 10.1021/acs.est.0c00899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Converting polycarbonate (PC) plastic waste into value-added chemicals and/or fuel additives by catalytic pyrolysis is a promising approach to dispose of solid wastes. In this study, a series of Fe-Ce@Al2O3 metal oxides were prepared by coprecipitation, impregnation, and a direct mixing method. The synthesized catalysts were then employed to investigate the catalytic conversion of PC wastes to produce aromatic hydrocarbons. Experimental results indicated that Fe-Ce@Al2O3 prepared by coprecipitation possessed superior catalytic activity because of its high content of weak acid sites, large pore volume, high surface area, and well dispersion of Fe and Ce active species, leading to an ∼3-fold increase in targeted monocyclic aromatic hydrocarbons compared to that achieved noncatalytically. Moreover, an increase in the catalyst to feedstock (C/F) mass ratio was beneficial to the production of aromatic hydrocarbons at the expense of phenolic products, and elevating the C/F ratio from 1:1 to 3:1 considerably increased the benzene formation as the enhancement factor was increased from 2.3 to 8.8.
Collapse
Affiliation(s)
- Jia Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No. 16, Suojin Five Village, Nanjing 210042, China
| | - Jianchun Jiang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No. 16, Suojin Five Village, Nanjing 210042, China
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Mi Li
- Department of Chemical & Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xiaobo Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
- Geo-Environmental Research Centre, School of Engineering, Cardiff University, Cardiff CF24 3AA U.K
| | - Shusheng Pang
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch 4800, New Zealand
| | - Kui Wang
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No. 16, Suojin Five Village, Nanjing 210042, China
| | - Yunjuan Sun
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No. 16, Suojin Five Village, Nanjing 210042, China
| | - Zhaoping Zhong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, No.2 Sipailou, Xuanwu District, Nanjing, Jiangsu 210096, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, Minnesota 55108, United States
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
34
|
Demarteau J, O'Harra KE, Bara JE, Sardon H. Valorization of Plastic Wastes for the Synthesis of Imidazolium-Based Self-Supported Elastomeric Ionenes. CHEMSUSCHEM 2020; 13:3122-3126. [PMID: 32314494 DOI: 10.1002/cssc.202000505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Imidazolium-based ionenes are known to be high-performance materials for a great variety of applications. The preparation of these polymers requires the use of bis-imidazole starting monomers, which are commonly prepared by using toxic chloride reagents. In this study, bis-imidazole monomers are synthesized by organocatalytic chemical recycling of discarded plastics through chemical depolymerization. By using poly(ethylene terephthalate) and bisphenol A polycarbonate as starting materials, different monomers containing amide or urea functionalities are prepared to produce high-molecular-weight ionic polymers. These novel ionenes show excellent elastomeric and self-healing behavior, serving as a promising means to expand the exploration of plastic wastes as a source of new materials.
Collapse
Affiliation(s)
- Jeremy Demarteau
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018, Donostia-San Sebastian, Spain
| | - Kathryn E O'Harra
- University of Alabama, Department of Chemical & Biological Engineering, Tuscaloosa, AL, 35487-0203, USA
| | - Jason E Bara
- University of Alabama, Department of Chemical & Biological Engineering, Tuscaloosa, AL, 35487-0203, USA
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018, Donostia-San Sebastian, Spain
| |
Collapse
|
35
|
Jehanno C, Demarteau J, Mantione D, Arno MC, Ruipérez F, Hedrick JL, Dove AP, Sardon H. Synthesis of Functionalized Cyclic Carbonates through Commodity Polymer Upcycling. ACS Macro Lett 2020; 9:443-447. [PMID: 35648499 DOI: 10.1021/acsmacrolett.0c00164] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Functionalized cyclic carbonates are attractive monomers for the synthesis of innovative polycarbonates or polyurethanes for various applications. Even though their synthesis has been intensively investigated, doing so in a sustainable and efficient manner remains a challenge. Herein, we propose an organocatalytic procedure based on the depolymerization of a commodity polymer, bisphenol A based polycarbonate (BPA-PC). Different carbonate-containing heterocycles are obtained in good to excellent yields employing BPA-PC as a sustainable and inexpensive source of carbonate, including functionalized six-membered cyclic carbonates.
Collapse
Affiliation(s)
- Coralie Jehanno
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain
- IBM, Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Jeremy Demarteau
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain
| | - Daniele Mantione
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain
| | - Maria C. Arno
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Fernando Ruipérez
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain
| | - James L. Hedrick
- IBM, Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
36
|
Alberti C, Kessler J, Eckelt S, Hofmann M, Kindler T, Santangelo N, Fedorenko E, Enthaler S. Hydrogenative Depolymerization of End‐of‐Life Poly(bisphenol A carbonate) with
in
situ
Generated Ruthenium Catalysts. ChemistrySelect 2020. [DOI: 10.1002/slct.202000626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Christoph Alberti
- Universität HamburgInstitut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| | - Jannik Kessler
- Universität HamburgInstitut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| | - Sarah Eckelt
- Universität HamburgInstitut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| | - Melanie Hofmann
- Universität HamburgInstitut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| | - Tim‐Oliver Kindler
- Universität HamburgInstitut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| | - Nicolo Santangelo
- Universität HamburgInstitut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| | - Elena Fedorenko
- Universität HamburgInstitut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| | - Stephan Enthaler
- Universität HamburgInstitut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| |
Collapse
|
37
|
Wang J, Jiang J, Wang X, Wang R, Wang K, Pang S, Zhong Z, Sun Y, Ruan R, Ragauskas AJ. Converting polycarbonate and polystyrene plastic wastes intoaromatic hydrocarbons via catalytic fast co-pyrolysis. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121970. [PMID: 31887562 DOI: 10.1016/j.jhazmat.2019.121970] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 05/28/2023]
Abstract
Thermochemical conversion of plastic wastes is a promising approach to produce alternative energy-based fuels. Herein, we conducted catalytic fast co-pyrolysis of polycarbonate (PC) and polystyrene (PS) to generate aromatic hydrocarbons using HZSM-5 (Zeolite Socony Mobil-5, hydrogen, Aluminosilicate) as a catalyst. The results indicated that employing HZSM-5 in the catalytic conversion of PC facilitated the synthesis of aromatic hydrocarbons in comparison to the non-catalytic run. A competitive reaction between aromatic hydrocarbons and aromatic oxygenates was observed within the studied temperature region, and catalytic degradation temperature of 700 °C maximized the competing reaction towards the formation of targeted aromatic hydrocarbons at the expense of phenolic products. Catalyst type also played a vital role in the catalytic decomposition of PC wastes, and HZSM-5 with different Si/Al molar ratios produced more aromatic hydrocarbons than HY (Zeolite Y, hydrogen, Faujasite). Regarding the effect of Si/Al molar ration in HZSM-5 on the distribution of monocyclic aromatic hydrocarbons (MAHs), a Si/Al molar ratio of 38 maximized benzene formation with an advanced factor of 5.1. Catalytic fast co-pyrolysis of PC with hydrogen-rich plastic wastes including polypropylene (PP), polyethylene (PE), and polystyrene (PS) favored the production of MAHs, and PS was the most effective hydrogen donor with a ∼2.5-fold increase. The additive effect of MAHs increased at first and then decreased when the PC percentage was elevated from 30 % to 90 %, achieving the maximum value of 32.4 % at 70 % PC.
Collapse
Affiliation(s)
- Jia Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No. 16, Suojin Five Village, Nanjing, Jiangsu 210042, China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, No.2 Sipailou, Xuanwu District, Nanjing, Jiangsu 210096, China; Department of Chemical & Biomolarcular Engineering, the University of Tennessee, Knoxville, TN 37996, USA
| | - Jianchun Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No. 16, Suojin Five Village, Nanjing, Jiangsu 210042, China.
| | - Xiaobo Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China
| | - Ruizhen Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No. 16, Suojin Five Village, Nanjing, Jiangsu 210042, China
| | - Kui Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No. 16, Suojin Five Village, Nanjing, Jiangsu 210042, China
| | - Shusheng Pang
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Zhaoping Zhong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, No.2 Sipailou, Xuanwu District, Nanjing, Jiangsu 210096, China
| | - Yunjuan Sun
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No. 16, Suojin Five Village, Nanjing, Jiangsu 210042, China.
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Arthur J Ragauskas
- Department of Chemical & Biomolarcular Engineering, the University of Tennessee, Knoxville, TN 37996, USA; Department of Forestry, Wildlife and Fisheries, Center for Renewable Carbon, the University of Tennessee, Institute of Agriculture, Knoxville, TN 37996, USA; Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
38
|
Delle Chiaie KR, McMahon FR, Williams EJ, Price MJ, Dove AP. Dual-catalytic depolymerization of polyethylene terephthalate (PET). Polym Chem 2020. [DOI: 10.1039/c9py01920k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Limiting our plastic waste and finding greener, more sustainable solutions for disposal is a current environmental priority.
Collapse
|
39
|
Abstract
This review covers the current status of chemical recycling and upcycling of poly(bisphenol A carbonate), a leading engineering plastic of great economic and environmental interest.
Collapse
Affiliation(s)
- Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry
- Jeonbuk National University
- Jeonju
- Republic of Korea
| |
Collapse
|
40
|
Kindler T, Alberti C, Sundermeier J, Enthaler S. Hydrogenative Depolymerization of End-of-Life Poly-(Bisphenol A Carbonate) Catalyzed by a Ruthenium-MACHO-Complex. ChemistryOpen 2019; 8:1410-1412. [PMID: 31867148 PMCID: PMC6905177 DOI: 10.1002/open.201900319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
The valorization of waste to valuable chemicals can contribute to a more resource-efficient and circular chemistry. In this regard, the selective degradation of end-of-life polymers/plastics to produce useful chemical building blocks can be a promising target. We have investigated the hydrogenative depolymerization of end-of-life poly(bisphenol A carbonate). Applying catalytic amounts of the commercial available Ruthenium-MACHO-BH complex the end-of-life polycarbonate was converted to bisphenol A and methanol. Importantly, bisphenol A can be reprocessed for the manufacture of new poly-(bisphenol A carbonate) and methanol can be utilized as energy storage material.
Collapse
Affiliation(s)
- Tim‐Oliver Kindler
- Universität HamburgInstitut für Anorganische und Angewandte ChemieMartin-Luther-King-Platz 6D-20146HamburgGermany
| | - Christoph Alberti
- Universität HamburgInstitut für Anorganische und Angewandte ChemieMartin-Luther-King-Platz 6D-20146HamburgGermany
| | - Jannis Sundermeier
- Universität HamburgInstitut für Anorganische und Angewandte ChemieMartin-Luther-King-Platz 6D-20146HamburgGermany
| | - Stephan Enthaler
- Universität HamburgInstitut für Anorganische und Angewandte ChemieMartin-Luther-King-Platz 6D-20146HamburgGermany
| |
Collapse
|
41
|
Alberti C, Eckelt S, Enthaler S. Ruthenium‐Catalyzed Hydrogenative Depolymerization of End‐of‐Life Poly(bisphenol A carbonate). ChemistrySelect 2019. [DOI: 10.1002/slct.201903549] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christoph Alberti
- Universität HamburgInstitut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D–20146 Hamburg Germany
| | - Sarah Eckelt
- Universität HamburgInstitut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D–20146 Hamburg Germany
| | - Stephan Enthaler
- Universität HamburgInstitut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D–20146 Hamburg Germany
| |
Collapse
|
42
|
Liu F, Guo J, Zhao P, Jia M, Liu M, Gao J. Novel succinimide-based ionic liquids as efficient and sustainable media for methanolysis of polycarbonate to recover bisphenol A (BPA) under mild conditions. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.108996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Alberti C, Scheliga F, Enthaler S. Recycling of End-of-Life Poly(bisphenol A carbonate) via Alkali Metal Halide-Catalyzed Phenolysis. ChemistryOpen 2019; 8:822-827. [PMID: 31304075 PMCID: PMC6604237 DOI: 10.1002/open.201900149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Indexed: 11/17/2022] Open
Abstract
The chemical recycling of end-of-life plastic waste streams can contribute to a resource-conserving and sustainable society. This matter of recycling is composed of a sequence of depolymerization and subsequent polymerization reactions. In this regard, we have studied the chemical recycling of end-of-life poly(bisphenol A carbonate) applying phenol as depolymerization reagent. In the presence of catalytic amounts of alkali metal halides as products bisphenol A and diphenyl carbonate were obtained in excellent turnover frequencies of up to 1392 h-1 and short reaction times. These depolymerization products offer the straightforward possibility to close the cycle by producing new poly(bisphenol A carbonate) and as second product phenol, which can be reused for further depolymerizations.
Collapse
Affiliation(s)
- Christoph Alberti
- Institut für Anorganische und Angewandte ChemieUniversität HamburgMartin-Luther-King-Platz 6D-20146HamburgGermany
| | - Felix Scheliga
- Institut für Technische und Makromolekulare ChemieUniversität HamburgBundesstraße 45D-20146Hamburg (Germany
| | - Stephan Enthaler
- Institut für Anorganische und Angewandte ChemieUniversität HamburgMartin-Luther-King-Platz 6D-20146HamburgGermany
| |
Collapse
|
44
|
Alberti C, Enthaler S. Depolymerization of End‐of‐Life Poly(bisphenol A carbonate) via Alkali‐Metal‐Halide‐Catalyzed Methanolysis. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christoph Alberti
- Institut für Anorganische und Angewandte ChemieUniversität Hamburg Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| | - Stephan Enthaler
- Institut für Anorganische und Angewandte ChemieUniversität Hamburg Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| |
Collapse
|
45
|
Alberti C, Scheliga F, Enthaler S. Depolymerization of End‐of‐Life Poly(bisphenol A carbonate) via Transesterification with Acetic Anhydride as Depolymerization Reagent. ChemistrySelect 2019. [DOI: 10.1002/slct.201900556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christoph Alberti
- Institut für Anorganische und Angewandte ChemieUniversität Hamburg Martin-Luther-King-Platz 6 D–20146 Hamburg Germany
| | - Felix Scheliga
- Institut für technische und makromolekulare ChemieUniversität Hamburg Bundesstraße 45 D–20146 Hamburg Germany
| | - Stephan Enthaler
- Institut für Anorganische und Angewandte ChemieUniversität Hamburg Martin-Luther-King-Platz 6 D–20146 Hamburg Germany
| |
Collapse
|
46
|
Jehanno C, Pérez-Madrigal MM, Demarteau J, Sardon H, Dove AP. Organocatalysis for depolymerisation. Polym Chem 2019. [DOI: 10.1039/c8py01284a] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chemical recycling of plastics offers a green method to deal with plastic waste. In this review, we highlight the recent advances made by applying organocatalysts to chemically degrade polymers as a promising tool to reach a circular plastic economy.
Collapse
Affiliation(s)
- Coralie Jehanno
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta Center
- 20018 Donostia-San Sebastian
- Spain
| | | | - Jeremy Demarteau
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta Center
- 20018 Donostia-San Sebastian
- Spain
| | - Haritz Sardon
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta Center
- 20018 Donostia-San Sebastian
- Spain
| | | |
Collapse
|
47
|
Liu M, Guo J, Gu Y, Gao J, Liu F. Degradation of waste polycarbonate via hydrolytic strategy to recover monomer (bisphenol A) catalyzed by DBU-based ionic liquids under metal- and solvent-free conditions. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Baral ER, Lee JH, Kim JG. Diphenyl Carbonate: A Highly Reactive and Green Carbonyl Source for the Synthesis of Cyclic Carbonates. J Org Chem 2018; 83:11768-11776. [PMID: 30187751 DOI: 10.1021/acs.joc.8b01695] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A practical, safe, and highly efficient carbonylation system involving a diphenyl carbonate, an organocatalyst, and various diols is presented herein and produces highly valuable cyclic carbonates. In reactions with a wide range of diols, diphenyl carbonate was activated by bicyclic guanidine 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a catalyst, which successfully replaced highly toxic and unstable phosgene or its derivatives while maintaining the desired high reactivity. Moreover, this new system can be used to synthesize sterically demanding cyclic carbonates such as tetrasubstituted pinacol carbonates, which are not accessible via other conventional methods.
Collapse
Affiliation(s)
- Ek Raj Baral
- Department of Chemistry and Research Institute of Physics and Chemistry , Chonbuk National University , Jeonju 54896 , Republic of Korea
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry , Dongguk University , Gyeongju 38066 , Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry , Chonbuk National University , Jeonju 54896 , Republic of Korea
| |
Collapse
|