1
|
Alhendal A, Rashad M, Alshatti L, Mouffouk F, Husain A, Alrashed A. Recoverable and reusable light-induced multi-arm azobenzenes-Fe 3O 4 hybrid sorbent for enrichment of phthalate plasticizer and utilized as a SALDI substrate for the detection of 2-naphthol. J Chromatogr A 2024; 1736:465418. [PMID: 39378620 DOI: 10.1016/j.chroma.2024.465418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
The construction, structural identifications along with compositional properties, using TEM, FT-IR, and XPS spectroscopies, of an innovative light-induced multi-arm azobenzenes based Fe3O4 magnetic nanoparticles (Azo-Fe3O4 MNPs) are being reported. Such organic (light-sensitive dendrimers-like structure), inorganic (magnet core), hybrid material has been applied as an efficient recoverable/reusable extractive sorbent for the detection of phthalate plasticizers from acetate buffer solution. The extraction study was controlled within consecutive procedures via UV-light exposure to achieve pore-size control which then further subjected for the evaluation of the analytes' retention, separation, and release as well as the detection of the phthalate pollutants using GCMS-. Various experimental conditions, such as time of extraction, salt concentration, pH, and desorption time, were studied and adjusted. Additionally, the extraction repeatability (RSD from 0.46 % to 6.12%, n = 5) of the studied sorbent was comparable to other published work. The linear range extended from 6.25 to 100 μg L-¹ and detection limits (LOD) within the range of 41- 150 ng L-1 were achieved, demonstrating good linearity with values ranging from 0.9992 to 0.9892. The inter-batch and intra-batch RSD ranged from 0.46 % to 6.12 %, respectively. Additionally, it provides effective detection of 2-naphthol when used as a SALDI substrate.
Collapse
Affiliation(s)
- Abdullah Alhendal
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.
| | - Mohamed Rashad
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Laila Alshatti
- The Public Authority for Applied Education and Training, College of Nursing, General Science Department, State of Kuwait, P.O. Box 64923, 70466, Shuwaikh-B, Kuwait
| | - Fouzi Mouffouk
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Ali Husain
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Abrar Alrashed
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
2
|
Yan J, Liu S, Sun D, Peng S, Ming Y, Ostovan A, Song Z, You J, Li J, Fan H. Molecularly Imprinted Ratiometric Fluorescent Sensors for Analysis of Pharmaceuticals and Biomarkers. SENSORS (BASEL, SWITZERLAND) 2024; 24:7068. [PMID: 39517965 PMCID: PMC11548425 DOI: 10.3390/s24217068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Currently, analyzing pharmaceuticals and biomarkers is crucial for ensuring medication safety and protecting life and health, and there is an urgent need to develop new and efficient analytical techniques in view of the limitations of traditional analytical methods. Molecularly imprinted ratiometric fluorescent (MI-RFL) sensors have received increasing attention in the field of analytical detection due to their high selectivity, sensitivity and anti-interference ability, short response time, and visualization. This review summarizes the recent advances of MI-RFL sensors in the field of pharmaceuticals and biomarkers detection. Firstly, the fluorescence sources and working mechanisms of MI-RFL sensors are briefly introduced. On this basis, new techniques and strategies for preparing molecularly imprinted polymers, such as dummy template imprinting, nanoimprinting, multi-template imprinting, and stimulus-responsive imprinting strategies, are presented. Then, dual- and triple-emission types of fluorescent sensors are introduced. Subsequently, specific applications of MI-RFL sensors in pharmaceutical analysis and biomarkers detection are highlighted. In addition, innovative applications of MI-RFL sensors in point-of-care testing are discussed in-depth. Finally, the challenges of MI-RFL sensors for analysis of pharmaceuticals and biomarkers are proposed, and the research outlook and development trends of MI-RFL sensors are prospected.
Collapse
Affiliation(s)
- Jingyi Yan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 32 Qingquan Road of Laishan District, Yantai 264005, China
| | - Siwu Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 32 Qingquan Road of Laishan District, Yantai 264005, China
| | - Dani Sun
- Coastal Zone Ecological Environmental Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road of Laishan District, Yantai 264003, China
| | - Siyuan Peng
- School of Life Science, Ludong University, Yantai 264025, China
| | - Yongfei Ming
- School of Life Science, Ludong University, Yantai 264025, China
| | - Abbas Ostovan
- Coastal Zone Ecological Environmental Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road of Laishan District, Yantai 264003, China
| | - Zhihua Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 32 Qingquan Road of Laishan District, Yantai 264005, China
| | - Jinmao You
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Jinhua Li
- Coastal Zone Ecological Environmental Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road of Laishan District, Yantai 264003, China
| | - Huaying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 32 Qingquan Road of Laishan District, Yantai 264005, China
| |
Collapse
|
3
|
Li Z, Deng J, Ma P, Bai H, Jin Y, Zhang Y, Dong A, Burenjargal M. Stimuli-Responsive Molecularly Imprinted Polymers: Mechanism and Applications. J Sep Sci 2024; 47:e202400441. [PMID: 39385447 DOI: 10.1002/jssc.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024]
Abstract
Molecularly imprinted polymers (MIPs) are very suitable for extraction, drug delivery systems, and sensors due to their good selective adsorption ability, but the difficulty of eluting templates during synthesis and the limitation of application scenarios put higher demands on MIPs. Stimuli-responsive MIPs (SR-MIPs) can actively respond to changes in external conditions to realize various functions, which provides new ideas for the further development of MIPs. This paper reviews the multiple response modes of MIPs, including the common temperature, pH, photo, magnetic, redox-responsive and rare gas, biomolecule, ion, and solvent-responsive MIPs, and explains the mechanism, composition, and applications of such SR-MIPs. These SR-MIPs and the resulting dual/multiple-responsive MIPs have good selectivity, and controllability, and are very promising for isolation and extraction, targeted drug delivery, and electro-sensor.
Collapse
Affiliation(s)
- Zheng Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Jiaming Deng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yuting Jin
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | | |
Collapse
|
4
|
Zhang Y, Wang Q, Zhao X, Ma Y, Zhang H, Pan G. Molecularly Imprinted Nanomaterials with Stimuli Responsiveness for Applications in Biomedicine. Molecules 2023; 28:molecules28030918. [PMID: 36770595 PMCID: PMC9919331 DOI: 10.3390/molecules28030918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The review aims to summarize recent reports of stimuli-responsive nanomaterials based on molecularly imprinted polymers (MIPs) and discuss their applications in biomedicine. In the past few decades, MIPs have been proven to show widespread applications as new molecular recognition materials. The development of stimuli-responsive nanomaterials has successfully endowed MIPs with not only affinity properties comparable to those of natural antibodies but also the ability to respond to external stimuli (stimuli-responsive MIPs). In this review, we will discuss the synthesis of MIPs, the classification of stimuli-responsive MIP nanomaterials (MIP-NMs), their dynamic mechanisms, and their applications in biomedicine, including bioanalysis and diagnosis, biological imaging, drug delivery, disease intervention, and others. This review mainly focuses on studies of smart MIP-NMs with biomedical perspectives after 2015. We believe that this review will be helpful for the further exploration of stimuli-responsive MIP-NMs and contribute to expanding their practical applications especially in biomedicine in the near future.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qinghe Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiao Zhao
- College of Life Sciences, Northwest Normal University, Lanzhou 730071, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
- Correspondence: (Y.M.); (G.P.)
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Correspondence: (Y.M.); (G.P.)
| |
Collapse
|
5
|
Shen J, Jiang P, Chen T, Ding H, Huang W, Yang W. Selective enrichment and extraction of trace dibutyl phthalate by photo‐controlled molecularly imprinting polymers based on
SiO
2
nanoparticles. J Appl Polym Sci 2023. [DOI: 10.1002/app.53613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Junliang Shen
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang China
| | - Pengfei Jiang
- School of the Environment and Safety Engineering, Jiangsu University Zhenjiang China
| | - Ting Chen
- Yangzhou Food and Drug Inspection and Testing Center Yangzhou China
| | - Hua Ding
- Zhenjiang First People's Hospital Zhenjiang China
| | - Weihong Huang
- School of the Environment and Safety Engineering, Jiangsu University Zhenjiang China
| | - Wenming Yang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang China
| |
Collapse
|
6
|
Baohe Li, Jiang L, Wang Y, Li C, Yu D, Wang N. Construction and Properties of New-Type Photo-Responsive Molecular Imprinting Materials. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
7
|
Stimuli-responsive molecularly imprinted polymers as adsorbents of analytes in complex matrices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Yang W, Shen J, Zhu S, Si H, Song F, Zhang W, Ding H, Huang W. Preparation and Characterisation of Photoresponsive Molecularly Imprinted Polymer Based on 5-[(4-(methacryloyloxy) phenyl) diazenyl] isophthalic acid for the Determination of Sulfamethazine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Musarurwa H, Tavengwa NT. Stimuli-responsive polymers and their applications in separation science. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Rahimi Haji Abadi F, Tadayon F, Saber Tehrani M, Ahmad Panahi H. Synthesis and characterization of the photoresponsive and thermoresponsive molecularly imprinted polymer with a novel functional monomer for controlled release of 4-Aminopyridine. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2018318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Fariba Tadayon
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Saber Tehrani
- Department of Chemistry, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Sajini T, Mathew B. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
12
|
Huang W, Si H, Zhang L, Yin X, Ji Z, Ni X, Xu W. Photoresponsive molecularly imprinted polymers based on 4-[(4-methacryloyloxy)phenylazo] benzenesulfonic acid for the determination of sulfamethazine. J Sep Sci 2021; 44:2536-2544. [PMID: 33929080 DOI: 10.1002/jssc.202100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
Core-shell structured photoresponsive molecularly imprinted polymers were developed for the determination of sulfamethazine in milk samples. The photoresponsive imprinted polymers were prepared with polymethyl methacrylate containing a mass of ester groups as core, sulfamethazine as template molecules, self-synthesized water-soluble 4-[(4-methacryloyloxy)phenylazo] benzenesulfonic acid as a photoresponsive monomer, and ethylene dimethacrylate as cross-linker. Interestingly, the imprinted polymer can specifically adsorb sulfamethazine under dark and 440 nm irradiation, and release it at 365 nm. A series of adsorption experiments showed that the maximum adsorption capacity reached 12.5 mg⋅g-1 , and the adsorption equilibrium was achieved within 80 min. Moreover, the imprinted polymers display excellent reusability, with almost no performance loss after four times photo-controlled adsorption-release cycles, and the imprinted polymers have excellent selectively for sulfamethazine (imprinting factor = 3.01). In the end, the imprinted polymers realized effective separation and enrichment of sulfamethazine in milk, with a recovery rate of over 97.5%. The material can be used as a solid-phase extractant in the process of enrichment and separation for the quantitative detection of sulfamethazine in milk samples.
Collapse
Affiliation(s)
- Weihong Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Haojie Si
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Liming Zhang
- Zhenjiang Agricultural Products Quality Inspection and Testing Center, Zhenjiang, P. R. China
| | - Xifeng Yin
- Zhenjiang Agricultural Products Quality Inspection and Testing Center, Zhenjiang, P. R. China
| | - Zehua Ji
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xiaoni Ni
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, P. R. China
| | - Wanzhen Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
13
|
Sun Y, Yin X, Zhang L, Cao M. Preparation and evaluation of photo-responsive hollow SnO 2 molecularly imprinted polymers for the selective recognition of kaempferol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:925-932. [PMID: 33527101 DOI: 10.1039/d0ay02202k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Novel photo-responsive hollow structured molecularly imprinted polymers (PHMIPs) were developed as a selective sorbent to recognize and separate analytes in complex samples. The PHMIPs were prepared using kaempferol (KAE) as the template, 4-[(4-methacryloyloxy) phenylazo] benzenesulfonic acid as a photo-responsive functional monomer, and hollow SnO2 (Ho-SnO2) as the support via free radical polymerization. The structure and physical properties of the developed polymers were characterized using different nano structural techniques and spectroscopy. Under alternating irradiation at 365 and 440 nm, the PHMIPs could release and uptake KAE, indicating that the template molecules can be easily bound to recognition sites and released back into solution. From adsorption experiments, the binding properties were evaluated, and the maximal adsorption capacity of the PHMIPs was 11.04 mg g-1. Furthermore, the developed PHMIPs showed high selectivity towards KAE compared to other compounds. Subsequently, the materials were successfully applied to the photo-controlled extraction of KAE from sea buckthorn leaves. The recoveries for KAE were higher than 90% and relative standard deviation values were between 1.81% and 2.53%, indicating the potential of the developed materials for use in extracting KAE from complex samples.
Collapse
Affiliation(s)
- Yun Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | | | | | | |
Collapse
|
14
|
A Magnetic, Core–Shell Structured, pH-Responsive Molecularly Imprinted Polymers for the Selective Detection of Sulfamethoxazole. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01893-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
González-Sálamo J, Ortega-Zamora C, Carrillo R, Hernández-Borges J. Application of stimuli-responsive materials for extraction purposes. J Chromatogr A 2020; 1636:461764. [PMID: 33316565 DOI: 10.1016/j.chroma.2020.461764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Stimuli-responsive materials, frequently designated as "smart/intelligent materials", can modify their structure or properties by either a biological, physical, or chemical stimulus which, if properly controlled, could be used for specific applications. Such materials have been studied and exploited in several fields, like electronics, photonics, controlled drugs administration, imaging and medical diagnosis, among others, as well as in Analytical Chemistry where they have been used as chromatographic stationary phases, as part of sensors and for extraction purposes. This review article pretends to provide an overview of the most recent applications of these materials (mostly polymeric materials) in sample preparation for extraction purposes, as well as to provide a general vision of the current state-of-the-art of this field, their potential use and future applications.
Collapse
Affiliation(s)
- Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.
| | - Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología IPNA-CSIC. Avda. Astrofísico Fco. Sánchez, 3. 38206 San Cristóbal de La Laguna, España
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.
| |
Collapse
|
16
|
Chen MJ, Yang HL, Si YM, Tang Q, Chow CF, Gong CB. Photoresponsive Surface Molecularly Imprinted Polymers for the Detection of Profenofos in Tomato and Mangosteen. Front Chem 2020; 8:583036. [PMID: 33195073 PMCID: PMC7581910 DOI: 10.3389/fchem.2020.583036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
As a moderately toxic organophosphorus pesticide, profenofos (PFF) is widely used in agricultural practice, resulting in the accumulation of a high amount of PFF in agricultural products and the environment. This will inevitably damage our health. Therefore, it is important to establish a convenient and sensitive method for the detection of PFF. This paper reports a photoresponsive surface-imprinted polymer based on poly(styrene-co-methyl acrylic acid) (PS-co-PMAA@PSMIPs) for the detection of PFF by using carboxyl-capped polystyrene microspheres (PS-co-PMAA), PFF, 4-((4-(methacryloyloxy)phenyl)diazenyl) benzoic acid, and triethanolamine trimethacrylate as the substrate, template, functional monomer, and cross-linker, respectively. PS-co-PMAA@PSMIP shows good photoresponsive properties in DMSO/H2O (3:1, v/v). Its photoisomerization rate constant exhibits a good linear relationship with PFF concentration in the range of 0~15 μmol/L. PS-co-PMAA@PSMIP was applied for the determination of PFF in spiked tomato and mangosteen with good recoveries ranging in 94.4-102.4%.
Collapse
Affiliation(s)
- Mei-jun Chen
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Hai-lin Yang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Ya-min Si
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Cheuk-fai Chow
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Cheng-bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Rahimpour E, Alvani-Alamdari S, Jouyban A. A Comprehensive Review on Developed Pharmaceutical Analysis Methods by Iranian Analysts in 2018. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This article summarizes the publishing activities including bioanalytical and pharmaceutical analyses researches carried out in Iran in 2018 in order to connect academic researchers to those in industry, medical care units and hospitals. A wide spectrum of analytical methods has been used to determine and/or evaluate drug levels in the biological samples, based on physical, chemical and biochemical principles. We have compiled a concise survey of the literature covering 125 reports and tabulated the relevant analytical parameters. Chromatographic and electrochemical methods were found to be the technique of choice for many workers and almost 83% studies were performed by using these methods. This is the first annual review of the literature searching in SCOPUS database for published bioanalytical and pharmaceutical analysis researches in Iran.
Collapse
Affiliation(s)
- Elaheh Rahimpour
- harmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Alvani-Alamdari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- harmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Fabrication of a thermal responsive hemoglobin (Hb) biosensor via Hb-catalyzed eATRP on the surface of ZnO nanoflowers. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Wang Z, Yuan X, Yang G, Zhang W, Liu L, Dong H, Zhang C, Bai J, Meng L. Efficient Liquid–Liquid Extraction of Benzene from Its Mixture with Cyclohexane by Utilizing Hyperbranched Polymeric Ammoniums Salts. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhiwei Wang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xuan Yuan
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Guoxing Yang
- School of Chemical and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Daqing Petrochemical Research Center, Petrochemical Research Institute, China National Petroleum Corporation, Daqing 163714, China
| | - Weidong Zhang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Lijia Liu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jianwei Bai
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Linghui Meng
- Daqing Petrochemical Research Center, Petrochemical Research Institute, China National Petroleum Corporation, Daqing 163714, China
| |
Collapse
|
20
|
Magnetic nanoparticles modified with hyperbranched polyamidoamine for the extraction of benzoylurea insecticides prior to their quantitation by HPLC. Mikrochim Acta 2019; 186:351. [DOI: 10.1007/s00604-019-3450-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/15/2019] [Indexed: 11/27/2022]
|
21
|
Zhang L, Xue W, Gu L. Biopeptide Hyperbranched Polyether Assembled from Lactic Acid, Glutamic Acid and Polyethylene Glycol Block Chains for Drug Loading. Macromol Res 2019. [DOI: 10.1007/s13233-019-7146-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|