1
|
Kurapati R, Natarajan U. Tacticity and Ionization Effects on Adsorption Behavior of Poly(acrylic acid) and Poly(methacrylic acid) at the CCl 4–H 2O Interface Revealed by MD Simulations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Raviteja Kurapati
- Macromolecular Modeling and Simulation Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai600036, India
| | - Upendra Natarajan
- Macromolecular Modeling and Simulation Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai600036, India
| |
Collapse
|
2
|
Pachpinde S, Natarajan U. Conformations, inter-molecular structure and hydrogen bond dynamics of neutral and cationic poly(vinyl amine) in aqueous solution. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1968389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sushil Pachpinde
- Macromolecular Modeling and Simulation Lab, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Upendra Natarajan
- Macromolecular Modeling and Simulation Lab, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| |
Collapse
|
3
|
Zatorska-Płachta M, Łazarski G, Maziarz U, Foryś A, Trzebicka B, Wnuk D, Chołuj K, Karewicz A, Michalik M, Jamróz D, Kepczynski M. Encapsulation of Curcumin in Polystyrene-Based Nanoparticles-Drug Loading Capacity and Cytotoxicity. ACS OMEGA 2021; 6:12168-12178. [PMID: 34056370 PMCID: PMC8154162 DOI: 10.1021/acsomega.1c00867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/20/2021] [Indexed: 05/03/2023]
Abstract
Nanoparticles made of amphiphilic block copolymers are commonly used in the preparation of nano-sized drug delivery systems. Poly(styrene)-block -poly(acrylic acid) (PS-PAA) copolymers have been proposed for drug delivery purposes; however, the drug loading capacity and cytotoxicity of PS-PAA nanoparticles are still not fully recognized. Herein, we investigated the accumulation of a model hydrophobic drug, curcumin, and its spatial distribution inside the PS-PAA nanoparticles. Experimental methods and atomistic molecular dynamics simulations were used to understand the molecular structure of the PS core and how curcumin molecules interact and organize within the PS matrix. The hydrophobic core of the PS-PAA nanoparticles consists of adhering individually coiled polymeric chains and is compact enough to prevent post-incorporation of curcumin. However, the drug has a good affinity for the PS matrix and can be efficiently enclosed in the PS-PAA nanoparticles at the formation stage. At low concentrations, curcumin is evenly distributed in the PS core, while its aggregates were observed above ca. 2 wt %. The nanoparticles were found to have relatively low cytotoxicity to human skin fibroblasts, and the presence of curcumin further increased their biocompatibility. Our work provides a detailed description of the interactions between a hydrophobic drug and PS-PAA nanoparticles and information on the biocompatibility of these anionic nanostructures which may be relevant to the development of amphiphilic copolymer-based drug delivery systems.
Collapse
Affiliation(s)
| | - Grzegorz Łazarski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Urszula Maziarz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Aleksander Foryś
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Barbara Trzebicka
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Dawid Wnuk
- Department
of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Karolina Chołuj
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Anna Karewicz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Marta Michalik
- Department
of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Dorota Jamróz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
- . Phone: +48 12 6862529
| | - Mariusz Kepczynski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
- . Phone: +48 12 6862532
| |
Collapse
|
4
|
Kunche L, Natarajan U. Structure and dynamics of an aqueous solution containing poly-(acrylic acid) and non-ionic surfactant octaethylene glycol n-decyl ether (C 10E 8) aggregates and their complexes investigated by molecular dynamics simulations. SOFT MATTER 2021; 17:670-687. [PMID: 33215624 DOI: 10.1039/d0sm01322f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A detailed molecular dynamics simulation study of the self-assembly, intermolecular structure and thermodynamic behavior of an aqueous solution of non-ionic surfactant octa ethylene glycol n-decyl ether (C10E8) in the presence of a non-ionic polar polymer poly(acrylic acid) PAA is presented. The aggregation number Nagg and concentration of surfactant Cs in the simulation systems were varied in the range 0.01-0.32 M and 5 < Nagg < 101 (dilute to concentrated) with a dilute polymer concentration (Cp = 0.01 M). Lamellar aggregates of non-ionic surfactant in bulk aqueous solution are shown by molecular level computations for the first time. Spherical micellar aggregates and lamellar aggregates are formed at low and high Nagg, respectively. The transition from the spherical micelle phase to the lamellar phase in a binary solution is captured for the first time. A conformational transition from coiled to extended PAA chains adsorbed on the surfactant aggregate occurs at a particular value of Nagg, commensurate with the transition from spherical micelle aggregates to anisotropic lamellar aggregates. Formation of the surfactant aggregate in binary and ternary solutions and the polymer-surfactant complex in a ternary solution is enthalpically favored. Adsorption of PAA on the surfactant aggregate surface is driven by hydrogen bonds (HBs) between carboxylic acid groups of PAA and ethylene oxide groups of C10E8. A significant number of HBs occur between polar oxygens of C10E8 and hydroxyl oxygens of PAA. The results are in agreement with the limited available experimental data on this system.
Collapse
Affiliation(s)
- Lakshmikumar Kunche
- Macromolecular Modeling and Simulation Lab, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai 600036, India.
| | - Upendra Natarajan
- Macromolecular Modeling and Simulation Lab, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai 600036, India.
| |
Collapse
|