1
|
Competition effect of solid-state stretching induced orientation and phase separation on stereocomplex crystallization of PLLA/PDLA during annealing. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
2
|
Guo S, Zhou Z, Yu S, Chen Z, Xiang H, Zhu M. The synergistic effect of heterogeneous nucleation and stress-induced crystallization on supramolecular structure and performances of poly(lactic acid) melt-spun fibers. Int J Biol Macromol 2023; 226:1579-1587. [PMID: 36503823 DOI: 10.1016/j.ijbiomac.2022.11.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
As a kind of bio-based polymer, poly (lactic acid) has potential application in fibers fields. Due to the weak nucleation ability, PLA crystallizes slowly and forms large spherulites during the forming process, which deteriorates the properties of PLA fibers. In this work, melt-spun method is employed for the fabrication of PLA/T composite fibers using succinate diphenyl dihydrazide (TMC-306) as the nucleating agent, and then the hot-drawing and heat setting is performed to the as-spun fibers. Compared with pure PLA fibers, PLA/T fibers show faster crystallization rate and improved performance due to the synergistic effect of heterogeneous nucleation and stress-induced crystallization. The characterization of non-isothermal crystallization behavior indicates that the peak crystallization temperature as well as crystallinity of PLA composites is increased to 121.5 °C and 36.78 % respectively by blending 0.3 wt% TMC-306. Meanwhile, the obtained PLA/0.3T composite fibers are highly crystallized and oriented at hot-drawing ratio of 2.4 folds and heat setting temperature of 100 °C, and the conformational stability is noticeably enhanced. Further, the tensile strength and storage modulus of PLA/0.3T composite fiber are 3.46 cN/dtex and 46,953 MPa respectively, which are increased by 42 % and 41 % compared with neat PLA fibers.
Collapse
Affiliation(s)
- Sheng Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhe Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhongbi Chen
- Anhui BBCA Biofiber Co., Ltd, Bengbu, Anhui 233000, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Huang W, Shi Y, Wang W, Sheng Y, Guo Y, Li Y, Yang Q, Chen P. Polylactide/poly[(
R
)‐3‐hydroxybutyrate] (
PHB
) blend fibers with superior heat‐resistance: Effect of
PHB
on crystallization. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wei Huang
- Zhejiang Key Laboratory of Bio‐based Polymeric Materials Technology and Application, Ningbo Key Laboratory of Polymer Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), CAS Ningbo China
| | - Yamin Shi
- Zhejiang Key Laboratory of Bio‐based Polymeric Materials Technology and Application, Ningbo Key Laboratory of Polymer Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), CAS Ningbo China
| | - Wenling Wang
- COFCO (Jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Yongji Sheng
- COFCO (Jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Yuying Guo
- COFCO (Jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Yi Li
- COFCO (Jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Qiu Yang
- Ningbo New Material Testing and Evaluation Center Co., Ltd Ningbo China
| | - Peng Chen
- Zhejiang Key Laboratory of Bio‐based Polymeric Materials Technology and Application, Ningbo Key Laboratory of Polymer Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), CAS Ningbo China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
4
|
Lu J, Yi LX, Zhao YH, Meng Y, Yu PX, Su JJ, Han J. Mechanically Robust Polylactide Fibers with Super Heat Resistance via Constructing in situ Nanofibrils. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Polylactide aerogel with excellent comprehensive performances imparted by stereocomplex crystallization for efficient oil-water separation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Tuccitto AV, Anstey A, Sansone ND, Park CB, Lee PC. Controlling stereocomplex crystal morphology in poly(lactide) through chain alignment. Int J Biol Macromol 2022; 218:22-32. [PMID: 35850270 DOI: 10.1016/j.ijbiomac.2022.07.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/19/2022]
Abstract
The incorporation of poly(d-lactide) (PDLA) to form stereocomplex crystallites (SCs) within a poly(l-lactide) (PLLA) matrix is among the most effective strategies in overcoming PLLA's numerous drawbacks. However, high concentrations of PDLA (>3 wt%) are required to improve PLLA's crystallization kinetics and melt strength, which is undesirable owing to PDLA's high cost. In this study, we use chain alignment as a levier to tune stereocomplex superstructure morphology to overcome these limitations. Herein, PLLA/PDLA blends were manufactured using an environmentally friendly and low-cost single step spunbond fibrillation process, yielding microfibers stretched to diameters of 5-20 μm. During this stretching process, PLLA and PDLA chains are aligned along the flow direction. SCs subsequently formed in situ upon heating, dramatically improving crystallization kinetics, melt elasticity, and tensile performance compared with neat PLLA and non-stretched blend analogues, even with low PDLA content (<3 wt%). These improvements were attributed to topological variations in SC superstructures caused by alignment of PLLA and PDLA chains. The application of chain alignment in tuning SC superstructure morphology is ubiquitous in fibrillation processes.
Collapse
Affiliation(s)
- Anthony V Tuccitto
- Multifunctional Composites Manufacturing Laboratory (MCML), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada; Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada
| | - Andrew Anstey
- Multifunctional Composites Manufacturing Laboratory (MCML), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada; Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada
| | - Nello D Sansone
- Multifunctional Composites Manufacturing Laboratory (MCML), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada.
| | - Patrick C Lee
- Multifunctional Composites Manufacturing Laboratory (MCML), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada.
| |
Collapse
|
7
|
Shi Y, Huang W, Li Y, Wang W, Sui M, Yang Q, Tong Y, Yang K, Chen P. Toward heat resistant polylactide blend fibers via incorporation of low poly[(R)‐3‐hydroxybutyrate‐
co
‐4‐hydroxybutyrate] content. J Appl Polym Sci 2022. [DOI: 10.1002/app.52652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yamin Shi
- School of Chemistry and Chemical Engineering Jiangxi University of Science and Technology Ganzhou China
- Zhejiang Key Laboratory of Bio‐based Polymeric Materials Technology and Application, Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Materials Technology and Engineering (NIMTE) Ningbo China
| | - Wei Huang
- Zhejiang Key Laboratory of Bio‐based Polymeric Materials Technology and Application, Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Materials Technology and Engineering (NIMTE) Ningbo China
| | - Yi Li
- COFCO (jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Wenling Wang
- COFCO (jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Miao Sui
- COFCO (jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Qiu Yang
- Ningbo New Material Testing and Evaluation Center Co., Ltd Ningbo China
| | - Yi Tong
- COFCO (jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Kai Yang
- School of Chemistry and Chemical Engineering Jiangxi University of Science and Technology Ganzhou China
| | - Peng Chen
- Zhejiang Key Laboratory of Bio‐based Polymeric Materials Technology and Application, Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Materials Technology and Engineering (NIMTE) Ningbo China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
8
|
Tang Y, Wang Y, Chen S, Wang X. Fabrication of low-density poly(lactic acid) microcellular foam by self-assembly crystallization nucleating agent. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Eang C, Nim B, Sreearunothai P, Petchsuk A, Opaprakasit P. Chemical upcycling of polylactide (PLA) and its use in fabricating PLA-based super-hydrophobic and oleophilic electrospun nanofibers for oil absorption and oil/water separation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02747j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circular design and fabrication of PLA nanofiber filters from PLA wastes for effective oil decontamination and oil/water separation.
Collapse
Affiliation(s)
- Chorney Eang
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Bunthoeun Nim
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Paiboon Sreearunothai
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Atitsa Petchsuk
- National Metal and Materials Technology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pakorn Opaprakasit
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| |
Collapse
|
10
|
Jalali A, Romero-Diez S, Nofar M, Park CB. Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: Exploring the role of nanofibrillated stereocomplex polylactide crystals. Int J Biol Macromol 2021; 193:2210-2220. [PMID: 34798187 DOI: 10.1016/j.ijbiomac.2021.11.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
This study aims at investigating the manufacturing and characterization of all-polylactide composites prepared by melt spunbond spinning technology. To do so, a series of asymmetric stereocomplex polylactide (SC-PLA) blends (PLLA 95 wt%/PDLA 5 wt%) was melt spun. To examine the impact of molecular structure of PDLA, the blends of linear PLLA, and low and high molecular weight as well as branched PDLAs, were subjected to a single step spunbond process. DSC thermograms of the samples showed two melting temperatures at around 170 °C and 210 °C, which were attributed to the melting of homo and stereocomplex crystals, respectively. The samples were spun at 190 °C, between the homo and stereocomplex crystals' melting temperatures, and at 230 °C, above the stereocomplex crystals' melting temperature. Morphology images showed the formation of fibers in the range of 40-50 μm. Shear rheological measurements revealed that the spun SC-PLA samples had a substantially higher viscosity and storage modulus in the low frequency region, and higher shear thinning behavior, compared to the non-spun samples. Extensional rheology measurements also showed that the spun samples demonstrated strain hardening behavior. Substantial enhancement of rheological properties was noted for the samples containing the branched and high molecular weight PDLA spun at 230 °C. After etching, the spun samples at 190 °C exhibited small spherical crystals with diameters in the range of 80-90 nm, whereas comparatively thin fibers in the size range of 60-70 nm were observed for the samples spun at 230 °C. Remarkable enhancements up to 100% and 60% was noted for the tensile modulus and strength, respectively, of the spun SC-PLA samples. The spun fibers also demonstrated a considerable reduction in boiling water and hot air shrinkage. The distinctive role of nanofibrillated stereocomplex crystals as a rheology modifier and a crystallization nucleating agent makes PLA more sustainable and paves the way for the fabricated all-PLA composites in applications requiring high heat resistance and superior mechanical performance. The present study unequivocally indicates a huge potential for the sustainable entirely all-PLA products manufactured by fiber in fiber and, indeed, unfolds unknown opportunities for PLA-based merchandises in future.
Collapse
Affiliation(s)
- Amirjalal Jalali
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Sandra Romero-Diez
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Multifunctonal Composites Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Mohammadreza Nofar
- Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| |
Collapse
|
11
|
Li X, Tian Y, Zhang J, Cheng J, Wu G, Zhang Y, Zhao G, Ni Z. Effects of annealing constraint methods on poly(L‐lactic acid) monofilaments for application in stents annealing. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xin Li
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Yuan Tian
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Jing Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Jie Cheng
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering Nanjing Forestry University Nanjing China
| | - Yi Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School Southeast University Nanjing China
| | - Gutian Zhao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| |
Collapse
|
12
|
The effect of cellulose molecular weight on internal structure and properties of regenerated cellulose fibers as spun from the alkali/urea aqueous system. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123379] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Improved dielectric and energy storage properties of polypropylene by adding hybrid fillers and high-speed extrusion. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Bai D, Liu H, Ju Y, Deng S, Bai H, Zhang Q, Fu Q. Low-temperature sintering of stereocomplex-type polylactide nascent powder: The role of poly(methyl methacrylate) in tailoring the interfacial crystallization between powder particles. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Liu H, Zhou W, Chen P, Bai D, Cai Y, Chen J. A novel aryl hydrazide nucleator to effectively promote stereocomplex crystallization in high-molecular-weight poly(L-lactide)/poly(D-lactide) blends. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122873] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Zhang Z, Wang X, Wang Y, Shen C, Liu C, Wang Z. Melt extension-induced shish-kebabs with heterogeneous spatial distribution of crystalline polymorphs in lightly crosslinked poly(lactic acid). POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Sahu A, Sheikh R, Poler JC. Green sonochemical synthesis, kinetics and functionalization of nanoscale anion exchange resins and their performance as water purification membranes. ULTRASONICS SONOCHEMISTRY 2020; 67:105163. [PMID: 32416575 DOI: 10.1016/j.ultsonch.2020.105163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
This paper reports on sonochemically catalyzed atom transfer radical polymerization (SONO-ATRP) polyelectrolyte synthesis and chain-end functionalization to single-walled carbon nanotubes (SWCNT). This all aqueous process is kinetically facile without use of initiator, or reducing agents and with very low concentrations of catalyst. The process achieves high functionalization density of polymer onto the SWCNTs. These functionalized nanoscale resins (NanoResins) exhibit high performance as fast and sustainable water purification materials. SONO-ATRP of vinyl benzyl trimethyl ammonium chloride (vbTMAC) was performed in aqueous medium resulting in short polyelectrolyte strands with high atom economy and high monomer conversions (93%) at room temperature using a thin probe sonicator (144Wcm-2, 20 kHz, for 4 h). Kinetics analysis showed first order kinetics with respect to monomer concentration in presence of or absence of sonication power. Low temperature SONO-ATRP functionalization of SWCNTs is achieved within two hours without added reducing agent while similar functionalization density using reducing agents without sonochemistry required 12 h under reflux conditions. Functionalized NanoResin membranes were tested against surrogate analyte and demonstrated high performance Thomas Model breakthrough curves with a maximum adsorption capacity of 139 ± 1 mgg-1 and water flux of 692 Lm-2h-1bar-1 at one atmosphere pressure. Moreover, these materials are easily regenerated and reused without loss of performance or degradation.
Collapse
Affiliation(s)
- Abhispa Sahu
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Rabia Sheikh
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Jordan C Poler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, United States.
| |
Collapse
|
18
|
Fan T, Qin J, Lin S, Ye W, Liu Q, Fan Z, Wang Y. Enhancing crystallization behavior for optimized performances of poly(TMC‐b‐(LLA‐ran‐GA)) by PDLA/PLLA stereocomplex crystallization. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tiantang Fan
- Department of Materials ScienceFudan University Shanghai China
| | - Jingwen Qin
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano ScienceTongji University School of Medicine Shanghai China
| | - Shengli Lin
- Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan University Shanghai China
| | - Wuyou Ye
- Department of Materials ScienceFudan University Shanghai China
| | - Qing Liu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano ScienceTongji University School of Medicine Shanghai China
- Beijing Advanced Medical Technologies, Ltd. Inc. Beijing China
| | - Zhongyong Fan
- Department of Materials ScienceFudan University Shanghai China
| | - Ye Wang
- School of Pharmaceutical SciencesChangchun University of Chinese Medicine Changchun China
| |
Collapse
|
19
|
Liu Y, Cao H, Ye L, Coates P, Caton-Rose F, Zhao X. Long-Chain Branched Poly(lactic acid)-b-poly(lactide-co-caprolactone): Structure, Viscoelastic Behavior, and Triple-Shape Memory Effect as Smart Bone Fixation Material. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06514] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yalong Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Huijie Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Lin Ye
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Phil Coates
- School of Engineering, Design and Technology, University of Bradford, Bradford BD7 1DP, U.K
| | - Fin Caton-Rose
- School of Engineering, Design and Technology, University of Bradford, Bradford BD7 1DP, U.K
| | - Xiaowen Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Liu Z, Ling F, Diao X, Fu M, Bai H, Zhang Q, Fu Q. Stereocomplex-type polylactide with remarkably enhanced melt-processability and electrical performance via incorporating multifunctional carbon black. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122136] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Fang J, Zhang L, Li C. Largely enhanced transcrystalline formation and properties of polypropylene on the surface of glass fiber as induced by PEI-CNT and PEI-GO modification. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Hao T, Chen Q, Qi Y, Sun P, Chen D, Jiang W, Liu K, Sun H, Li L, Ding J, Li Z. Biomineralized Gd 2 O 3 @HSA Nanoparticles as a Versatile Platform for Dual-Modal Imaging and Chemo-Phototherapy-Synergized Tumor Ablation. Adv Healthc Mater 2019; 8:e1901005. [PMID: 31738019 DOI: 10.1002/adhm.201901005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/27/2019] [Indexed: 12/25/2022]
Abstract
A great challenge still remains to explore the facile approaches to construct multifunctional nanoparticles for acquiring precise cancer theranostics. Herein, a biocompatible theranostic nanoplatform capable of simultaneous cancer imaging and therapy is attempted by loading of paclitaxel (PTX) and indocyanine green (ICG) molecules into the matrix of Gd2 O3 @human serum albumin (HSA) nanoparticles (PIGH NPs) via hydrophobic interaction. The subsequent in vitro investigations reveal that the PIGH NPs afford uniform particle size, sustained drug release profile, strong longitudinal relaxivity, potent photothermal effect, effective singlet oxygen generation, and ideal resistance to photobleaching. Moreover, the PIGH NPs achieve high cellular uptake, efficient cytoplasmic drug translocation based on singlet oxygen-triggered endolysosomal disruption and prominent cytotoxicity effect against 4T1 cells under 808 nm near-infrared (NIR) irradiation in contrast to PTX/ICG-loaded HSA nanoparticles (PIH NPs) and free PTX/ICG. After intravenous injection, the PIGH NPs exhibit preferable tumor accumulation and achieve effective tumor ablation in 4T1 tumor bearing mouse model with excellent dual near-infrared fluorescence/magnetic resonance (NIRF/MR) imaging guided synergistic chemo-phototherapy. Hence, the PIGH NPs can be utilized as potential theranostic nanosystem for simultaneous cancer imaging and therapy.
Collapse
Affiliation(s)
- Tangna Hao
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
- Department of PharmacyThe Second Affiliated Hospital of Dalian Medical University Dalian 116011 Liaoning P. R. China
| | - Qixian Chen
- School of Life Science and BiotechnologyDalian University of Technology Dalian 116024 Liaoning P. R. China
| | - Yan Qi
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
| | - Pengyuan Sun
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
| | - Dawei Chen
- School of PharmacyShenyang Pharmaceutical University Shenyang 110016 Liaoning P. R. China
- School of PharmacyMedical College of Soochow University Suzhou 215123 Jiangsu P. R. China
| | - Weiwei Jiang
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
| | - Kexin Liu
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
| | - Huijun Sun
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
| | - Lei Li
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 Jilin P. R. China
| | - Zhen Li
- School of PharmacyDalian Medical University Dalian 116044 Liaoning P. R. China
| |
Collapse
|
23
|
Ju J, Peng X, Huang K, Li L, Liu X, Chitrakar C, Chang L, Gu Z, Kuang T. High-performance porous PLLA-based scaffolds for bone tissue engineering: Preparation, characterization, and in vitro and in vivo evaluation. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121707] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Hu J, Wang J, Wang M, Ozaki Y, Sato H, Zhang J. Investigation of crystallization behavior of asymmetric PLLA/PDLA blend using Raman Imaging measurement. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|