1
|
Abeysekera I, Bosire R, Masese FK, Ndaya D, Kasi RM. Ionic nanoporous membranes from self-assembled liquid crystalline brush-like imidazolium triblock copolymers. SOFT MATTER 2024; 20:6834-6847. [PMID: 39150444 DOI: 10.1039/d4sm00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
There is a need to generate mechanically and thermally robust ionic nanoporous membranes for separation and fuel cell applications. Herein, we report a general approach to the preparation of ionic nanoporous membranes through custom synthesis, self-assembly, and subsequent chemical manipulations of ionic brush block copolymers. We synthesized polynorbornene-based triblock copolymers containing imidazolium cations balanced by counter anions in the central block, side-chain liquid crystalline units, and sidechain polylactide end blocks. This unique platform comprises: (1) imidazolium/bis(trifluoromethanesulfonyl)imide (TFSI) as the middle block, which has an excellent ion-exchange ability, (2) cyanobiphenyl liquid crystalline end block, a sterically hindered hydrophobic segment, which is chemically stable and immune to hydroxide attack, (3) polylactide brush-like units on the other end block that is easily etched under mild alkaline conditions and (4) a polynorbornene backbone, a lightly crosslinked system that offers mechanical robustness. These membranes retain their morphology before and after backbone crosslinking as well as etching of polylactide sidechains. The ion exchange performance and dimensional stability of these membranes were investigated by water uptake capability and swelling ratio. Moreover, the length of the carbon spacer in the imidazolium/TFSI central block moiety endowed the membrane with improved ionic conductivity. The ionic nanoporous materials are unusual due to their singular thermal, mechanical, alkaline stability and ion transport properties. Applications of these materials include electrochemical actuators, solid-state ionic nanochannel biosensors, and ion-conducting membranes.
Collapse
Affiliation(s)
- Iyomali Abeysekera
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Reuben Bosire
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Francis K Masese
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Dennis Ndaya
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
- Polymer Program, Institute of Material Science, University of Connecticut, Storrs, CT 06269, USA
| | - Rajeswari M Kasi
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
- Polymer Program, Institute of Material Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Preman AN, Lim YE, Lee S, Kim S, Kim IT, Ahn SK. Facile synthesis of polynorbornene-based binder through ROMP for silicon anode in lithium-ion batteries. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-023-1428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Huang J, Zhu X, Wang Y, Min Y, Li X, Zhang R, Qi D, Hua Z, Chen T. Compartmentalization of incompatible catalysts by micelles from bottlebrush copolymers for one-pot cascade catalysis. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Blosch SE, Scannelli SJ, Alaboalirat M, Matson JB. Complex Polymer Architectures Using Ring-Opening Metathesis Polymerization: Synthesis, Applications, and Practical Considerations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sarah E. Blosch
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha J. Scannelli
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mohammed Alaboalirat
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
Gazzotti S, Adolfsson KH, Hakkarainen M, Farina H, Silvani A, Ortenzi MA. DOX mediated synthesis of PLA-co-PS graft copolymers with matrix-driven self-assembly in PLA-based blends. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Le AN, Liang R, Ji X, Fu X, Zhong M. Random copolymerization of macromonomers as a versatile strategy to synthesize mixed‐graft block copolymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- An N. Le
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Ruiqi Liang
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Xiaoyu Ji
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Xiaowei Fu
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
- Department of Chemistry Yale University New Haven Connecticut USA
| |
Collapse
|
7
|
Ji E, Cummins C, Fleury G. Precise Synthesis and Thin Film Self-Assembly of PLLA- b-PS Bottlebrush Block Copolymers. Molecules 2021; 26:1412. [PMID: 33807816 PMCID: PMC7961899 DOI: 10.3390/molecules26051412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
The ability of bottlebrush block copolymers (BBCPs) to self-assemble into ordered large periodic structures could greatly expand the scope of photonic and membrane technologies. In this paper, we describe a two-step synthesis of poly(l-lactide)-b-polystyrene (PLLA-b-PS) BBCPs and their rapid thin-film self-assembly. PLLA chains were grown from exo-5-norbornene-2-methanol via ring-opening polymerization (ROP) of l-lactide to produce norbornene-terminated PLLA. Norbonene-terminated PS was prepared using anionic polymerization followed by a termination reaction with exo-5-norbornene-2-carbonyl chloride. PLLA-b-PS BBCPs were prepared from these two norbornenyl macromonomers by a one-pot sequential ring opening metathesis polymerization (ROMP). PLLA-b-PS BBCPs thin-films exhibited cylindrical and lamellar morphologies depending on the relative block volume fractions, with domain sizes of 46-58 nm and periodicities of 70-102 nm. Additionally, nanoporous templates were produced by the selective etching of PLLA blocks from ordered structures. The findings described in this work provide further insight into the controlled synthesis of BBCPs leading to various possible morphologies for applications requiring large periodicities. Moreover, the rapid thin film patterning strategy demonstrated (>5 min) highlights the advantages of using PLLA-b-PS BBCP materials beyond their linear BCP analogues in terms of both dimensions achievable and reduced processing time.
Collapse
Affiliation(s)
| | | | - Guillaume Fleury
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France; (E.J.); (C.C.)
| |
Collapse
|
8
|
Ding C, Yang Y, Liu L, Wu GG, Yin B, Yang MB. Surfactant-assisted β-NA supramolecular self-assembly in mini injection molding PP composite. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Seo H, Kim M, Yu Y, Chae C, Lee J. Synthesis of bottlebrush block copolymers from bottlebrush polystyrene and bottlebrush random copolymer of
ω
‐end‐norbornyl polymethacrylates and their self‐assembly. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ho‐Bin Seo
- School of Materials Science and Engineering and Grubbs Center for Polymers and CatalysisGwangju Institute of Science and Technology (GIST) Gwangju Republic of Korea
| | - Myung‐Jin Kim
- School of Materials Science and Engineering and Grubbs Center for Polymers and CatalysisGwangju Institute of Science and Technology (GIST) Gwangju Republic of Korea
| | - Yong‐Guen Yu
- School of Materials Science and Engineering and Grubbs Center for Polymers and CatalysisGwangju Institute of Science and Technology (GIST) Gwangju Republic of Korea
| | - Chang‐Geun Chae
- School of Materials Science and Engineering and Grubbs Center for Polymers and CatalysisGwangju Institute of Science and Technology (GIST) Gwangju Republic of Korea
| | - Jae‐Suk Lee
- School of Materials Science and Engineering and Grubbs Center for Polymers and CatalysisGwangju Institute of Science and Technology (GIST) Gwangju Republic of Korea
| |
Collapse
|
10
|
Zhang X, Wu D, Shen J, Wei Y, Wang C. Preparation of bottlebrush polymer-modified magnetic graphene as immobilized metal ion affinity adsorbent for purification of hemoglobin from blood samples. Mikrochim Acta 2020; 187:472. [PMID: 32725323 DOI: 10.1007/s00604-020-04443-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022]
Abstract
An immobilized metal affinity (IMA) adsorbent was prepared by grafting bottlebrush polymer pendant with iminodiacetic acid (IDA) from the surface of polydopamine (PDA)-coated magnetic graphene oxide (magGO), via surface-initiated atom transfer radical polymerization (SI-ATRP). Poly(hydroxyethyl methacrylate) (PHEMA) was grafted firstly from the PDA-coated magGO as the backbone, and then poly(glycidyl methacrylate) was grafted from the PHEMA chains via the second SI-ATRP to afford the bottlebrush polymer-grafted magGO Thereafter, IDA was anchored on the nanocomposites to produce the IMA adsorbent after chelating copper ions. The adsorbent was characterized by various physical and physicochemical methods. Its adsorption properties were evaluated by using histidine-rich proteins (bovine hemoglobin, BHb) and other proteins (lysozyme and cytochrome-C). The results show that its maximum adsorption capacity to BHb was 378.6 mg g-1, and the adsorption equilibrium can be quickly reached within 1 h. The adsorbent has excellent reproducibility and reusability. It has been applied to selectively purify hemoglobin from human whole blood, indicating its potential in practical applications. Graphical abstract.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an District, Xi'an, 710127, China
| | - Dan Wu
- Sunresin New Materials Co., Ltd., Xi'an, 710076, China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an District, Xi'an, 710127, China.
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an District, Xi'an, 710127, China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an District, Xi'an, 710127, China.
| |
Collapse
|