1
|
Ding M, Yang X, Liu Y, Zeng S, Duan G, Huang Y, Liang Z, Zhang P, Ji J, Jiang S. A review of advanced helical fibers: formation mechanism, preparation, properties, and applications. MATERIALS HORIZONS 2024. [PMID: 39221699 DOI: 10.1039/d4mh00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As a unique structural form, helical structures have a wide range of application prospects. In the field of biology, helical structures are essential for the function of biological macromolecules such as proteins, so the study of helical structures can help to deeply understand life phenomena and develop new biotechnology. In materials science, helical structures can give rise to special physical and chemical properties, such as in the case of spiral nanotubes, helical fibers, etc., which are expected to be used in energy, environment, medical and other fields. The helical structure also has unique charm and application value in the fields of aesthetics and architecture. In addition, helical fibers have attracted a lot of attention because of their tendrils' vascular geometry and indispensable structural properties. In this paper, the development of helical fibers is briefly reviewed from the aspects of mechanism, synthesis process and application. Due to their good chemical and physical properties, helical fibers have a good application prospect in many fields. Potential problems and future opportunities for helical fibers are also presented for future studies.
Collapse
Affiliation(s)
- Minmin Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiuling Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Shiyi Zeng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, Zhejiang, China.
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Wang X, Li K, Yuan Y, Zhang N, Zou Z, Wang Y, Yan S, Li X, Zhao P, Li Q. Nonlinear Elasticity of Blood Vessels and Vascular Grafts. ACS Biomater Sci Eng 2024; 10:3631-3654. [PMID: 38815169 DOI: 10.1021/acsbiomaterials.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The transplantation of vascular grafts has emerged as a prevailing approach to address vascular disorders. However, the development of small-diameter vascular grafts is still in progress, as they serve in a more complicated mechanical environment than their counterparts with larger diameters. The biocompatibility and functional characteristics of small-diameter vascular grafts have been well developed; however, mismatch in mechanical properties between the vascular grafts and native arteries has not been accomplished, which might facilitate the long-term patency of small-diameter vascular grafts. From a point of view in mechanics, mimicking the nonlinear elastic mechanical behavior exhibited by natural blood vessels might be the state-of-the-art in designing vascular grafts. This review centers on elucidating the nonlinear elastic behavior of natural blood vessels and vascular grafts. The biological functionality and limitations associated with as-reported vascular grafts are meticulously reviewed and the future trajectory for fabricating biomimetic small-diameter grafts is discussed. This review might provide a different insight from the traditional design and fabrication of artificial vascular grafts.
Collapse
Affiliation(s)
- Xiaofeng Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Yuan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Zhang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zifan Zou
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yun Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shujie Yan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Qian Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Chen Z, Guan M, Bian Y, Yin X. Multifunctional Electrospun Nanofibers for Biosensing and Biomedical Engineering Applications. BIOSENSORS 2023; 14:13. [PMID: 38248390 PMCID: PMC10813457 DOI: 10.3390/bios14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Nanotechnology is experiencing unprecedented developments, leading to the advancement of functional nanomaterials. The properties that stand out include remarkable porosity, high-specific surface area, excellent loading capacity, easy modification, and low cost make electrospun nanofibers. In the biomedical field, especially in biosensors, they exhibit amazing potential. This review introduces the principle of electrospinning, describes several structures and biomaterials of electrospun nanofibers used for biomedicine, and summarizes the applications of this technology in biosensors and other biomedical applications. In addition, the technical challenges and limitations of electrospinning for biomedicine are discussed; however, more research work is needed to elucidate its full potential.
Collapse
Affiliation(s)
- Zhou Chen
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China; (M.G.); (Y.B.); (X.Y.)
| | | | | | | |
Collapse
|
4
|
Lin X, Lin M, Li T, Lu H, Qi H, Chen T, Wu L, Zhang C. Preparation of Self-Curling Melt-Blown Fibers with Crimped Masterbatch (CM) and Its Application for Low-Pressure Air Filtration. Polymers (Basel) 2023; 15:3365. [PMID: 37631422 PMCID: PMC10459721 DOI: 10.3390/polym15163365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Particulate matter (PM) and airborne viruses pose significant threats to both the environment and public health. As the most viable solution to prevent the inhalation of these pollutants, there is an urgent demand for face masks with excellent filtration efficiency and low-pressure drop. In this study, a crimped masterbatch (CM) is added to polypropylene feedstocks to produce curling fibers through melt-blown spinning. These curled fibers exhibit low filtration resistance and effective dust-holding performances when used for air filtration. The effect of adding CM on fiber diameter, pore size, crimp, porosity, roughness, and surface potential was studied. The filtration performance of the materials, including the PM filtration capabilities, recirculation filtration, and loading test performance, were also investigated. The results demonstrate that the degree of fiber crimp can be adjusted by incorporating varying amounts of CM. This curling was caused by the uneven shrinkage that occurred due to variations in thermal contraction between these polymers. The curled fibers created a fluffy structure in the fiber network and modified the distribution of pore sizes within it. Under the same filtration conditions as sodium chloride aerogel, CM-2 (PP:CM 8:2) exhibited similar filtration efficiency (95.54% vs. 94.74%), lower filtration resistance (88.68 Pa vs. 108.88 Pa), higher quality factor (0.035 Pa-1 vs. 0.028 Pa-1) and better dust holding capacity (10.39 g/m2 vs. 9.20 g/m2) compared to CM-0 (PP:CM 10:0). After 30 days of indoor storage, the filtration efficiency of CM-2 remained above 94%. The self-curling melt-blown filtration material developed here could potentially be applied in the field of protective masks.
Collapse
Affiliation(s)
- Xiaofang Lin
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (X.L.); (T.C.); (L.W.)
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (T.L.); (H.L.)
| | - Minggang Lin
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (T.L.); (H.L.)
| | - Tan Li
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (T.L.); (H.L.)
| | - Hao Lu
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (T.L.); (H.L.)
| | - Huan Qi
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (T.L.); (H.L.)
- Key Laboratory of Clothing Materials of Universities in Fujian, Quanzhou Normal University, Quanzhou 362002, China
- College of Textile and Apparel, Quanzhou Normal University, Quanzhou 362002, China
| | - Ting Chen
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (X.L.); (T.C.); (L.W.)
| | - Lili Wu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (X.L.); (T.C.); (L.W.)
| | - Chuyang Zhang
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (T.L.); (H.L.)
- Key Laboratory of Clothing Materials of Universities in Fujian, Quanzhou Normal University, Quanzhou 362002, China
- College of Textile and Apparel, Quanzhou Normal University, Quanzhou 362002, China
| |
Collapse
|
5
|
Qin J, Lu M, Li B, Li X, You G, Tan L, Zhai Y, Huang M, Wu Y. A Rapid Quantitative Analysis of Bicomponent Fibers Based on Cross-Sectional In-Situ Observation. Polymers (Basel) 2023; 15:polym15040842. [PMID: 36850127 PMCID: PMC9964497 DOI: 10.3390/polym15040842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
To accelerate the industrialization of bicomponent fibers, fiber-based flexible devices, and other technical fibers and to protect the property rights of inventors, it is necessary to develop fast, economical, and easy-to-test methods to provide some guidance for formulating relevant testing standards. A quantitative method based on cross-sectional in-situ observation and image processing was developed in this study. First, the cross-sections of the fibers were rapidly prepared by the non-embedding method. Then, transmission and reflection metallographic microscopes were used for in-situ observation and to capture the cross-section images of fibers. This in-situ observation allows for the rapid identification of the type and spatial distribution structure of the bicomponent fiber. Finally, the mass percentage content of each component was calculated rapidly by AI software according to its density, cross-section area, and total test samples of each component. By comparing the ultra-depth of field microscope, differential scanning calorimetry (DSC), and chemical dissolution method, the quantitative analysis was fast, accurate, economical, simple to operate, energy-saving, and environmentally friendly. This method will be widely used in the intelligent qualitative identification and quantitative analysis of bicomponent fibers, fiber-based flexible devices, and blended textiles.
Collapse
Affiliation(s)
- Jieyao Qin
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Mingxi Lu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Bin Li
- College of Innovation and Entrepreneurship, Wuyi University, Jiangmen 529020, China
| | - Xiaorui Li
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Guangming You
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Linjian Tan
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yikui Zhai
- College of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Meilin Huang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
- Correspondence: (M.H.); (Y.W.)
| | - Yingzhu Wu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
- Correspondence: (M.H.); (Y.W.)
| |
Collapse
|
6
|
Li Y, Cui G, Zeng Y. New Method for a SEM-Based Characterization of Helical-Fiber Nonwovens. Polymers (Basel) 2022; 14:polym14163370. [PMID: 36015627 PMCID: PMC9415989 DOI: 10.3390/polym14163370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
The lack of tools particularly designed for the quantification of the fiber morphology in nonwovens, especially the multi-level structured fibers, is the main reason for the limited research studies on the establishment of realistic nonwoven structure. In this study, two polymers, cellulose acetate (CA) and thermoplastic polyurethane (TPU), which have different molecular flexibility, were chosen to produce nonwovens with helical nanofibers. Focusing on the nonwovens with helical fibers, a soft package was developed to characterize fiber morphologies, including fiber orientation, helix diameter, and curvature of helix. The novelty of this study is the proposal of a method for the characterization of nanofibrous nonwovens with special fiber shape (helical fibers) which can be used for curve fibers. The characterization results for the helical-fiber nonwoven sample and the nonwoven sample with straight fibers were compared and analyzed.
Collapse
Affiliation(s)
- Ying Li
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Guixin Cui
- China Textile Academy, Jiangnan Branch, Shaoxing 312071, China
| | - Yongchun Zeng
- College of Textiles, Donghua University, Shanghai 201620, China
- Correspondence: ; Tel.: +86-21-67792690
| |
Collapse
|
7
|
Zhang R, Feng P, Yang C. Research on Preparation of Three-Component Composite Fiber with Complex Cross-Sectional Pattern. Polymers (Basel) 2022; 14:polym14112216. [PMID: 35683889 PMCID: PMC9182954 DOI: 10.3390/polym14112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 01/25/2023] Open
Abstract
In this work, a preparation method of three-component composite fibers with complex cross-sectional patterns was proposed, and the fibers with complex cross-sectional patterns were fabricated using melt spinning. Initially, inspired by the shape of a fishbone, a spinning pack with three-component melt channels was designed for spinning fibers with a "fishbone" cross-sectional pattern. Then, the numerical simulation of the melt flow in the channels of the spinning pack was performed using Polyflow software. The spinning pack structure was optimized by analyzing the flow velocity distribution and shear rate distribution of different components within the spinning pack channels. The results showed that smaller velocity fluctuations contribute to the clarity of the cross-sectional pattern. Thereafter, the spinning experiments were carried out based on the optimized spinning pack. The effect of the flow ratio between the three components on the cross-sectional pattern was discussed, and the three-component composite fibers with a clear "fishbone" cross-sectional pattern were obtained. Finally, in order to further study the effectiveness of the complex cross-sectional pattern fiber preparation proposed in this paper, another spinning pack for fibers with an "H-shaped" cross-sectional pattern was designed according to the aforementioned method, and spinning experiments were carried out. The SEM images of the cross-sections of fibers with "fishbone" and "H-shaped" cross-sectional patterns were obtained, verifying the feasibility of the method proposed in this paper. Moreover, the fibers with complex cross-sectional patterns obtained by this method have a certain anti-counterfeiting effect and can also be blended with other yarns to obtain fabrics with anti-counterfeiting effects.
Collapse
Affiliation(s)
- Ronggen Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China; (R.Z.); (C.Y.)
| | - Pei Feng
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China; (R.Z.); (C.Y.)
- Engineering Research Center of Advanced Textile Machinery, Donghua University, Shanghai 201620, China
- Correspondence:
| | - Chongchang Yang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China; (R.Z.); (C.Y.)
- Engineering Research Center of Advanced Textile Machinery, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
|
9
|
Flexible Phase Change Material Fiber: A Simple Route to Thermal Energy Control Textiles. MATERIALS 2021; 14:ma14020401. [PMID: 33467453 PMCID: PMC7830959 DOI: 10.3390/ma14020401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/03/2022]
Abstract
A flexible hollow polypropylene (PP) fiber was filled with the phase change material (PCM) polyethylene glycol 1000 (PEG1000), using a micro-fluidic filling technology. The fiber’s latent heat storage and release, thermal reversibility, mechanical properties, and phase change behavior as a function of fiber drawing, were characterized. Differential scanning calorimetry (DSC) results showed that both enthalpies of melting and solidification of the PCM encased within the PP fiber were scarcely influenced by the constraint, compared to unconfined PEG1000. The maximum filling ratio of PEG1000 within the tubular PP filament was ~83 wt.%, and the encapsulation efficiencies and heat loss percentages were 96.7% and 7.65% for as-spun fibers and 93.7% and 1.53% for post-drawn fibers, respectively. Weak adherence of PEG on the inner surface of the PP fibers favored bubble formation and aggregating at the core–sheath interface, which led to different crystallization behavior of PEG1000 at the interface and in the PCM matrix. The thermal stability of PEG was unaffected by the PP encasing; only the decomposition temperature, corresponding to 50% weight loss of PEG1000 inside the PP fiber, was a little higher compared to that of pure PEG1000. Cycling heating and cooling tests proved the reversibility of latent heat release and storage properties, and the reliability of the PCM fiber.
Collapse
|