1
|
Luengrojanakul P, Mora P, Bunyanuwat K, Jubsilp C, Rimdusit S. Improvements in Mechanical and Shape-Memory Properties of Bio-Based Composite: Effects of Adding Carbon Fiber and Graphene Nanoparticles. Polymers (Basel) 2023; 15:4513. [PMID: 38231919 PMCID: PMC10708343 DOI: 10.3390/polym15234513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Shape-memory carbon fiber (CF) polymer composites reinforced with graphene nanoplatelets (GnPs) as a filler based on a bio-based V-fa/ECO copolymer were prepared at different graphene GnPs and CF mass fractions using the hand lay-up and hot-pressing methods. The obtained composite specimens were subjected to flexural, dynamic mechanical, and shape-memory analyses. The obtained results revealed that the flexural strength and modulus were improved by the addition of the GnPs and CF due to the improvement in the interfacial adhesion and fiber reinforcement with up to 3 wt.% GnPs and 60 wt.% CF. Additionally, appreciable improvements in the shape-memory performance were achieved with the addition of the GnPs, where values of up to 93% and 96% were recorded for the shape fixity and recovery, respectively. The shape-memory performance was affected by the fiber mass fraction, with the composites retaining the shape-memory effect albeit with a significant drop in performance at higher fiber mass fractions. Lastly, the specimens at 40 wt.% CF and 3 wt.% GnPs were determined to be the optimum compositions for the best performance of the bio-based SMP composite.
Collapse
Affiliation(s)
- Panuwat Luengrojanakul
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (K.B.)
| | - Phattharin Mora
- Department of Chemical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok 26120, Thailand; (P.M.); (C.J.)
| | - Kittipon Bunyanuwat
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (K.B.)
| | - Chanchira Jubsilp
- Department of Chemical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok 26120, Thailand; (P.M.); (C.J.)
| | - Sarawut Rimdusit
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (K.B.)
| |
Collapse
|
2
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
3
|
Zhen M, Wang C, Zhang Y, An H, Xiao J, Wang S, Liu Y. Ring-Opening Oligomerization Mechanism of a Vanillin-Furfurylamine-Based Benzoxazine and a Mono-Azomethine Derivative. Macromol Rapid Commun 2023; 44:e2200895. [PMID: 36594347 DOI: 10.1002/marc.202200895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Exploring the ring-opening polymerization (ROP) mechanism of benzoxazines is a fundamental issue in benzoxazine chemistry. Though some research papers on the topic have been reported, the ROP mechanism of mono-benzoxazines is still elusive. The key point for mechanistic studies is to determine and characterize the structure and formation pathways of the products generated in ROP. In this paper, the ROP of a vanillin-furfurylamine-based benzoxazine and a mono-azomethine derivative is studied with differential scanning calorimetry, fourier transform infrared spectroscopy, nuclear magnetic resonance, and electrospray ionization mass spectrometry, respectively. The results show that the products consist of a range of cationic species, zwitterions, fragments, and series of cyclic and linear oligomers of varying molecular sizes. It is proposed that both mono-benzoxazines undergo thermally activated cationic ring-opening oligomerization via zwitterion intermediates. Upon thermal induction, multi-bond-cleavage takes place to form various zwitterionic intermediates, which react with a monomer, a fragment, or a second zwitterion by several pathways to generate cyclic and linear oligomers.
Collapse
Affiliation(s)
- Menglei Zhen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Chang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Yizhe Zhang
- Hebei Provincial Key Lab of Green Chemical Technology and Efficient Energy Saving, National Local Joint Laboratory of Energy-Saving Process Integration and Resource Utilization in Chemical Industry, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Hualiang An
- Hebei Provincial Key Lab of Green Chemical Technology and Efficient Energy Saving, National Local Joint Laboratory of Energy-Saving Process Integration and Resource Utilization in Chemical Industry, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jinchong Xiao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Shuxiang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Yanfang Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
4
|
K MM, Arumugam H, Krishnasamy B, Muthukaruppan A. Sesamol-based polybenzoxazines for ultra-low- k, high- k and hydrophobic coating applications. NEW J CHEM 2023. [DOI: 10.1039/d3nj00531c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Sesamol-based polybenzoxazines, their dielectric behavior, and superhydrophobic properties for microelectronic insulation applications.
Collapse
Affiliation(s)
- Mohamed Mydeen K
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Neelambur, Coimbatore 641 062, Tamil Nadu, India
| | - Hariharan Arumugam
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Neelambur, Coimbatore 641 062, Tamil Nadu, India
| | - Balaji Krishnasamy
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Neelambur, Coimbatore 641 062, Tamil Nadu, India
| | - Alagar Muthukaruppan
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Neelambur, Coimbatore 641 062, Tamil Nadu, India
| |
Collapse
|
5
|
Ye J, Fan Z, Zhang S, Liu X. Improved curing reactivity, thermal resistance and mechanical properties of furylamine‐based benzoxazine using melamine as an amine source. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jiajia Ye
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu People's Republic of China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials Chengdu China
| | - Zilin Fan
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu People's Republic of China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials Chengdu China
| | - Shuai Zhang
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu People's Republic of China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials Chengdu China
| | - Xiaobo Liu
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu People's Republic of China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials Chengdu China
| |
Collapse
|
6
|
Shibatsuka T, Kawauchi T. Improvement of thermal properties of polybenzoxazines synthesized from an oligonuclear phenolic compound without sacrificing toughness by introducing crosslinkable groups separated by rigid biphenyl linkers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Liu Y, Yuan L, Liang G, Gu A. Developing intrinsic halogen-free and phosphorus-free flame retardant biobased benzoxazine resins with superior thermal stability and high strength. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Developing thermally resistant and strong biobased resin from benzoxazine synthesized using green solvents. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Ultrasonication enhanced photocatalytic solvent-free reversible deactivation radical polymerization up to high conversion with good control. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Kobayashi T, Muraoka M, Goto M, Minami M, Sogawa H, Sanda F. Main-chain type benzoxazine polymers consisting of polypropylene glycol and phenyleneethynylene units: spacer effect on curing behavior and thermomechanical properties. Polym J 2021. [DOI: 10.1038/s41428-021-00568-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
|
12
|
Lochab B, Monisha M, Amarnath N, Sharma P, Mukherjee S, Ishida H. Review on the Accelerated and Low-Temperature Polymerization of Benzoxazine Resins: Addition Polymerizable Sustainable Polymers. Polymers (Basel) 2021; 13:1260. [PMID: 33924552 PMCID: PMC8069336 DOI: 10.3390/polym13081260] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/30/2022] Open
Abstract
Due to their outstanding and versatile properties, polybenzoxazines have quickly occupied a great niche of applications. Developing the ability to polymerize benzoxazine resin at lower temperatures than the current capability is essential in taking advantage of these exceptional properties and remains to be most challenging subject in the field. The current review is classified into several parts to achieve this goal. In this review, fundamentals on the synthesis and evolution of structure, which led to classification of PBz in different generations, are discussed. Classifications of PBzs are defined depending on building block as well as how structure is evolved and property obtained. Progress on the utility of biobased feedstocks from various bio-/waste-mass is also discussed and compared, wherever possible. The second part of review discusses the probable polymerization mechanism proposed for the ring-opening reactions. This is complementary to the third section, where the effect of catalysts/initiators has on triggering polymerization at low temperature is discussed extensively. The role of additional functionalities in influencing the temperature of polymerization is also discussed. There has been a shift in paradigm beyond the lowering of ring-opening polymerization (ROP) temperature and other areas of interest, such as adaptation of molecular functionality with simultaneous improvement of properties.
Collapse
Affiliation(s)
- Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India; (M.M.); (N.A.); (S.M.)
| | - Monisha Monisha
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India; (M.M.); (N.A.); (S.M.)
| | - Nagarjuna Amarnath
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India; (M.M.); (N.A.); (S.M.)
| | - Pratibha Sharma
- Department of Polymer Science and Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India;
| | - Sourav Mukherjee
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India; (M.M.); (N.A.); (S.M.)
| | - Hatsuo Ishida
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 441067202, USA
| |
Collapse
|
13
|
Wang C, Li Z, Lu G, Zhen H, Liu Y, Run M. Synthesis, Dynamic Mechanical Properties, and Shape Memory Effect of Poly(benzoxazine‐ether‐urethane)s. ChemistrySelect 2021. [DOI: 10.1002/slct.202100307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Hebei University Baoding 071002 P. R. China
| | - Zhiyun Li
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Hebei University Baoding 071002 P. R. China
| | - Guosheng Lu
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Hebei University Baoding 071002 P. R. China
| | - Hecheng Zhen
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Hebei University Baoding 071002 P. R. China
| | - Yanfang Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Hebei University Baoding 071002 P. R. China
| | - Mingtao Run
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Hebei University Baoding 071002 P. R. China
| |
Collapse
|
14
|
Sha XL, Yuan L, Liang G, Gu A. Heat-resistant and robust biobased benzoxazine resins developed with a green synthesis strategy. Polym Chem 2021. [DOI: 10.1039/d0py01529f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two high-performance biobased benzoxazine resins from mono-phenols are developed with a green synthesis strategy.
Collapse
Affiliation(s)
- Xin-Long Sha
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Materials Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Li Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Materials Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Guozheng Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Materials Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Aijuan Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Materials Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
15
|
Amornkitbamrung L, Srisaard S, Jubsilp C, Bielawski CW, Um SH, Rimdusit S. Near-infrared light responsive shape memory polymers from bio-based benzoxazine/epoxy copolymers produced without using photothermal filler. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|