1
|
Bleija M, Platnieks O, Macutkevič J, Banys J, Starkova O, Grase L, Gaidukovs S. Poly(Butylene Succinate) Hybrid Multi-Walled Carbon Nanotube/Iron Oxide Nanocomposites: Electromagnetic Shielding and Thermal Properties. Polymers (Basel) 2023; 15:polym15030515. [PMID: 36771816 PMCID: PMC9921677 DOI: 10.3390/polym15030515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
To address the ever-increasing electromagnetic interference (EMI) pollution, a hybrid filler approach for novel composites was chosen, with a focus on EMI absorbance. Carbon nanofiller loading was limited to 0.6 vol.% in order to create a sustainable and affordable solution. Multiwall carbon nanotubes (MWCNT) and iron oxide (Fe3O4) nanoparticles were mixed in nine ratios from 0.1 to 0.6 vol.% and 8.0 to 12.0 vol.%, respectively. With the addition of surfactant, excellent particle dispersion was achieved (examined with SEM micrographs) in a bio-based and biodegradable poly(butylene succinate) (PBS) matrix. Hybrid design synergy was assessed for EMI shielding using dielectric spectroscopy in the microwave region and transmittance in the terahertz range. The shielding effectiveness (20-52 dB) was dominated by very high absorption at 30 GHz, while in the 0.1 to 1.0 THz range, transmittance was reduced by up to 6 orders of magnitude. Frequency-independent AC electrical conductivity (from 10-2 to 107 Hz) was reached upon adding 0.6 vol.% MWCNT and 10 vol.% Fe3O4, with a value of around 3.1 × 10-2 S/m. Electrical and thermal conductivity were mainly affected by the content of MWCNT filler. The thermal conductivity scaled with the filler content and reached the highest value of 0.309 W/(mK) at 25 °C with the loading of 0.6 vol.% MWCNT and 12 vol.% Fe3O4. The surface resistivity showed an incremental decrease with an increase in MWCNT loading and was almost unaffected by an increase in iron oxide loading. Thermal conductivity was almost independent of temperature in the measured range of 25 to 45 °C. The nanocomposites serve as biodegradable alternatives to commodity plastic-based materials and are promising in the field of electromagnetic applications, especially for EMI shielding.
Collapse
Affiliation(s)
- Miks Bleija
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia
| | - Oskars Platnieks
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia
| | - Jan Macutkevič
- Faculty of Physics, Vilnius University, Sauletekio 9, LT-10222 Vilnius, Lithuania
| | - Jūras Banys
- Faculty of Physics, Vilnius University, Sauletekio 9, LT-10222 Vilnius, Lithuania
| | - Olesja Starkova
- Institute for Mechanics of Materials, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
- Correspondence: (O.S.); (S.G.)
| | - Liga Grase
- Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia
| | - Sergejs Gaidukovs
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia
- Correspondence: (O.S.); (S.G.)
| |
Collapse
|
2
|
Zhao XT, Men YF. Thermal Fractionation of Polyolefins: Brief History, New Developments and Future Perspective. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
For semi-crystalline polymer materials, the difference in chain structure often leads to different physical properties; therefore, in-depth analysis of the chain structure is of great significance. With the continuous development of advanced instruments, many research means have emerged to characterize the structure of molecular chains. Among them, fractionation techniques provide effectively structural information on inter- and intra-molecular comonomer distribution, branching degree, and sequence length, etc. This work briefly presents the history of developments of various classical fractionation means such as temperature-rising elution fractionation, stepwise crystallization and successive self-nucleation and annealing, while focusing on the present and future of their applications.
Collapse
|
3
|
Taverna ME, Altorbaq AS, Kumar SK, Olmedo-Martínez JL, Busatto CA, Zubitur M, Mugica A, Nicolau VV, Estenoz DA, Müller AJ. Supernucleation Dominates Lignin/Poly(ethylene oxide) Crystallization Kinetics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María E. Taverna
- INTEC (UNL-CONICET), Güemes 3450, 3000 Santa Fe, Argentina
- UTN Regional San Francisco, Av. de la Universidad 501, 2400 San Francisco, Córdoba, Argentina
| | - Abdullah S. Altorbaq
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Sanat K. Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jorge L. Olmedo-Martínez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain
| | | | - Manuela Zubitur
- Chemical and Environmental Engineering Department, Polytechnic School, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Agurtzane Mugica
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain
| | - Verónica V. Nicolau
- UTN Regional San Francisco, Av. de la Universidad 501, 2400 San Francisco, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, Argentina
| | | | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
4
|
Experimental and Data Fitting Guidelines for the Determination of Polymer Crystallization Kinetics. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2724-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Dörres T, Bartkiewicz M, Herrmann K, Schöttle M, Wagner D, Wang Z, Ikkala O, Retsch M, Fytas G, Breu J. Nanoscale-Structured Hybrid Bragg Stacks with Orientation- and Composition-Dependent Mechanical and Thermal Transport Properties: Implications for Nacre Mimetics and Heat Management Applications. ACS APPLIED NANO MATERIALS 2022; 5:4119-4129. [PMID: 35372797 PMCID: PMC8961742 DOI: 10.1021/acsanm.2c00061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/18/2022] [Indexed: 05/10/2023]
Abstract
Layered nanomaterials fascinate researchers for their mechanical, barrier, optical, and transport properties. Nacre is a biological example thereof, combining excellent mechanical properties by aligned submicron inorganic platelets and nanoscale proteinic interlayers. Mimicking nacre with advanced nanosheets requires ultraconfined organic layers aimed at nacre-like high reinforcement fractions. We describe inorganic/polymer hybrid Bragg stacks with one or two fluorohectorite clay layers alternating with one or two poly(ethylene glycol) layers. As indicated by X-ray diffraction, perfect one-dimensional crystallinity allows for homogeneous single-phase materials with up to a 84% clay volume fraction. Brillouin light spectroscopy allows the exploration of ultimate mechanical moduli without disturbance by flaws, suggesting an unprecedentedly high Young's modulus of 162 GPa along the aligned clays, indicating almost ideal reinforcement under these conditions. Importantly, low heat conductivity is observed across films, κ⊥ = 0.11-0.15 W m-1 K-1, with a high anisotropy of κ∥/κ⊥ = 28-33. The macroscopic mechanical properties show ductile-to-brittle change with an increase in the clay volume fraction from 54% to 70%. Conceptually, this work reveals the ultimate elastic and thermal properties of aligned layered clay nanocomposites in flaw-tolerant conditions.
Collapse
Affiliation(s)
- Theresa Dörres
- Bavarian
Polymer Institute (BPI) and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | | | - Kai Herrmann
- Bavarian
Polymer Institute (BPI) and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | - Marius Schöttle
- Bavarian
Polymer Institute (BPI) and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | - Daniel Wagner
- Bavarian
Polymer Institute (BPI) and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | - Zuyuan Wang
- School of
Mechanical and Electrical Engineering, University
of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Olli Ikkala
- Department
of Applied Physics, Aalto University, P.O. Box 15100, Espoo FI-00076, Finland
| | - Markus Retsch
- Bavarian
Polymer Institute (BPI) and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Josef Breu
- Bavarian
Polymer Institute (BPI) and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| |
Collapse
|
6
|
Altorbaq AS, Krauskopf AA, Wen X, Pérez-Camargo RA, Su Y, Wang D, Müller AJ, Kumar SK. Crystallization Kinetics and Nanoparticle Ordering in Semicrystalline Polymer Nanocomposites. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Röhrl M, Federer LKS, Timmins RL, Rosenfeldt S, Dörres T, Habel C, Breu J. Disorder-Order Transition-Improving the Moisture Sensitivity of Waterborne Nanocomposite Barriers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48101-48109. [PMID: 34585569 DOI: 10.1021/acsami.1c14246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Systematic studies on the influence of crystalline vs disordered nanocomposite structures on barrier properties and water vapor sensitivity are scarce as it is difficult to switch between the two morphologies without changing other critical parameters. By combining water-soluble poly(vinyl alcohol) (PVOH) and ultrahigh aspect ratio synthetic sodium fluorohectorite (Hec) as filler, we were able to fabricate nanocomposites from a single nematic aqueous suspension by slot die coating that, depending on the drying temperature, forms different desired morphologies. Increasing the drying temperature from 20 to 50 °C for the same formulation triggers phase segregation and disordered nanocomposites are obtained, while at room temperature, one-dimensional (1D) crystalline, intercalated hybrid Bragg Stacks form. The onset of swelling of the crystalline morphology is pushed to significantly higher relative humidity (RH). This disorder-order transition renders PVOH/Hec a promising barrier material at RH of up to 65%, which is relevant for food packaging. The oxygen permeability (OP) of the 1D crystalline PVOH/Hec is an order of magnitude lower compared to the OP of the disordered nanocomposite at this elevated RH (OP = 0.007 cm3 μm m-2 day-1 bar-1 cf. OP = 0.047 cm3 μm m-2 day-1 bar-1 at 23 °C and 65% RH).
Collapse
Affiliation(s)
- Maximilian Röhrl
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Lukas K S Federer
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Renee L Timmins
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Sabine Rosenfeldt
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Theresa Dörres
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Christoph Habel
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
8
|
Dangi BB, Dickerson DJ. Design and Performance of an Acoustic Levitator System Coupled with a Tunable Monochromatic Light Source and a Raman Spectrometer for In Situ Reaction Monitoring. ACS OMEGA 2021; 6:10447-10453. [PMID: 34056197 PMCID: PMC8153768 DOI: 10.1021/acsomega.1c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The design and performance of a custom-built reaction chamber combined with an acoustic levitator, a tunable monochromatic light source, and a Raman spectrometer are reported. The pressure-compatible reaction chamber was vacuum-tested and coupled with the acoustic levitator that allows contactless sample handling, free of contingent sample requirements such as charge and refractive index. The calibration and performance of the Raman spectrometer was studied utilizing gated detection and three different gratings that can be interchanged within seconds for a desired resolution and photon collection range. A wide range of 186-5000 cm-1 Raman shift, with a small uncertainty of ±2 cm-1, can be recorded covering a complete vibrational range in chemical reaction monitoring. The gating of the detector allowed operation under the room light and filtration of unwanted sample fluorescence. The in situ reaction perturbation and monitoring of physical and chemical changes of samples by the Raman system were demonstrated by degradation of polystyrene by monochromatic UV light and photobleaching of a potato slice by visible light. This instrument provides a versatile platform for in situ investigation of surface reactions, without external support structures and under controlled pressure and radiation conditions, relevant to various disciplines such as materials science, astrochemistry, and molecular biology.
Collapse
Affiliation(s)
- Beni B. Dangi
- Department of Chemistry, Florida
Agricultural and Mechanical University, Tallahassee, Florida 32307, United States
| | - Daniel J. Dickerson
- Department of Chemistry, Florida
Agricultural and Mechanical University, Tallahassee, Florida 32307, United States
| |
Collapse
|
9
|
Static and Dynamic Behavior of Polymer/Graphite Oxide Nanocomposites before and after Thermal Reduction. Polymers (Basel) 2021; 13:polym13071008. [PMID: 33805915 PMCID: PMC8036730 DOI: 10.3390/polym13071008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Nanocomposites of hyperbranched polymers with graphitic materials are investigated with respect to their structure and thermal properties as well as the dynamics of the polymer probing the effect of the different intercalated or exfoliated structure. Three generations of hyperbranched polyester polyols are mixed with graphite oxide (GO) and the favorable interactions between the polymers and the solid surfaces lead to intercalated structure. The thermal transitions of the confined chains are suppressed, whereas their dynamics show similarities and differences with the dynamics of the neat polymers. The three relaxation processes observed for the neat polymers are observed in the nanohybrids as well, but with different temperature dependencies. Thermal reduction of the graphite oxide in the presence of the polymer to produce reduced graphite oxide (rGO) reveals an increase in the reduction temperature, which is accompanied by decreased thermal stability of the polymer. The de-oxygenation of the graphite oxide leads to the destruction of the intercalated structure and to the dispersion of the rGO layers within the polymeric matrix because of the modification of the interactions between the polymer chains and the surfaces. A significant increase in the conductivity of the resulting nanocomposites, in comparison to both the polymers and the intercalated nanohybrids, indicates the formation of a percolated rGO network.
Collapse
|
10
|
Rolle K, Schilling T, Westermeier F, Das S, Breu J, Fytas G. Large T g Shift in Hybrid Bragg Stacks through Interfacial Slowdown. Macromolecules 2021; 54:2551-2560. [PMID: 33814616 PMCID: PMC8016143 DOI: 10.1021/acs.macromol.0c02818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Indexed: 11/29/2022]
Abstract
Studies of glass transition under confinement frequently employ supported polymer thin films, which are known to exhibit different transition temperature T g close to and far from the interface. Various techniques can selectively probe interfaces, however, often at the expense of sample designs very specific to a single experiment. Here, we show how to translate results on confined thin film T g to a "nacre-mimetic" clay/polymer Bragg stack, where periodicity allows to limit and tune the number of polymer layers to either one or two. Exceptional lattice coherence multiplies signal manifold, allowing for interface studies with both standard T g and broadband dynamic measurements. For the monolayer, we not only observe a dramatic increase in T g (∼ 100 K) but also use X-ray photon correlation spectroscopy (XPCS) to probe platelet dynamics, originating from interfacial slowdown. This is confirmed from the bilayer, which comprises both "bulk-like" and clay/polymer interface contributions, as manifested in two distinct T g processes. Because the platelet dynamics of monolayers and bilayers are similar, while the segmental dynamics of the latter are found to be much faster, we conclude that XPCS is sensitive to the clay/polymer interface. Thus, large T g shifts can be engineered and studied once lattice spacing approaches interfacial layer dimensions.
Collapse
Affiliation(s)
- Konrad Rolle
- Max-Planck-Institute
of Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Theresa Schilling
- Department
of Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, Bayreuth 95440, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen Synchrotron DESY, Notkestr. 85, Hamburg D-22607, Germany
| | - Sudatta Das
- Max-Planck-Institute
of Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Josef Breu
- Department
of Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, Bayreuth 95440, Germany
| | - George Fytas
- Max-Planck-Institute
of Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
11
|
Wen X, Su Y, Li S, Ju W, Wang D. Isothermal Crystallization Kinetics of Poly(ethylene oxide)/Poly(ethylene glycol)- g-silica Nanocomposites. Polymers (Basel) 2021; 13:648. [PMID: 33671619 PMCID: PMC7926868 DOI: 10.3390/polym13040648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, the crystallization kinetics of poly(ethylene oxide) (PEO) matrix included with poly(ethylene glycol) (PEG) grafted silica (PEG-g-SiO2) nanoparticles and bare SiO2 were systematically investigated by differential scanning calorimetry (DSC) and polarized light optical microscopy (PLOM) method. PEG-g-SiO2 can significantly increase the crystallinity and crystallization temperature of PEO matrix under the non-isothermal crystallization process. Pronounced effects of PEG-g-SiO2 on the crystalline morphology and crystallization rate of PEO were further characterized by employing spherulitic morphological observation and isothermal crystallization kinetics analysis. In contrast to the bare SiO2, PEG-g-SiO2 can be well dispersed in PEO matrix at low P/N (P: Molecular weight of matrix chains, N: Molecular weight of grafted chains), which is a key factor to enhance the primary nucleation rate. In particular, we found that the addition of PEG-g-SiO2 slows the spherulitic growth fronts compared to the neat PEO. It is speculated that the interfacial structure of the grafted PEG plays a key role in the formation of nuclei sites, thus ultimately determines the crystallization behavior of PEO PNCs and enhances the overall crystallization rate of the PEO nanocomposites.
Collapse
Affiliation(s)
- Xiangning Wen
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.W.); (S.L.); (W.J.); (D.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlan Su
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.W.); (S.L.); (W.J.); (D.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaofan Li
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.W.); (S.L.); (W.J.); (D.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilong Ju
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.W.); (S.L.); (W.J.); (D.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dujin Wang
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.W.); (S.L.); (W.J.); (D.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Dudko V, Ottermann K, Rosenfeldt S, Papastavrou G, Breu J. Osmotic Delamination: A Forceless Alternative for the Production of Nanosheets Now in Highly Polar and Aprotic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:461-468. [PMID: 33356310 DOI: 10.1021/acs.langmuir.0c03113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Repulsive osmotic delamination is thermodynamically allowed "dissolution" of two-dimensional (2D) materials and therefore represents an attractive alternative to liquid-phase exfoliation to obtain strictly monolayered nanosheets with an appreciable aspect ratio with quantitative yield. However, osmotic delamination was so far restricted to aqueous media, severely limiting the range of accessible 2D materials. Alkali-metal intercalation compounds of MoS2 or graphite are excluded because they cannot tolerate even traces of water. We now succeeded in extending osmotic delamination to polar and aprotic organic solvents. Upon complexation of interlayer cations of synthetic hectorite clay by crown ethers, either 15-crown-5 or 18-crown-6, steric pressure is exerted, which helps in reaching the threshold separation required to trigger osmotic delamination based on translational entropy. This way, complete delamination in water-free solvents like aprotic ethylene and propylene carbonate, N-methylformamide, N-methylacetamide, and glycerol carbonate was achieved.
Collapse
Affiliation(s)
- Volodymyr Dudko
- Department of Inorganic Chemistry I, Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Katharina Ottermann
- Department of Physical Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Sabine Rosenfeldt
- Department of Physical Chemistry I, Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Georg Papastavrou
- Department of Physical Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Josef Breu
- Department of Inorganic Chemistry I, Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|