1
|
Xuan X, Li Y, Xu X, Pan Z, Li Y, Luo Y, Sun L. Three-Dimensional Printable Magnetic Hydrogels with Adjustable Stiffness and Adhesion for Magnetic Actuation and Magnetic Hyperthermia Applications. Gels 2025; 11:67. [PMID: 39852038 PMCID: PMC11764729 DOI: 10.3390/gels11010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Stimuli-responsive hydrogels hold immense promise for biomedical applications, but conventional gelation processes often struggle to achieve the precision and complexity required for advanced functionalities such as soft robotics, targeted drug delivery, and tissue engineering. This study introduces a class of 3D-printable magnetic hydrogels with tunable stiffness, adhesion, and magnetic responsiveness, prepared through a simple and efficient "one-pot" method. This approach enables precise control over the hydrogel's mechanical properties, with an elastic modulus ranging from 43 kPa to 277 kPa, tensile strength from 93 kPa to 421 kPa, and toughness from 243 kJ/m3 to 1400 kJ/m3, achieved by modulating the concentrations of acrylamide (AM) and Fe3O4 nanoparticles. These hydrogels exhibit rapid heating under an alternating magnetic field, reaching 44.4 °C within 600 s at 15 wt%, demonstrating the potential for use in mild magnetic hyperthermia. Furthermore, the integration of Fe3O4 nanoparticles and nanoclay into the AM precursor optimizes the rheological properties and ensures high printability, enabling the fabrication of complex, high-fidelity structures through extrusion-based 3D printing. Compared to existing magnetic hydrogels, our 3D-printable platform uniquely combines adjustable mechanical properties, strong adhesion, and multifunctionality, offering enhanced capabilities for use in magnetic actuation and hyperthermia in biomedical applications. This advancement marks a significant step toward the scalable production of next-generation intelligent hydrogels for precision medicine and bioengineering.
Collapse
Affiliation(s)
- Xueting Xuan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Yi Li
- Nanotechnology Research Institute, College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China; (Y.L.)
| | - Xing Xu
- School of Materials Science and Intelligent Engineering, Nanjing University, Suzhou 215163, China
| | - Zhouyi Pan
- Nanotechnology Research Institute, College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China; (Y.L.)
| | - Yu Li
- Nanotechnology Research Institute, College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China; (Y.L.)
| | - Yonghao Luo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832004, China
| | - Li Sun
- Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
2
|
Lee J, Kim S, Kim JW, Kim J, Choi Y, Park M, Kim DS, Lee H, Kim S, Kim Y, Ha JS. Self-Healing and Antifreezing/Antidrying Conductive Eutectohydrogel-Based Biosignal Monitoring Multisensors with Integrated Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409365. [PMID: 39574407 DOI: 10.1002/smll.202409365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Indexed: 01/23/2025]
Abstract
A novel self-healing and antifreezing/antidrying conductive eutectohydrogel, ideal for wearable multifunctional sensors and supercapacitors, is reported. Conductive eutectohydrogel with self-healing and facilely tunable mechanical performance is obtained by incorporation of trehalose and phytic acid as reversible cross-linkers into a polyacrylamide network, forming the dynamic hydrogen bonding and electrostatic interactions. Furthermore, combined use of deep eutectic solvent with water ensures the air stability as well as the antifreezing/antidrying characteristics. The synthesized eutectohydrogel exhibits a self-healing efficiency of 90.7% after 24 h at room temperature, Young's modulus of 140.9 kPa, and strain at break of 352.8%. With the eutectohydrogel as a versatile platform, self-healing strain and temperature sensors, electrocardiogram electrodes, and supercapacitor are fabricated, recovering the device performance after self-healing from complete bisection and exhibiting stable performance over a wide temperature range from -20 to 50 °C. With a vertically integrated patch device of supercapacitor and strain sensor attached onto skin, various body movements are successfully detected using the energy stored in the supercapacitor, without performance degradation even after self-healing from complete bisection of the full patch device. This work demonstrates high potential application of the synthesized eutectohydrogel to flexible wearable devices featuring durability and longevity.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Somin Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jiyoon Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yeonji Choi
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Mihyeon Park
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong Sik Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hanchan Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seojin Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong Sook Ha
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
3
|
Sun K, Shi X, Xie X, Hou W, Wang X, Peng H, Ma G. Carboxymethyl chitosan doped hydrogel electrolyte with wide temperature domain for high performance flexible supercapacitor. Int J Biol Macromol 2025; 286:138376. [PMID: 39645131 DOI: 10.1016/j.ijbiomac.2024.138376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The flexible energy storage devices are more challenging because they not only need to perform well in terms of electrochemical properties, but also need to exhibit wide temperature domain and good mechanical properties. Herein, we prepare a novel wide temperature flexible polyacrylamide (PAM)/carboxymethyl chitosan (CMCS)/polyethylene glycol (PEG)‑sulfuric acid (H2SO4) hydrogel electrolyte (PAM/CMCS/PEG-H2SO4) by one-step free radical polymerization method using PAM as the polymer matrix, CMCS as blend material and PEG as functional additive. Among them, CMCS contains numerous -OH and -NH2 groups, which can cross-link PAM and PEG to form network and bond with water molecules, making the hydrogel has excellent performance. The optimized PAM/CMCS/PEG-H2SO4 hydrogel has a tensile strain about 800 % and high conductivity in the temperature ranges from -10 to 90 °C. The flexible supercapacitor assembled with commercial AC as electrode, PAM/CMCS/PEG-H2SO4 hydrogel as electrolyte exhibits good cycle life with capacitance retention rate of 83.3 % after 5000 charge/discharge cycles. In addition, the device exhibits excellent electrochemical performance under wide temperature domain and various bending angles.
Collapse
Affiliation(s)
- Kanjun Sun
- College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China.
| | - Xiuting Shi
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xuan Xie
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wenbo Hou
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiangbing Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hui Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Guofu Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Zhan W, Zhang Q, Zhang C, Yang Z, Peng N, Jiang Z, Liu M, Zhang X. Carboxymethylcellulose reinforced, double-network hydrogel-based strain sensor with superior sensing stability for long-term monitoring. Int J Biol Macromol 2023; 241:124536. [PMID: 37085065 DOI: 10.1016/j.ijbiomac.2023.124536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Hydrogel-based strain sensors have garnered significant attention for their potential for human health monitoring. However, its practical application has been hindered by water loss, freezing, and structural impairment during long-term motion monitoring. Here, a strain sensor based on double-network (DN) hydrogel of polyacrylamide (PAAm)/carboxymethylcellulose (CMC) was developed in a ternary solvent system of lithium chloride (LiCl)/ethylene glycol (EG)/H2O through a facile one-pot radical polymerization strategy. The incorporation of EG effectively mitigated the hydration of lithium salts by generating stable ion clusters with Li+ and stronger hydrogen bonds within the polymer matrix. The sensor demonstrated excellent mechanical properties, including a stretchability of 1858 %, toughness of 1.80 MJ/m3, and recoverability of 102 %. Furthermore, the LiCl/EG/H2O ternary system resulted in high conductivity, excellent anti-freezing performance, and superior sensing stability. In addition, the sensor exhibited remarkable sensitivity, enabling the monitoring of human movements ranging from subtle to significant deformations, including throat motion and bending of the elbow, wrist, finger, and lower limb. This study presents a viable approach for constructing hydrogel-based strain sensors with exceptional sensing stability for long-term tracking of human motions.
Collapse
Affiliation(s)
- Wang Zhan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Qi Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Cuiling Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Zihao Yang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 7100049, Shaanxi, PR China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 7100049, Shaanxi, PR China
| | - Ming Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 7100049, Shaanxi, PR China.
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China.
| |
Collapse
|
5
|
Wang D, Chen C, Hu X, Ju F, Ke Y. Enhancing the Properties of Water-Soluble Copolymer Nanocomposites by Controlling the Layer Silicate Load and Exfoliated Nanolayers Adsorbed on Polymer Chains. Polymers (Basel) 2023; 15:polym15061413. [PMID: 36987194 PMCID: PMC10056508 DOI: 10.3390/polym15061413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Novel polymer nanocomposites of methacryloyloxy ethyl dimethyl hexadecyl ammonium bromide-modified montmorillonite (O-MMt) with acrylamide/sodium p-styrene sulfonate/methacryloyloxy ethyl dimethyl hexadecyl ammonium bromide (ASD/O-MMt) were synthesized via in situ polymerization. The molecular structures of the synthesized materials were confirmed using Fourier-transform infrared and 1H-nuclear magnetic resonance spectroscopy. X-ray diffractometry and transmission electron microscopy revealed well-exfoliated and dispersed nanolayers in the polymer matrix, and scanning electron microscopy images revealed that the well-exfoliated nanolayers were strongly adsorbed on the polymer chains. The O-MMt intermediate load was optimized to 1.0%, and the exfoliated nanolayers with strongly adsorbed chains were controlled. The properties of the ASD/O-MMt copolymer nanocomposite, such as its resistance to high temperature, salt, and shear, were significantly enhanced compared with those obtained under other silicate loads. ASD/1.0 wt% O-MMt enhanced oil recovery by 10.5% because the presence of well-exfoliated and dispersed nanolayers improved the comprehensive properties of the nanocomposite. The large surface area, high aspect ratio, abundant active hydroxyl groups, and charge of the exfoliated O-MMt nanolayer also provided high reactivity and facilitated strong adsorption onto the polymer chains, thereby endowing the resulting nanocomposites with outstanding properties. Thus, the as-prepared polymer nanocomposites demonstrate significant potential for oil-recovery applications.
Collapse
|
6
|
Zhang K, Pang Y, Chen C, Wu M, Liu Y, Yu S, Li L, Ji Z, Pang J. Stretchable and conductive cellulose hydrogel electrolytes for flexible and foldable solid-state supercapacitors. Carbohydr Polym 2022; 293:119673. [DOI: 10.1016/j.carbpol.2022.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
|
7
|
Hu Y, Zhang S, Wen Z, Fu H, Hu J, Ye X, Kang L, Li X, Yang X. Oral delivery of curcumin via multi-bioresponsive polyvinyl alcohol and guar gum based double-membrane microgels for ulcerative colitis therapy. Int J Biol Macromol 2022; 221:806-820. [PMID: 36099999 DOI: 10.1016/j.ijbiomac.2022.09.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Anti-inflammatory drugs for ulcerative colitis (UC) treatment should specifically penetrate and accumulate in the colon tissue. Herein, a multi-bioresponsive anti-inflammatory drug (curcumin, CUR)-loaded heterogeneous double-membrane microgels (CUR@microgels) for oral administration was fabricated in this study, in which the inner core was derived from polyvinyl alcohol (PVA) and guar gum (GG) and the outer gel was decoration with alginate and chitosan by polyelectrolyte interactions. The structure and morphology of microgels were characterized. In vitro, the formulation exhibited good bio-responses at different pH conditions and sustained-release properties in simulated colon fluid with a drug-release rate of 84.6 % over 34 h. With the assistance of the outlayer gels, the microgels effectively delayed the premature drug release of CUR in the upper gastrointestinal tract. In vivo studies revealed that CUR@microgels specifically accumulated in the colon tissue for 24 h, which suggest that the interlayer gels were apt to reach colon lesion. As expected, the oral administration of microgels remarkably alleviated the symptoms of UC and protected the colon tissue in DSS-induced UC mice. The above results indicated that these facilely fabricated microgels which exhibited excellent biocompatibility and multi-bioresponsive drug release, had an apparent effect on the treatment of UC, which represents a promising drug delivery strategy for CUR in a clinical application.
Collapse
Affiliation(s)
- Yan Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China.
| | - Shangwen Zhang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Zhijie Wen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Hudie Fu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xuexin Ye
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xiaojun Li
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China.
| |
Collapse
|
8
|
Dannoun EMA, Aziz SB, Abdulwahid RT, Al-Saeedi SI, Nofal MM, Sadiq NM, Hadi JM. Study of MC:DN-Based Biopolymer Blend Electrolytes with Inserted Zn-Metal Complex for Energy Storage Devices with Improved Electrochemical Performance. MEMBRANES 2022; 12:769. [PMID: 36005684 PMCID: PMC9412581 DOI: 10.3390/membranes12080769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Stable and ionic conducting electrolytes are needed to make supercapacitors more feasible, because liquid electrolytes have leakage problems and easily undergo solvent evaporation. Polymer-based electrolytes meet the criteria, yet they lack good efficiency due to limited segmental motion. Since metal complexes have crosslinking centers that can be coordinated with the polymer segments, they are regarded as an adequate method to improve the performance of the polymer-based electrolytes. To prepare plasticized proton conducting polymer composite (PPC), a simple and successful process was used. Using a solution casting process, methylcellulose and dextran were blended and impregnated with ammonium thiocyanate and zinc metal complex. A range of electrochemical techniques were used to analyze the PPC, including transference number measurement (TNM), linear sweep voltammetry (LSV), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The ionic conductivity of the prepared system was found to be 3.59 × 10-3 S/cm using the EIS method. The use of glycerol plasticizer improves the transport characteristics, according to the findings. The carrier species is found to have ionic mobility of 5.77 × 10-5 cm2 V-1 s-1 and diffusion coefficient of 1.48 × 10-6 cm2 s-1 for the carrier density 3.4 × 1020 cm-3. The TNM revealed that anions and cations were the predominant carriers in electrolyte systems, with an ionic transference value of 0.972. The LSV approach demonstrated that, up to 2.05 V, the film was stable, which is sufficient for energy device applications. The prepared PPC was used to create an electrical double-layer capacitor (EDLC) device. The CV plot exhibited the absence of Faradaic peaks in the CV plot, making it practically have a rectangular form. Using the GCD experiment, the EDLC exhibited low equivalence series resistance of only 65 Ω at the first cycle. The average energy density, power density, and specific capacitance values were determined to be 15 Wh/kg, 350 W/kg, and 128 F/g, respectively.
Collapse
Affiliation(s)
- Elham M. A. Dannoun
- Associate Chair of the Department of Mathematics and Science, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
- The Development Center for Research and Training (DCRT), University of Human Development, Kurdistan Region, Sulaymaniyah 46001, Iraq
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani 46001, Iraq
| | - Sameerah I. Al-Saeedi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Muaffaq M. Nofal
- Department of Mathematics and Science, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Niyaz M. Sadiq
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Jihad M. Hadi
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Kurdistan Regional Government, Sulaimani 46001, Iraq
| |
Collapse
|
9
|
Sarmah D, Karak N. Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically strong hydrogel. Carbohydr Polym 2022; 289:119428. [DOI: 10.1016/j.carbpol.2022.119428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023]
|
10
|
Pinzon-Moreno DD, Maurate-Fernandez IR, Flores-Valdeon Y, Neciosup-Puican AA, Carranza-Oropeza MV. Degradation of Hydrogels Based on Potassium and Sodium Polyacrylate by Ionic Interaction and Its Influence on Water. Polymers (Basel) 2022; 14:polym14132656. [PMID: 35808701 PMCID: PMC9269023 DOI: 10.3390/polym14132656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrogels are a very useful type of polymeric material in several economic sectors, acquiring great importance due to their potential applications; however, this type of material, similarly to all polymers, is susceptible to degradation, which must be studied to improve its use. In this sense, the present work shows the degradation phenomena of commercial hydrogels based on potassium and sodium polyacrylate caused by the intrinsic content of different types of potable waters and aqueous solutions. In this way, a methodology for the analysis of this type of phenomenon is presented, facilitating the understanding of this type of degradation phenomenon. In this context, the hydrogels were characterized through swelling and FTIR to verify their performance and their structural changes. Likewise, the waters and wastewaters used for the swelling process were characterized by turbidity, pH, hardness, metals, total dissolved solids, electrical conductivity, DLS, Z-potential, and UV-vis to determine the changes generated in the types of waters caused by polymeric degradation and which are the most relevant variables in the degradation of the studied materials. The results obtained suggest a polymeric degradation reducing the swelling capacity and the useful life of the hydrogel; in addition, significant physicochemical changes such as the emergence of polymeric nanoparticles are observed in some types of analyzed waters.
Collapse
Affiliation(s)
- Diego David Pinzon-Moreno
- Faculty of Chemistry and Chemical Engineering, National University of San Marcos, Lima 15081, Peru; (I.R.M.-F.); (Y.F.-V.); (M.V.C.-O.)
- Correspondence: or
| | - Isabel Rosali Maurate-Fernandez
- Faculty of Chemistry and Chemical Engineering, National University of San Marcos, Lima 15081, Peru; (I.R.M.-F.); (Y.F.-V.); (M.V.C.-O.)
| | - Yury Flores-Valdeon
- Faculty of Chemistry and Chemical Engineering, National University of San Marcos, Lima 15081, Peru; (I.R.M.-F.); (Y.F.-V.); (M.V.C.-O.)
| | | | - María Verónica Carranza-Oropeza
- Faculty of Chemistry and Chemical Engineering, National University of San Marcos, Lima 15081, Peru; (I.R.M.-F.); (Y.F.-V.); (M.V.C.-O.)
| |
Collapse
|
11
|
Yi Y, Wang X, Liu Z, Gao C, Fatehi P, Wang S, Kong F. A green composite hydrogel based on xylan and lignin with adjustable mechanical properties, high swelling, excellent
UV
shielding, and antioxidation properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yanbin Yi
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy Science) Jinan China
| | - Xiaohui Wang
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy Science) Jinan China
| | - Zhongming Liu
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy Science) Jinan China
| | - Chao Gao
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy Science) Jinan China
| | - Pedram Fatehi
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy Science) Jinan China
- Chemical Engineering Department Lakehead University Thunder Bay Ontario Canada
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy Science) Jinan China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy Science) Jinan China
| |
Collapse
|
12
|
Liu S, Zhong Y, Zhang X, Pi M, Wang X, Zhu R, Cui W, Ran R. Highly Deformable, Conductive Double-Network Hydrogel Electrolytes for Durable and Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15641-15652. [PMID: 35317550 DOI: 10.1021/acsami.2c00962] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing flexible energy storage devices with the ability to retain capacitance under extreme deformation is promising but remains challenging. Here, we report the development of a durable supercapacitor with remarkable capacitance retention under mechanical deformation by utilizing a physical double-network (DN) hydrogel as an electrolyte. The first network is hydrophobically associating polyacrylamide cross-linked by nanoparticles, and the second network is Zn2+ cross-linked alginate. Through soaking such a DN hydrogel into a high concentration of ZnSO4 solution, a highly deformable electrolyte with good conductivity is fabricated, which also shows adhesion to diverse surfaces. Directly attaching the hydrogel electrolyte to two pieces of an active carbon cloth facilely produces a flexible supercapacitor with a high specific capacitance and theoretical energy density. Remarkable capacitance retention under tension, compression, and bending is observed for the supercapacitor, which can also maintain above 87% of the initial capacitance after 4000 charge-discharge cycles. This study provides a simple way to fabricate hydrogel electrolytes for deformable yet durable supercapacitors, which is expected to inspire the development of next-generation flexible energy storage devices.
Collapse
Affiliation(s)
- Shengqu Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yuehui Zhong
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Menghan Pi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoyu Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ruijie Zhu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Wei Cui
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rong Ran
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
Wang X, Zhang H, He Q, Xing H, Feng K, Guo F, Wang W. Core-shell alginate beads as green reactor to synthesize grafted composite beads to efficiently boost single/co-adsorption of dyes and Pb(II). Int J Biol Macromol 2022; 206:10-20. [PMID: 35218799 DOI: 10.1016/j.ijbiomac.2022.02.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/29/2022]
Abstract
A series of sodium alginate (SA) grafted polymer composite beads were synthesized by a solution free-radical graft polymerization reaction performed in a surface crosslinked alginate bead reactor. The outer surface of the precursor droplet containing reactants including SA, acrylamide (AM), N,N'-methylene-bis-acrylamide (MBA), ammonium persulfate (APS), sepiolite (SP) and gelatin (GE) was instantly crosslinked with Ca2+ ions to form a capsule-like bead when it was dropped into aqueous solution of calcium chloride, and simultaneously the reactants inside the capsule-like "bead reactor" were polymerized in-situ to form new composite beads with crosslinked network structure, abundant functional groups, single or co-adsorption ability and easily separable advantages. The optimal composite bead shows high adsorption capacity of 390.78, 1425.65 and 533.91 mg/g towards Methylene Blue (MB), Basic Fuchsin (BF) and Pb(II), respectively. After adsorption by the composite bead, 99.71% of MB, 99.99% of BF and 99.97% of Pb(II) were removed from original dye or Pb(II) solutions. Moreover, above 99.22% of BF and 95.33% of Pb(II) was co-removed from their binary mixture (BF concentration, 100 mg/L; Pb(II) concentration, 50 mg/L). This paper provides a simple green way to synthesize efficient and recyclable biopolymer-based adsorbents capable of purifying dyes and heavy metal ions in water.
Collapse
Affiliation(s)
- Xue Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Huan Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Qingdong He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Haifeng Xing
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010010, PR China
| | - Ke Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, PR China.
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
14
|
Design of plasticized proton conducting Chitosan:Dextran based biopolymer blend electrolytes for EDLC application: Structural, impedance and electrochemical studies. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
15
|
Dannoun EMA, Aziz SB, Abdullah SN, Nofal MM, Mahmoud KH, Murad AR, Abdullah RM, Kadir MFZ. Characteristics of Plasticized Lithium Ion Conducting Green Polymer Blend Electrolytes Based on CS: Dextran with High Energy Density and Specific Capacitance. Polymers (Basel) 2021; 13:3613. [PMID: 34771170 PMCID: PMC8587706 DOI: 10.3390/polym13213613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
The solution cast process is used to set up chitosan: dextran-based plasticized solid polymer electrolyte with high specific capacitance (228.62 F/g) at the 1st cycle. Fourier-transform infrared spectroscopy (FTIR) pattern revealed the interaction between polymers and electrolyte components. At ambient temperature, the highest conductive plasticized system (CDLG-3) achieves a maximum conductivity of 4.16 × 10-4 S cm-1. Using both FTIR and electrical impedance spectroscopy (EIS) methods, the mobility, number density, and diffusion coefficient of ions are measured, and they are found to rise as the amount of glycerol increases. Ions are the primary charge carriers, according to transference number measurement (TNM). According to linear sweep voltammetry (LSV), the CDLG-3 system's electrochemical stability window is 2.2 V. In the preparation of electrical double layer capacitor devices, the CDLG-3 system was used. There are no Faradaic peaks on the cyclic voltammetry (CV) curve, which is virtually rectangular. Beyond the 20th cycle, the power density, energy density, and specific capacitance values from the galvanostatic charge-discharge are practically constant at 480 W/Kg, 8 Wh/Kg, and 60 F g-1, for 180 cycles.
Collapse
Affiliation(s)
- Elham M. A. Dannoun
- Associate Director of General Science Department, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq;
- Department of Civil engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Sozan N. Abdullah
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| | - Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Khaled H. Mahmoud
- Department of Physics, College of Khurma University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ary R. Murad
- Department of Pharmaceutical Chemistry, College of Medical and Applied Sciences, Charmo University, Chamchamal, Sulaimani 46023, Iraq;
| | - Ranjdar M. Abdullah
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| | - Mohd. F. Z. Kadir
- Centre for Foundation Studies in Science, Physics Division, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
16
|
Zhai X, Ruan C, Shen J, Zheng C, Zhao X, Pan H, Lu WW. Clay-based nanocomposite hydrogel with attractive mechanical properties and sustained bioactive ion release for bone defect repair. J Mater Chem B 2021; 9:2394-2406. [PMID: 33625433 DOI: 10.1039/d1tb00184a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although clay-based nanocomposite hydrogels have been widely explored, their instability in hot water and saline solution inhibits their applications in biomedical engineering, and the exploration of clay-based nanocomposite hydrogels in bone defect repair is even less. In this work, we developed a stable clay-based nanocomposite hydrogel using 4-acryloylmorpholine as the monomer. After UV light illumination, the obtained poly(4-acryloylmorpholine) clay-based nanocomposite hydrogel (poly(4-acry)-clay nanocomposite hydrogel) exhibits excellent mechanical properties due to the hydrogen bond interactions between the poly(4-acryloylmorpholine) chains and the physical crosslinking effect of the nanoclay. Besides good biocompatibility, the sustainable release of intrinsic Mg2+ and Si4+ from the poly(4-acry)-clay nanocomposite hydrogel endows the system with excellent ability to promote the osteogenic differentiation of primary rat osteoblasts (ROBs) and can promote new bone formation effectively after implantation. We anticipate that these kinds of clay-based nanocomposite hydrogels with sustained release of bioactive ions will open a new avenue for the development of novel biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Xinyun Zhai
- Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jie Shen
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Orthopaedic Research Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chuping Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacological Group, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xiaoli Zhao
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - William Weijia Lu
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. and Department of Orthopaedic and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
17
|
Lima RMAP, Oliveira HP. All‐gel‐state supercapacitors of polypyrrole reinforced with graphene nanoplatelets. J Appl Polym Sci 2021. [DOI: 10.1002/app.51216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Plasticized Polymer Blend Electrolyte Based on Chitosan for Energy Storage Application: Structural, Circuit Modeling, Morphological and Electrochemical Properties. Polymers (Basel) 2021; 13:polym13081233. [PMID: 33920346 PMCID: PMC8069213 DOI: 10.3390/polym13081233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022] Open
Abstract
Chitosan (CS)-dextran (DN) biopolymer electrolytes doped with ammonium iodide (NH4I) and plasticized with glycerol (GL), then dispersed with Zn(II)-metal complex were fabricated for energy device application. The CS:DN:NH4I:Zn(II)-complex was plasticized with various amounts of GL and the impact of used metal complex and GL on the properties of the formed electrolyte were investigated.The electrochemical impedance spectroscopy (EIS) measurements have shown that the highest conductivity for the plasticized system was 3.44 × 10−4 S/cm. From the x-ray diffraction (XRD) measurements, the plasticized electrolyte with minimum degree of crystallinity has shown the maximum conductivity. The effect of (GL) plasticizer on the film morphology was studied using FESEM. It has been confirmed via transference number analysis (TNM) that the transport mechanism in the prepared electrolyte is predominantly ionic in nature with a high transference number of ion (ti)of 0.983. From a linear sweep voltammetry (LSV) study, the electrolyte was found to be electrochemically constant as the voltage sweeps linearly up to 1.25 V. The cyclic voltammetry (CV) curve covered most of the area of the current–potential plot with no redox peaks and the sweep rate was found to be affecting the capacitance. The electric double-layer capacitor (EDLC) has shown a great performance of specific capacitance (108.3 F/g), ESR(47.8 ohm), energy density (12.2 W/kg) and power density (1743.4 W/kg) for complete 100 cycles at a current density of 0.5 mA cm−2.
Collapse
|
19
|
Yu M, Ji X, Ran F. Chemically building interpenetrating polymeric networks of Bi-crosslinked hydrogel macromolecules for membrane supercapacitors. Carbohydr Polym 2021; 255:117346. [DOI: 10.1016/j.carbpol.2020.117346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
|
20
|
Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, Wageh S, Ramesh K, Ramesh S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers (Basel) 2020; 12:E2702. [PMID: 33207715 PMCID: PMC7697203 DOI: 10.3390/polym12112702] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
In the present review, we focused on the fundamental concepts of hydrogels-classification, the polymers involved, synthesis methods, types of hydrogels, properties, and applications of the hydrogel. Hydrogels can be synthesized from natural polymers, synthetic polymers, polymerizable synthetic monomers, and a combination of natural and synthetic polymers. Synthesis of hydrogels involves physical, chemical, and hybrid bonding. The bonding is formed via different routes, such as solution casting, solution mixing, bulk polymerization, free radical mechanism, radiation method, and interpenetrating network formation. The synthesized hydrogels have significant properties, such as mechanical strength, biocompatibility, biodegradability, swellability, and stimuli sensitivity. These properties are substantial for electrochemical and biomedical applications. Furthermore, this review emphasizes flexible and self-healable hydrogels as electrolytes for energy storage and energy conversion applications. Insufficient adhesiveness (less interfacial interaction) between electrodes and electrolytes and mechanical strength pose serious challenges, such as delamination of the supercapacitors, batteries, and solar cells. Owing to smart and aqueous hydrogels, robust mechanical strength, adhesiveness, stretchability, strain sensitivity, and self-healability are the critical factors that can identify the reliability and robustness of the energy storage and conversion devices. These devices are highly efficient and convenient for smart, light-weight, foldable electronics and modern pollution-free transportation in the current decade.
Collapse
Affiliation(s)
- Shahid Bashir
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.); (K.R.)
| | - Maryam Hina
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.); (K.R.)
| | - Javed Iqbal
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - A. H. Rajpar
- Mechanical Engineering Department, Jouf University, Sakaka 42421, Saudi Arabia;
| | - M. A. Mujtaba
- Department of Mechanical Engineering, Center for Energy Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - N. A. Alghamdi
- Department of Physics, Faculty of Science, Albaha University, Alaqiq 65779-77388, Saudi Arabia;
| | - S. Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - K. Ramesh
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.); (K.R.)
| | - S. Ramesh
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.); (K.R.)
| |
Collapse
|