1
|
Zi Y, Zhang C, Zhao J, Cheng Y, Yuan J, Hu J. Research Progress in Structure Evolution and Durability Modulation of Ir- and Ru-Based OER Catalysts under Acidic Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406657. [PMID: 39370563 DOI: 10.1002/smll.202406657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/06/2024] [Indexed: 10/08/2024]
Abstract
Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large-scale commercial development. Under the high current density and harsh acid-base electrolyte conditions of the water electrolysis reaction, the active metals in the catalysts are easily converted into high-valent soluble species to dissolve, leading to poor structural durability of the catalysts. There is an urgent need to overcome the durability challenges under acidic conditions and develop electrocatalysts with both high catalytic activity and high durability. In this review, the latest research results are analyzed in depth from both thermodynamic and kinetic perspectives. First, a comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. Second, the evolution of the structure of catalysts possessing high durability is discussed. Finally, four new strategies for the preparation of stable catalysts, "electron buffer (ECB) strategy", combination strength control, strain control, and surface coating, are summarized. The challenges and prospects are also elaborated for the future synthesis of more effective Ru/Ir-based catalysts and boost their future application.
Collapse
Affiliation(s)
- Yunhai Zi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Chengxu Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Jianqiang Zhao
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Ying Cheng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Jianliang Yuan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- LuXi KuoBo Precious Metals Co. Ltd., Honghe, 661400, P. R. China
| | - Jue Hu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Southwest United Graduate School, Kunming, 650092, P. R. China
| |
Collapse
|
2
|
Jo SY, Kim H, Park H, Ahn CY, Chung DY. Investigating Electrode-Ionomer Interface Phenomena for Electrochemical Energy Applications. Chem Asian J 2024; 19:e202301016. [PMID: 38146665 DOI: 10.1002/asia.202301016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
The endeavor to develop high-performance electrochemical energy applications has underscored the growing importance of comprehending the intricate dynamics within an electrode's structure and their influence on overall performance. This review investigates the complexities of electrode-ionomer interactions, which play a critical role in optimizing electrochemical reactions. Our examination encompasses both microscopic and meso/macro scale functions of ionomers at the electrode-ionomer interface, providing a thorough analysis of how these interactions can either enhance or impede surface reactions. Furthermore, this review explores the broader-scale implications of ionomer distribution within porous electrodes, taking into account factors like ionomer types, electrode ink formulation, and carbon support interactions. We also present and evaluate state-of-the-art techniques for investigating ionomer distribution, including electrochemical methods, imaging, modeling, and analytical techniques. Finally, the performance implications of these phenomena are discussed in the context of energy conversion devices. Through this comprehensive exploration of intricate interactions, this review contributes to the ongoing advancements in the field of energy research, ultimately facilitating the design and development of more efficient and sustainable energy devices.
Collapse
Affiliation(s)
- So Yeong Jo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of, Korea
| | - Hanjoo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of, Korea
| | - Hyein Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of, Korea
| | - Chi-Yeong Ahn
- Alternative Fuels and Power System Research Center, Korea Research Institute of Ships and Ocean Engineering (KRISO), Daejeon, 34103, Republic of, Korea
- Department of Green Mobility, University of Science and Technology (UST), Daejeon, 34113, Republic of, Korea
| | - Dong Young Chung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of, Korea
| |
Collapse
|
3
|
Kim YS. Hydrocarbon Ionomeric Binders for Fuel Cells and Electrolyzers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303914. [PMID: 37814366 DOI: 10.1002/advs.202303914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Indexed: 10/11/2023]
Abstract
Ionomeric binders in catalyst layers, abbreviated as ionomers, play an essential role in the performance of polymer-electrolyte membrane fuel cells and electrolyzers. Due to environmental issues associated with perfluoroalkyl substances, alternative hydrocarbon ionomers have drawn substantial attention over the past few years. This review surveys literature to discuss ionomer requirements for the electrodes of fuel cells and electrolyzers, highlighting design principles of hydrocarbon ionomers to guide the development of advanced hydrocarbon ionomers.
Collapse
Affiliation(s)
- Yu Seung Kim
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
4
|
Senanayake M, Aryal D, Grest GS, Perahia D. Response of ionizable block copolymer assemblies to solvent dielectrics: A molecular dynamics study. J Chem Phys 2023; 159:194904. [PMID: 37982486 DOI: 10.1063/5.0174410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023] Open
Abstract
Ionizable copolymers assembly in solutions is driven by the formation of ionic clusters. Fast clustering of the ionizable blocks often leads to the formation of far-from equilibrium assemblies that ultimately impact the structure of polymer membranes and affect their many applications. Using large-scale atomistic molecular dynamics simulations, we probe the effects of electrostatics on the formation of ionizable copolymer micelles that dominate their solution structure, with the overarching goal of defining the factors that control the assembly of structured ionizable copolymers. A symmetric pentablock ionizable copolymer, with a randomly sulfonated polystyrene center tethered to polyethylene-r-propylene block, terminated by poly(t-butyl styrene), in solvents of varying dielectric constants from 2 to 20, serves as the model system. We find that independent of the solvents, this polymer forms a core-shell micelle with the ionizable segment segregating to the center of the assembly. The specific block conformation, however, strongly depends on the sulfonation levels and the dielectric constant and the polarity of the solvents.
Collapse
Affiliation(s)
- Manjula Senanayake
- Department of Chemistry, Clemson University, Clemson, South Carolina 29631, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Dipak Aryal
- Department of Chemistry, Clemson University, Clemson, South Carolina 29631, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29631, USA
| |
Collapse
|
5
|
Phua YK, Fujigaya T, Kato K. Predicting the anion conductivities and alkaline stabilities of anion conducting membrane polymeric materials: development of explainable machine learning models. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2261833. [PMID: 37854121 PMCID: PMC10580864 DOI: 10.1080/14686996.2023.2261833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Anion exchange membranes (AEMs) are core components in fuel cells and water electrolyzers, which are crucial to realize a sustainable hydrogen society. The low anion conductivity and durability of AEMs have hindered the commercialization of AEM-based devices, and research and development (R&D) to improve AEM materials is often resource-intensive. Although machine learning (ML) is commonly used in many fields to accelerate R&D while reducing resource consumption, it is rarely used in the AEM field. Three problems hinder the adoption of ML models, namely, the low explainability of ML models; complication with expressing both homopolymers and copolymers in unity to train a single ML model; and difficulty in building a single ML model that comprehends various polymer types. This study presents the first ML models that solve all three problems. Our models predicted the anion conductivity for a diverse set of unseen AEM materials with high accuracy (root mean squared error = 0.014 S cm-1), regardless of their state (freshly synthesized or degraded). This enables virtual pre-synthesis screening of novel AEM materials, reducing resource consumption. Moreover, human-comprehensible prediction logic revealed new factors affecting the anion conductivity of AEM materials. Such capability to reveal new important variables for AEM materials design could shift the paradigm of AEM R&D. This proposed method is not limited to AEM materials, instead it presents a technology that is applicable to the diverse set of polymers currently available.
Collapse
Affiliation(s)
- Yin Kan Phua
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
- International Institute for Carbon Neutral Energy Research, Kyushu University, Fukuoka, Japan
- Center for Molecular Systems, Kyushu University, Fukuoka, Japan
| | - Koichiro Kato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
- Center for Molecular Systems, Kyushu University, Fukuoka, Japan
- Research Institute for Information Technology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Mohottalalage SS, Kosgallana C, Senanayake M, Wijesinghe S, Osti NC, Perahia D. Molecular Insight into the Effects of Clustering on the Dynamics of Ionomers in Solutions. ACS Macro Lett 2023; 12:1118-1124. [PMID: 37493602 DOI: 10.1021/acsmacrolett.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Ionizable groups tethered to polymers enable their many current and potential applications. However, these functionalities drive the formation of physical networks through clustering of the ionic groups, resulting in constrained dynamics of the macromolecules. Understanding the molecular origin of this hindrance remains a critical fundamental question, whose solution will directly impact the processing of ionizable polymers from molecules to viable materials. Here, using quasielastic neutron scattering accompanied by molecular dynamics simulations, segmental dynamics of slightly sulfonated polystyrene is studied in solutions as the cohesion of the ionic assemblies is tuned. We find that in cyclohexane the ionic assemblies act as centers of confinement, affecting dynamics both on macroscopic lengths and in the vicinity of the ionic assemblies. Addition of a small amount of ethanol affects the packing of the ionizable groups within the assemblies, which in turn enhances the chain dynamics.
Collapse
Affiliation(s)
- Supun S Mohottalalage
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Chathurika Kosgallana
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Manjula Senanayake
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sidath Wijesinghe
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Department of Chemistry, Appalachian State University, Boone, North Carolina 26808, United States
| | - Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Department of Physics, Clemson University, Clemson, South Carolina 29631, United States
| |
Collapse
|
7
|
Wang Q, Cheng Y, Tao HB, Liu Y, Ma X, Li DS, Yang HB, Liu B. Long-Term Stability Challenges and Opportunities in Acidic Oxygen Evolution Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202216645. [PMID: 36546885 DOI: 10.1002/anie.202216645] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Polymer electrolyte membrane water electrolysis (PEMWE) has been regarded as a promising technology for renewable hydrogen production. However, acidic oxygen evolution reaction (OER) catalysts with long-term stability impose a grand challenge in its large-scale industrialization. In this review, critical factors that may lead to catalyst's instability in couple with potential solutions are comprehensively discussed, including mechanical peeling, substrate corrosion, active-site over-oxidation/dissolution, reconstruction, oxide crystal structure collapse through the lattice oxygen-participated reaction pathway, etc. Last but not least, personal prospects are provided in terms of rigorous stability evaluation criteria, in situ/operando characterizations, economic feasibility and practical electrolyzer consideration, highlighting the ternary relationship of structure evolution, industrial-relevant activity and stability to serve as a roadmap towards the ultimate application of PEMWE.
Collapse
Affiliation(s)
- Qilun Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yaqi Cheng
- School of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Hua Bing Tao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuehu Ma
- Liaoning Key Laboratory of Clean Utilisation of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bin Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.,Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
8
|
Hee Lee J, Hyun Kwon S, Kang H, Hye Lee J, Geol Lee S. Investigation of structural and transport properties of highly oxygen-permeable ionomer in polymer electrolyte membrane fuel cells using molecular dynamics simulations. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Willdorf-Cohen S, Zhegur-Khais A, Ponce-González J, Bsoul-Haj S, Varcoe JR, Diesendruck CE, Dekel DR. Alkaline Stability of Anion-Exchange Membranes. ACS APPLIED ENERGY MATERIALS 2023; 6:1085-1092. [PMID: 36937111 PMCID: PMC10016746 DOI: 10.1021/acsaem.2c03689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Recently, the development of durable anion-exchange membrane fuel cells (AEMFCs) has increased in intensity due to their potential to use low-cost, sustainable components. However, the decomposition of the quaternary ammonium (QA) cationic groups in the anion-exchange membranes (AEMs) during cell operation is still a major challenge. Many different QA types and functionalized polymers have been proposed that achieve high AEM stabilities in strongly alkaline aqueous solutions. We previously developed an ex situ technique to measure AEM alkaline stabilities in an environment that simulates the low-hydration conditions in an operating AEMFC. However, this method required the AEMs to be soluble in DMSO solvent, so decomposition could be monitored using 1H nuclear magnetic resonance (NMR). We now report the extension of this ex situ protocol to spectroscopically measure the alkaline stability of insoluble AEMs. The stability ofradiation-grafted (RG) poly(ethylene-co-tetrafluoroethylene)-(ETFE)-based poly(vinylbenzyltrimethylammonium) (ETFE-TMA) and poly(vinylbenzyltriethylammonium) (ETFE-TEA) AEMs were studied using Raman spectroscopy alongside changes in their true OH- conductivities and ion-exchange capacities (IEC). A crosslinked polymer made from poly(styrene-co-vinylbenzyl chloride) random copolymer and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA) was also studied. The results are consistent with our previous studies based on QA-type model small molecules and soluble poly(2,6-dimethylphenylene oxide) (PPO) polymers. Our work presents a reliable ex situ technique to measure the true alkaline stability of AEMs for fuel cells and water electrolyzers.
Collapse
Affiliation(s)
- Sapir Willdorf-Cohen
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - Avital Zhegur-Khais
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - Julia Ponce-González
- School
of Chemistry and Chemical Engineering, University
of Surrey, GuildfordGU2 7XH, U.K.
| | - Saja Bsoul-Haj
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - John R. Varcoe
- School
of Chemistry and Chemical Engineering, University
of Surrey, GuildfordGU2 7XH, U.K.
| | - Charles E. Diesendruck
- Schulich
Faculty of Chemistry, Technion—Israel
Institute of Technology, Haifa3200003, Israel
- The
Nancy & Stephen Grand Technion Energy Program (GTEP), Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - Dario R. Dekel
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa3200003, Israel
- The
Nancy & Stephen Grand Technion Energy Program (GTEP), Technion—Israel Institute of Technology, Haifa3200003, Israel
| |
Collapse
|
10
|
Development of a new route for cation exchange membrane fabrication by using GO reinforced styrenated oil. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Crothers AR, Kusoglu A, Radke CJ, Weber AZ. Influence of Mesoscale Interactions on Proton, Water, and Electrokinetic Transport in Solvent-Filled Membranes: Theory and Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10362-10374. [PMID: 35969508 DOI: 10.1021/acs.langmuir.2c00706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transport of protons and water through water-filled, phase-separated cation-exchange membranes occurs through a network of interconnected nanoscale hydrophilic aqueous domains. This paper uses numerical simulations and theory to explore the role of the mesoscale network on water, proton, and electrokinetic transport in perfluorinated sulfonic acid (PFSA) membranes, pertinent to electrochemical energy-conversion devices. Concentrated-solution theory describes microscale transport. Network simulations model mesoscale effects and ascertain macroscopic properties. An experimentally consistent 3D Voronoi-network topology characterizes the interconnected channels in the membrane. Measured water, proton, and electrokinetic transport properties from literature validate calculations of macroscopic properties from network simulations and from effective-medium theory. The results demonstrate that the hydrophilic domain size affects the various microscale, domain-level transport modes dissimilarly, resulting in different distributions of microscale coefficients for each mode of transport. As a result, the network mediates the transport of species nonuniformly with dissimilar calculated tortuosities for water, proton, and electrokinetic transport coefficients (i.e., 4.7, 3.0, and 6.1, respectively, at a water content of 8 H2O molecules per polymer charge equivalent). The dominant water-transport pathways across the membrane are different than those taken by the proton cation. Finally, the distribution of transport properties across the network induces local electrokinetic flows that couple water and proton transport; specifically, local electrokinetic transport induces water chemical-potential gradients that decrease macroscopic conductivity by up to a factor of 3. Macroscopic proton, water, and electrokinetic transport coefficients depend on the collective microscale transport properties of all modes of transport and their distribution across the hydrophilic domain network.
Collapse
Affiliation(s)
- Andrew R Crothers
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Ahmet Kusoglu
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Clayton J Radke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Adam Z Weber
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| |
Collapse
|
12
|
Zhao Z, Zhang M, Du W, Xiao Y, Yang Z, Dong D, Zhang X, Fan M. Strong and Flexible High-Performance Anion Exchange Membranes with Long-Distance Interconnected Ion Transport Channels for Alkaline Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38132-38143. [PMID: 35971597 DOI: 10.1021/acsami.2c05872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anion exchange membrane fuel cells (AEMFCs), which operate on a variety of green fuels, can achieve high power without emitting greenhouse gases. However, the lack of high ionic conductivity and long-term durability of anion-exchange membranes (AEMs) as their key components is a major obstacle hindering the commercial application of AEMFCs. Here, a series of homogeneous semi-interpenetrating network (semi-IPN) AEMs formed by cross-linking a copolymer of styrene (St) and 4-vinylbenzyl chloride (VBC) with branched polyethylenimine (BPEI) were designed. The pure carbon copolymer skeleton without sulfone/ether bonds accompanied by the semi-IPN endows the AEMs with excellent chemical stability. Moreover, the cross-linking effect of flexible BPEI chains is supposed to promote the "strong-flexible" mechanical properties, while the presence of multiquaternary ammonium groups can boost the formation of microphase separation, thereby enhancing the ionic conductivity of these AEMs. Consequently, the optimized (S1V1)3Q AEM exhibits an excellent hydroxide conductivity of 106 mS cm-1 at 80 °C, as well as more than 81% residual conductivity after soaking in 1 M NaOH at 60 °C for 720 h. Furthermore, the H2/O2 fuel cell assembled with (S1V1)3Q AEM delivers a peak power density of 150.2 mW cm-2 at 60 °C and 40% relative humidity. All results indicate that the approach of combining a pure carbon backbone polymer with a semi-IPN structure may be a viable strategy for fabricating AEMs that can be used in AEMFCs for long-term applications.
Collapse
Affiliation(s)
- Zhixin Zhao
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Minghua Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Wenhao Du
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yafei Xiao
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhaojie Yang
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Dawei Dong
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xi Zhang
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Minmin Fan
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
13
|
Catalytic Etherification of ortho-Phosphoric Acid for the Synthesis of Polyurethane Ionomer Films. Polymers (Basel) 2022; 14:polym14163295. [PMID: 36015551 PMCID: PMC9414125 DOI: 10.3390/polym14163295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
The etherification reaction of ortho-phosphoric acid (OPA) with polyoxypropylene glycol in the presence of tertiary amines was studied. The reaction conditions promoting the catalytic activity of triethanolamine (TEOA) and triethylamine (TEA) in the low-temperature etherification of OPA were established. The catalytic activity of TEOA and TEA in the etherification reaction of phosphoric acid is explained by the hydrophobic-hydrophilic interactions of TEA with PPG, leading, as a result of collective interactions, to a specific orientation of polyoxypropylene chains around the tertiary amine. When using triethylamine, complete etherification of OPA occurs, accompanied by the formation of branched OPA ethers terminated by hydroxyl groups and even the formation of polyphosphate structures. When triethanolamine is used as a catalyst, incomplete etherification of OPA with polyoxypropylene glycol occurs and as a result, part of the phosphate anions remain unreacted in the composition of the resulting aminoethers of ortho-phosphoric acid (AEPA). In this case, the hydroxyl groups of triethanolamine are completely involved in the OPA etherification reaction, but the catalytic activity of the tertiary amine weakens due to a decrease in its availability in the branched structure of AEPA. The kinetics of the etherification reaction of OPA by polyoxypropylene glycol catalyzed by TEOA and TEA were studied. It was shown that triethanolamine occupies a central position in the AEPA structure. The physico-mechanical and thermomechanical properties of polyurethane ionomer films obtained on the basis of AEPA synthesized in a wide temperature range were studied.
Collapse
|
14
|
Flexible Composite Films Made of EMAA -Na + Ionomer: Evaluation of the Influence of Piezoelectric Particles on the Thermal and Mechanical Properties. Polymers (Basel) 2022; 14:polym14132755. [PMID: 35808800 PMCID: PMC9269541 DOI: 10.3390/polym14132755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/05/2022] Open
Abstract
Studies that aim to produce flexible films of composite materials based on ionomers-PZT, and volume fractions lower than 10% PZT, in order to monitor damage in aeronautical structures are seldom investigated. The growing emphasis on the use of polymers capable of self-healing after damage or activation by heating has motivated the application of self-healing ionomers as polymeric matrices in composites with piezoelectric particles aiming to monitor damage. Flexible composite films were developed based on the self-healing polymer matrix Surlyn® 8940 ionomer (DuPontTM—Wilmington, DE, USA) and PZT particles (connectivity 2–3) in volume fractions of 1, 3, 5 and 7%, with thickness around 50–100 µm. The choice of PZT volume fractions followed the preliminary requirement that establishes a final density, which is lower or at least close to the density of the materials used in aeronautical structures. Since the application of composites based on epoxy resin/carbon fibers has been increasing in the aeronautical segment, this material (with density lower than 1500 kg/m3) was chosen as a reference for the present work. Thus, due to self-healing (a characteristic of the matrix Surlyn® 8940) combined with recyclability, high flexibility and low thickness, the flexible composite films showed advantages to be applied on aeronautical structures, which present complex geometries and low-density materials. The manufactured films were characterized by SEM, XRD, DMA and mechanical tensile tests. The results were discussed mainly in terms of the volume fraction of PZT. X-ray diffraction patterns showed coexistent rhombohedral and tetragonal phases in the PZT particles-dispersed composite, which can potentialize the alignment of ferroelectric domains during polarization under strong electrical field, enhancing dielectric and piezoelectric properties toward sensing applications. DMA and tensile testing results demonstrated that the addition of PZT particles did not impair either dynamic or quasi-static mechanical performance of the flexible composite films. It was concluded that the PZT volume fraction should be lower than 3% because, for higher values, the molecular mobility of the polymer would suffer significant reductions. These findings, combined with the high flexibility and low density of the ceramic particle-filled thermoplastic polymer, render the developed flexible composite film a very promising candidate for strain and damage sensing in aeronautical structures.
Collapse
|
15
|
Zhang P, Shen B, Pu H. Robust, dimensional stable, and self-healable anion exchange membranes via quadruple hydrogen bonds. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Simultaneous improvement of proton conductivity and chemical stability of Nafion membranes via embedment of surface-modified ceria nanoparticles in membrane surface. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119990] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Esmaeilzadeh Z, Karimi M, Mousavi Shoushtari A, Javanbakht M. The effect of polydopamine coated multi‐walled carbon nanotube on the wettability of sulfonated poly(ether ether ketone) nanocomposite as a proton exchange membrane. J Appl Polym Sci 2022. [DOI: 10.1002/app.52142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zahra Esmaeilzadeh
- School of Materials and Advanced Process Engineering, Department of Textile Engineering Amirkabir University of Technology Tehran Iran
| | - Mohammad Karimi
- School of Materials and Advanced Process Engineering, Department of Textile Engineering Amirkabir University of Technology Tehran Iran
| | - Ahmad Mousavi Shoushtari
- School of Materials and Advanced Process Engineering, Department of Textile Engineering Amirkabir University of Technology Tehran Iran
| | - Mehran Javanbakht
- Department of Chemistry Amirkabir University of Technology Tehran Iran
| |
Collapse
|
18
|
Kitto D, Kamcev J. Manning condensation in ion exchange membranes: A review on ion partitioning and diffusion models. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- David Kitto
- Department of Chemical Engineering University of Michigan, North Campus Research Complex B28 Ann Arbor Michigan USA
| | - Jovan Kamcev
- Department of Chemical Engineering University of Michigan, North Campus Research Complex B28 Ann Arbor Michigan USA
- Macromolecular Science and Engineering University of Michigan, North Campus Research Complex B28 Ann Arbor Michigan USA
| |
Collapse
|
19
|
Yang Y, Li P, Zheng X, Sun W, Dou SX, Ma T, Pan H. Anion-exchange membrane water electrolyzers and fuel cells. Chem Soc Rev 2022; 51:9620-9693. [DOI: 10.1039/d2cs00038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The key components, working management, and operating techniques of anion-exchange membrane water electrolyzers and fuel cells are reviewed for the first time.
Collapse
Affiliation(s)
- Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an, 710021, P. R. China
| | - Peng Li
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shi Xue Dou
- Institute of Energy Material Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an, 710021, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
20
|
Pan J, Tao Y, Zhao L, Yu X, Zhao X, Wu T, Liu L. Green preparation of quaternized vinylimidazole-based anion exchange membrane by photopolymerization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Ding H, Liu H, Chu W, Wu C, Xie Y. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chem Rev 2021; 121:13174-13212. [PMID: 34523916 DOI: 10.1021/acs.chemrev.1c00234] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical water splitting for hydrogen generation is a promising pathway for renewable energy conversion and storage. One of the most important issues for efficient water splitting is to develop cost-effective and highly efficient electrocatalysts to drive sluggish oxygen-evolution reaction (OER) at the anode side. Notably, structural transformation such as surface oxidation of metals or metal nonoxide compounds and surface amorphization of some metal oxides during OER have attracted growing attention in recent years. The investigation of structural transformation in OER will contribute to the in-depth understanding of accurate catalytic mechanisms and will finally benefit the rational design of catalytic materials with high activity. In this Review, we provide an overview of heterogeneous materials with obvious structural transformation during OER electrocatalysis. To gain insight into the essence of structural transformation, we summarize the driving forces and critical factors that affect the transformation process. In addition, advanced techniques that are used to probe chemical states and atomic structures of transformed surfaces are also introduced. We then discuss the structure of active species and the relationship between catalytic performance and structural properties of transformed materials. Finally, the challenges and prospects of heterogeneous OER electrocatalysis are presented.
Collapse
Affiliation(s)
- Hui Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongfei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Changzheng Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
22
|
Liang X, Ge X, He Y, Xu M, Shehzad MA, Sheng F, Bance‐Soualhi R, Zhang J, Yu W, Ge Z, Wei C, Song W, Peng J, Varcoe JR, Wu L, Xu T. 3D-Zipped Interface: In Situ Covalent-Locking for High Performance of Anion Exchange Membrane Fuel Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102637. [PMID: 34636177 PMCID: PMC8596103 DOI: 10.1002/advs.202102637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H2 ) and zero emissions of greenhouse gas (CO2 ). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the catalyst layers remains a barrier to achieving MEAs with high power densities and long-term stabilities. Here, a 3D-interfacial zipping concept is presented to overcome this challenge. Vinylbenzyl-terminated bi-cationic quaternary-ammonium-based polyelectrolyte is employed as both the anionomer in the anion-exchange membrane (AEM) and catalyst layers. A quaternary-ammonium-containing covalently locked interface is formed by thermally induced inter-crosslinking of the terminal vinyl groups. Ex situ evaluation of interfacial bonding strength and in situ durability tests demonstrate that this 3D-zipped interface strategy prevents interfacial delamination without any sacrifice of fuel cell performance. A H2 /O2 AEMFC test demonstration shows promisingly high power densities (1.5 W cm-2 at 70 °C with 100% RH and 0.2 MPa backpressure gas feeds), which can retain performances for at least 120 h at a usefully high current density of 0.6 A cm-2 .
Collapse
Affiliation(s)
- Xian Liang
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
- School of Chemistry and Material EngineeringHuainan Normal UniversityHuainanAnhui232001P. R. China
| | - Xiaolin Ge
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Yubin He
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Mai Xu
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
- School of Chemistry and Material EngineeringHuainan Normal UniversityHuainanAnhui232001P. R. China
| | - Muhammad A. Shehzad
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Fangmeng Sheng
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | | | - Jianjun Zhang
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Weisheng Yu
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Zijuan Ge
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Chengpeng Wei
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Wanjie Song
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Jinlan Peng
- The Center for Micro‐ and Nanoscale Research and FabricationUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - John R. Varcoe
- Department of ChemistryUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Liang Wu
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| |
Collapse
|
23
|
Hohenadel A, Gangrade AS, Holdcroft S. Spectroelectrochemical Detection of Water Dissociation in Bipolar Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46125-46133. [PMID: 34542264 DOI: 10.1021/acsami.1c12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The potentials at which water dissociation occurs in bipolar membranes (BPM) and the relationship between water dissociation and current-voltage curve characteristics are explored using a novel spectroelectrochemical approach in which an anion exchange membrane is doped with a pH indicator. Using this method, we visually detect a pH change in the BPM resulting from OH- formed during the water dissociation reaction. The color change is measured with a UV/vis spectrometer, while electrochemical characterization of the BPM is performed simultaneously. Additional measurements were performed on BPMs with varying anion and cation exchange membrane layer thickness. Our measurements provide direct evidence of water dissociation occurring within a BPM at cross-membrane potentials below 0.5 V, within the first limiting current density region. We also show that the effects of changing bulk anion and cation exchange layer thickness is highly dependent on the permselectivity of these layers.
Collapse
Affiliation(s)
- Amelia Hohenadel
- Dept. of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | | | - Steven Holdcroft
- Dept. of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
24
|
Koshy DM, Akhade SA, Shugar A, Abiose K, Shi J, Liang S, Oakdale JS, Weitzner SE, Varley JB, Duoss EB, Baker SE, Hahn C, Bao Z, Jaramillo TF. Chemical Modifications of Ag Catalyst Surfaces with Imidazolium Ionomers Modulate H 2 Evolution Rates during Electrochemical CO 2 Reduction. J Am Chem Soc 2021; 143:14712-14725. [PMID: 34472346 DOI: 10.1021/jacs.1c06212] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bridging polymer design with catalyst surface science is a promising direction for tuning and optimizing electrochemical reactors that could impact long-term goals in energy and sustainability. Particularly, the interaction between inorganic catalyst surfaces and organic-based ionomers provides an avenue to both steer reaction selectivity and promote activity. Here, we studied the role of imidazolium-based ionomers for electrocatalytic CO2 reduction to CO (CO2R) on Ag surfaces and found that they produce no effect on CO2R activity yet strongly promote the competing hydrogen evolution reaction (HER). By examining the dependence of HER and CO2R rates on concentrations of CO2 and HCO3-, we developed a kinetic model that attributes HER promotion to intrinsic promotion of HCO3- reduction by imidazolium ionomers. We also show that varying the ionomer structure by changing substituents on the imidazolium ring modulates the HER promotion. This ionomer-structure dependence was analyzed via Taft steric parameters and density functional theory calculations, which suggest that steric bulk from functionalities on the imidazolium ring reduces access of the ionomer to both HCO3- and the Ag surface, thus limiting the promotional effect. Our results help develop design rules for ionomer-catalyst interactions in CO2R and motivate further work into precisely uncovering the interplay between primary and secondary coordination in determining electrocatalytic behavior.
Collapse
Affiliation(s)
- David M Koshy
- Department of Chemical Engineering, Stanford University, Stanford, California 94305 United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Sneha A Akhade
- Materials Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Adam Shugar
- Department of Chemical Engineering, Stanford University, Stanford, California 94305 United States
| | - Kabir Abiose
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.,Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jingwei Shi
- Department of Chemical Engineering, Stanford University, Stanford, California 94305 United States
| | - Siwei Liang
- Materials Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - James S Oakdale
- Materials Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Stephen E Weitzner
- Materials Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joel B Varley
- Materials Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Eric B Duoss
- Materials Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Sarah E Baker
- Materials Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Christopher Hahn
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.,Materials Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305 United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305 United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
25
|
Jheng LC, Cheng CW, Ho KS, Hsu SLC, Hsu CY, Lin BY, Ho TH. Dimethylimidazolium-Functionalized Polybenzimidazole and Its Organic-Inorganic Hybrid Membranes for Anion Exchange Membrane Fuel Cells. Polymers (Basel) 2021; 13:2864. [PMID: 34502904 PMCID: PMC8456347 DOI: 10.3390/polym13172864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 01/15/2023] Open
Abstract
A quaternized polybenzimidazole (PBI) membrane was synthesized by grafting a dimethylimidazolium end-capped side chain onto PBI. The organic-inorganic hybrid membrane of the quaternized PBI was prepared via a silane-induced crosslinking process with triethoxysilylpropyl dimethylimidazolium chloride. The chemical structure and membrane morphology were characterized using NMR, FTIR, TGA, SEM, EDX, AFM, SAXS, and XPS techniques. Compared with the pristine membrane of dimethylimidazolium-functionalized PBI, its hybrid membrane exhibited a lower swelling ratio, higher mechanical strength, and better oxidative stability. However, the morphology of hydrophilic/hydrophobic phase separation, which facilitates the ion transport along hydrophilic channels, only successfully developed in the pristine membrane. As a result, the hydroxide conductivity of the pristine membrane (5.02 × 10-2 S cm-1 at 80 °C) was measured higher than that of the hybrid membrane (2.22 × 10-2 S cm-1 at 80 °C). The hydroxide conductivity and tensile results suggested that both membranes had good alkaline stability in 2M KOH solution at 80 °C. Furthermore, the maximum power densities of the pristine and hybrid membranes of dimethylimidazolium-functionalized PBI reached 241 mW cm-2 and 152 mW cm-2 at 60 °C, respectively. The fuel cell performance result demonstrates that these two membranes are promising as AEMs for fuel cell applications.
Collapse
Affiliation(s)
- Li-Cheng Jheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| | - Cheng-Wei Cheng
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Ko-Shan Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| | - Steve Lien-Chung Hsu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Chung-Yen Hsu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| | - Bi-Yun Lin
- Instrument Center of National Cheng Kung University, Tainan 70101, Taiwan;
| | - Tsung-Han Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| |
Collapse
|
26
|
Wu J, Wei X, Jiang H, Zhu Y. Synthesis and properties of anion conductive polymers containing dual quaternary ammonium groups without beta-hydrogen via CuAAC click chemistry. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Xue J, Zhang J, Liu X, Huang T, Jiang H, Yin Y, Qin Y, Guiver MD. Toward alkaline-stable anion exchange membranes in fuel cells: cycloaliphatic quaternary ammonium-based anion conductors. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00105-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
New amphiphilic semi-interpenetrating networks based on polysulfone for anion-exchange membrane fuel cells with improved alkaline and mechanical stabilities. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123824] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Wang K, Zhang Z, Li S, Zhang H, Yue N, Pang J, Jiang Z. Side-Chain-Type Anion Exchange Membranes Based on Poly(arylene ether sulfone)s Containing High-Density Quaternary Ammonium Groups. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23547-23557. [PMID: 33979135 DOI: 10.1021/acsami.1c00889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To obtain anion exchange membranes with both high ionic conductivity and good dimensional stability, a series of side-chain-type poly(arylene ether sulfone)s (PAES-QDTPM-x) were designed and synthesized. Quaternary ammonium (QA) groups were densely aggregated and grafted onto the main chain via flexible hydrophobic spacers. Well-defined microphase separation was confirmed by small-angle X-ray scattering. PAES-QDTPM-0.30 exhibited reasonably high conductivity (39.4 mS cm-1 at 20 °C and 76.1 mS cm-1 at 80 °C) and excellent dimensional stability at 80 °C (11.9% in length, 11.2% in thickness) due to the concentration of ion clusters and the side-chain-type structure. All membranes maintained over 82% of the conductivity after alkali treatment for 14 days. In the H2/O2 fuel cell performance test, the maximum power density of PAES-QDTPM-0.30 at 60 °C was 225.8 mW cm-2.
Collapse
Affiliation(s)
- Kaiqi Wang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Zhenpeng Zhang
- Shenyang Rubber Research & Design Institute Company Limited, Shenyang 110021, People's Republic of China
| | - Su Li
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Haibo Zhang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Nailin Yue
- School of Materials Science and Engineering & Electron Microscopy Center, Jilin University, Changchun 130012, People's Republic of China
| | - Jinhui Pang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Zhenhua Jiang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
30
|
|
31
|
Senanayake M, Aryal D, Grest GS, Perahia D. Interfacial Response and Structural Adaptation of Structured Polyelectrolyte Thin Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manjula Senanayake
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dipak Aryal
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Gary S. Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
32
|
Silverstein MS. From “Makromolekel” to POLYMER: A Centennial Celebration of Staudinger's “On Polymerization”. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|