1
|
Meng S, Yao C, Liu G, Chen H, Hu T, Zhang Z, Yang J, Yang W. A 3D-Printed Bionic Membrane with Autonomously Passive Unidirectional Liquid Transfer Capability for Water Condensation, Collection, and Purification. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39479976 DOI: 10.1021/acsami.4c11869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Interfacial solar vapor generation is a promising technology for alleviating the current global water crisis, and the evaporation rate and efficiency have approached the theoretical limit. In a practical interfacial evaporation water purification system, the collection rate of purified water is typically lower than the evaporation rate. Passive collection devices based on gravity are susceptible to environmental influences and exhibit low collection efficiency, while active collection devices consuming external energy suffer from complex device systems and extra energy consumption. Given that both collection devices are nonselective and unable to distinguish contaminants mixed in the vapor, bionic membranes with autonomously passive and unidirectional water transfer capacity are developed through 3D printing for efficient water collection. More importantly, the bionic membranes are capable of high-speed water transportation without the need for external energy or gravity drive and liquid-selective transportation for separating oily pollutants from the collected products. The directional transport property facilitates the modular assembly of the bionic membrane, extending its application to practical large-scale solar-driven seawater desalination systems.
Collapse
Affiliation(s)
- Sen Meng
- Department of Applied Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
- Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, PR China
| | - Cheng Yao
- Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, PR China
| | - Gang Liu
- Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, PR China
| | - Huaifei Chen
- Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, PR China
| | - Taishan Hu
- Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, PR China
| | - Zhicheng Zhang
- Department of Applied Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jie Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| |
Collapse
|
2
|
Hu Y, Fang Z, Yao B, Ye Z, Peng X. Ferrocene Derivatives for Photothermal Applications. CHEMSUSCHEM 2024:e202400829. [PMID: 38884174 DOI: 10.1002/cssc.202400829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Ferrocene (Fc) and Fc derivatives have gained popularity in recent years due to their unique structure and characteristics. Among Fc's diverse performances, photothermal conversion, as a primary source of energy conversion, has sparked substantial study attention. This Review summaries Fc and Fc derivatives with photothermal characteristics, as well as their applications developed recently. First, methods for the synthesis of Fc-based materials are systematically discussed. Then, the photothermal conversion mechanism based on nonradiative relaxation is summarized. Furthermore, the most recent advances in Fc-based materials in photothermal applications are described, including photothermal degradation, photothermal antibacterial, photothermal therapies, photothermal catalysis, solar-driven water production, and photothermal CO2 separation. Finally, a summary and insights on the photothermal application of Fc-based materials are provided. This paper seeks to provide researchers with a better knowledge of photothermal behavior while also highlighting the potential of Fc and its derivatives in photothermal fields.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Zhou Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Bing Yao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Zhizhen Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Xinsheng Peng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| |
Collapse
|
3
|
Yang Y, Guo Z, Liu W. Robust mussel-inspired superhydrophobic sponge with eco-friendly photothermal effect for crude oil/seawater separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132592. [PMID: 37778311 DOI: 10.1016/j.jhazmat.2023.132592] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Frequent oil spills have significant implications for the preservation of ecological balance. However, conventional superhydrophobic materials are limited to organic solvent separation, lacking the ability to undergo thermal conversion. In response to these challenges, photothermal materials have emerged as a promising, environmentally friendly, and cost-effective solution. These materials utilize solar energy as a constant power source to effectively reduce the viscosity of crude oil without the need for additional energy input. This work presents the self-assembly of titanium nitride/polydopamine (TiN/PDA) nanoparticles using hydrolytic methyltrimethoxysilane (MTMS) on the polyurethane (PU) sponge and subsequently dip-coats this sponge with polydimethylsiloxane (PDMS). The TiN nanoparticles act as a photothermal medium, while the PDA coating exhibits a photothermal synergistic effect on TiN nanoparticles. Additionally, the PDA coating demonstrates strong adhesion on the PU sponge through chemical bonding with MTMS, as confirmed by density functional theory (DFT). Furthermore, the superhydrophobic sponges process exceptional mechanical or chemical stability in harsh environments, thanks to the dual protective mechanisms provided by MTMS and PDMS. Particularly important, the excellent photothermal conversion efficiency of this material results in a maximum temperature of 99.4 °C being achieved within 3 min and a stable heating performance of over 99.0 °C across 10 cycles under a standard sunlight intensity. These superhydrophobic sponges can be effectively utilized for continuous vacuum-assisted separation of crude oil/seawater, enabling rapid adsorption and purification in oceanic environments.
Collapse
Affiliation(s)
- Yong Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
4
|
Li M, Zhang R, Zou Z, Zhang L, Ma H. Optimizing physico-chemical properties of hierarchical ZnO/TiO 2 nano-film by the novel heating method for photocatalytic degradation of antibiotics and dye. CHEMOSPHERE 2024; 346:140392. [PMID: 37852380 DOI: 10.1016/j.chemosphere.2023.140392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
The design of semiconductor catalysts with excellent photocatalytic properties, stability, recyclability, and good separation for the treatment of polluted water is still challenging. In this paper, the ZnO/TiO2 nano-thin films were fabricated using the magnetron sputtering technique and then heating the underlying ZnO layer and the upper TiO2 layer for their respective optimal heating time, i. e. heating ZnO for 3 h and heating TiO2 for 2 h. The as-prepared films were characterized. The results show that the preferred growth of TiO2 grains along the [001] axis, relatively large specific surface area, and increased amounts of surface oxygen vacancies (OVs) were induced to the heterojunction catalysts through this optimized heating strategy, which boosts the photocatalytic activity of ZnO/TiO2 nano-film. The degradation experiment inndicates that the ciprofloxacin (CIP) removal efficiency can reach 97.3% in 2 h duration, which was higher than that of the samples annealed for the same periods. Meanwhile, the prepared ZnO/TiO2 photocatalytic film exhibited favorable stability of 95.5% degradation efficiency after the fourth run and general applicability for the photodegradation of various contantains, whih removed 99.5% of ofloxacin (OFX) and 77.6% of tetracycline (TC) in 2 h and 94.1% of Rhodamine B (RhB) in 1 h. This work is expected to yields a novel insight into the production of heterojunction photocatalysts with excellen ability for photocatalytic degradation of pollutants in the practical industry.
Collapse
Affiliation(s)
- Min Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiyang Zhang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
| | - Zhipeng Zou
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
| | - Lan Zhang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China.
| | - Huizhong Ma
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Song D, Zheng D, Li Z, Wang C, Li J, Zhang M. Research Advances in Wood Composites in Applications of Industrial Wastewater Purification and Solar-Driven Seawater Desalination. Polymers (Basel) 2023; 15:4712. [PMID: 38139963 PMCID: PMC10747247 DOI: 10.3390/polym15244712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, the ecosystem has been seriously affected by sewage discharge and oil spill accidents. A series of issues (such as the continuous pollution of the ecological environment and the imminent exhaustion of freshwater resources) are becoming more and more unmanageable, resulting in a crisis of water quality and quantity. Therefore, studies on industrial wastewater purification and solar-driven seawater desalination based on wood composites have been widely considered as an important development direction. This paper comprehensively analyzes and summarizes the applications of wood composites in the fields of solar-driven seawater desalination and polluted water purification. In particular, the present situation of industrial wastewater containing heavy metal ions, microorganisms, aromatic dyes and oil stains and related problems of solar-driven seawater desalination are comprehensively analyzed and summarized. Generally, functional nanomaterials are loaded into the wood cell wall, from which lignin and hemicellulose are selectively removed. Alternatively, functional groups are modified on the basis of the molecular structure of the wood microchannels. Due to its three-dimensional (3D) pore structure and low thermal conductivity, wood is an ideal substrate material for industrial wastewater purification and solar-driven seawater desalination. Based on the study of objective conditions such as the preparation process, modification method and selection of photothermal conversion materials, the performances of the wood composites in filtration, adsorption and seawater desalination are analyzed in detail. In addition, this work points out the problems and possible solutions in applying wood composites to industrial wastewater purification and solar-driven seawater desalination.
Collapse
Affiliation(s)
- Dongsheng Song
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, School of Material Science and Engineering, Beihua University, Jilin 132013, China; (D.S.); (D.Z.); (Z.L.)
| | - Dingqiang Zheng
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, School of Material Science and Engineering, Beihua University, Jilin 132013, China; (D.S.); (D.Z.); (Z.L.)
| | - Zhenghui Li
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, School of Material Science and Engineering, Beihua University, Jilin 132013, China; (D.S.); (D.Z.); (Z.L.)
| | - Chengyu Wang
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, School of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; (C.W.); (J.L.)
| | - Jian Li
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, School of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; (C.W.); (J.L.)
| | - Ming Zhang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, School of Material Science and Engineering, Beihua University, Jilin 132013, China; (D.S.); (D.Z.); (Z.L.)
| |
Collapse
|
6
|
Sun H, Wang B, Xie Y, Li F, Xu T, Yu B. Development of Active Antibacterial CEO/CS@PLA Nonwovens and the Application on Food Preservation. ACS OMEGA 2023; 8:42907-42920. [PMID: 38024704 PMCID: PMC10652727 DOI: 10.1021/acsomega.3c06024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
The biodegradable activity antibacterial materials have been widely applied on food preservation because they not only protect foods from pathogenic attacks but also relieve environmental pollution. Biodegradable melt-blown nonwovens (MB) have several advantages over the other materials in terms of a simpler and more environmentally friendly fabrication process, higher specific surface area, and lower cost. Herein, polylactic acid (PLA) MB is first modified by polydopamine (PDA) to activate the surface. Then, chitosan (CS) and cinnamon essential oil (CEO) are used to decorate the surface of the modified PLA MB via a simple one-pot method to prepare CEO/CS@PLA MB with different CEO contents. Compared with PLA MB, CEO/CS@PLA MB had a rougher surface and larger average fiber diameter, while the average pore diameter and air permeability reduced. The input of CEO led to a decrease in the tensile strength of CEO/CS@PLA MB and an obvious increase in the elongation at break. The combination of CS and CEO shows excellent synergistic antibacterial effect. The antibacterial efficiencies of CEO/CS@PLA MB against Escherichia coli and Staphylococcus aureus enhance with the increase of the CEO content. When the weight ratio of CS to CEO is 1:2, the antibacterial efficiencies of CEO2/CS@PLA MB against E. coli and S. aureus are 99.98 and 99.99%, respectively. When being applied to the preservation of fresh strawberry, CEO2/CS@PLA MB can effectively inhibit the microbial growth in strawberry and reduce decay, which extends the shelf time of strawberry.
Collapse
Affiliation(s)
- Hui Sun
- College
of Textiles Science and Engineering, Zhejiang
Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Bingbing Wang
- College
of Textiles Science and Engineering, Zhejiang
Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Youxiu Xie
- College
of Textiles Science and Engineering, Zhejiang
Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Fengchun Li
- College
of Textiles Science and Engineering, Zhejiang
Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Tao Xu
- College
of Textiles Science and Engineering, Zhejiang
Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Bin Yu
- College
of Textiles Science and Engineering, Zhejiang
Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
7
|
Yang J, Han X, Yang W, Hu J, Zhang C, Liu K, Jiang S. Nanocellulose-based composite aerogels toward the environmental protection: Preparation, modification and applications. ENVIRONMENTAL RESEARCH 2023; 236:116736. [PMID: 37495064 DOI: 10.1016/j.envres.2023.116736] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/19/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Nanocellulose aerogel has the advantages of porosity, low density and high specific surface area, which can effectively realize the adsorption and treatment of wastewater waste gas. The methods of preparing nanocellulose mainly include mechanical, chemical and biological methods. Nanocellulose is formed into nanocellulose aerogel after gelation, solvent replacement and drying processes. Based on the advantages of easy modification of nanocellulose aerogels, nanocellulose aerogels can be functionalized with conductive fillers, reinforcing fillers and other materials to give nanocellulose aerogels in electrical, mechanical and other properties. Through functionalization, the properties of nanocellulose composite aerogel such as hydrophobicity and adsorption are improved, and the aerogel is endowed with the ability of electrical conductivity and electromagnetic shielding. Through functionalization, the applicability and general applicability of nanocellulose composite aerogel in the field of environmental protection are improved. In this paper, the preparation and functional modification methods of nanocellulose aerogels are reviewed, and the application prospects of nanocellulose composite aerogels in common environmental protection fields such as dye adsorption, heavy metal ion adsorption, gas adsorption, electromagnetic shielding, and oil-water separation are specifically reviewed, and new solutions are proposed.
Collapse
Affiliation(s)
- Jingjiang Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International In-novation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International In-novation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Weisen Yang
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| | - Jiapeng Hu
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International In-novation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China; Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| |
Collapse
|
8
|
Ha D, Lee JH, Jeon H, Kang YJ, Jeon J, Lee TH, Hong S, Kim YK, Kang K. Amyloid Fibers Increase Free Radicals of Synthetic Melanin. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38335-38345. [PMID: 37539960 DOI: 10.1021/acsami.3c07909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Functional amyloid fibers are crucial in melanogenesis, but their roles are incompletely understood. In particular, their relationship with intrinsic spin characters of melanin remains unexplored. Here, we show that adding an amyloid scaffold greatly augments the spin density in synthetic melanin. It also brings about concurrent alterations in water dispersibility, bandgaps, and radical scavenging properties of the synthetic melanin, which facilitates its applications in solar water remediation and protection of human keratinocytes from UV irradiation. This work provides implications in the unrevealed role of functional amyloid in melanogenesis and in the origin of the superiority of natural melanin toward its synthetic variants in terms of the spin-related properties.
Collapse
Affiliation(s)
- Daehong Ha
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| | - Joo Hyung Lee
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| | - Hyeri Jeon
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoo Jin Kang
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| | - Junmo Jeon
- Department of Chemistry, Dongguk University, 30 Pildong-ro, Jung-gu, Seoul 04620, Republic of Korea
| | - Tae Hoon Lee
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| | - Seungwoo Hong
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Young-Kwan Kim
- Department of Chemistry, Dongguk University, 30 Pildong-ro, Jung-gu, Seoul 04620, Republic of Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| |
Collapse
|
9
|
Liu W, Yu Y, Cheng W, Wang X, Zhou M, Xu B, Wang P, Wang Q. D-A Structured High-Performance Photothermal/Photodynamic Thionin-Synthetic Melanin Nanoparticles for Rapid Bactericidal and Wound Healing Effects. Adv Healthc Mater 2023; 12:e2203303. [PMID: 37023477 DOI: 10.1002/adhm.202203303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Indexed: 04/08/2023]
Abstract
Synthesized melanin nanoparticles (SMNPs) are used as advanced photothermal materials. However, their internal structures are complex and disordered, and tuning the photothermal performance of nanoparticles is still a hot spot of concern. This article presents thionin (Th)-doped SMNPs, namely Th-SMNPs, which are the first SMNPs formed using the one-pot polymerization of Th with Levodopa. Th can undergo Michael addition and Schiff base reaction between indole dihydroxy/indolequinone and their oligomers to form donor-acceptor pairs in the structure to modulate the photothermal performance of SMNPs. Structural and spectroscopic analyses and density functional theory simulations further confirm the existence of the donor-acceptor structure. Th-SMNPs exhibit excellent total photothermal efficiency (34.49%) in the near-infrared region (808 nm), which is a 60% improvement compared to SMNPs. This allows Th-SMNPs to exhibit excellent photothermal performance at low power 808 nm laser irradiation. Meanwhile, Th not only enhances the photothermal properties of SMNPs, but also imparts photodynamic effects to SMNPs. Th-SMNPs can produce 1 O2 under 660 nm laser irradiation. A dual-function photothermal and photodynamic textile named Th-SMNPs@cotton is constructed based on Th-SMNPs, which can act as a rapid photothermal/photodynamic sterilization and is promising for wound healing treatment of bacterial infections under low-power dual laser irradiation.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Cheng
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xinyue Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
10
|
Wang F, Lee J, Chen L, Zhang G, He S, Han J, Ahn J, Cheong JY, Jiang S, Kim ID. Inspired by Wood: Thick Electrodes for Supercapacitors. ACS NANO 2023; 17:8866-8898. [PMID: 37126761 DOI: 10.1021/acsnano.3c01241] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The emergence and development of thick electrodes provide an efficient way for the high-energy-density supercapacitor design. Wood is a kind of biomass material with porous hierarchical structure, which has the characteristics of a straight channel, uniform pore structure, good mechanical strength, and easy processing. The wood-inspired low-tortuosity and vertically aligned channel architecture are highly suitable for the construction of thick electrochemical supcapacitor electrodes with high energy densities. This review summarizes the design concepts and processing parameters of thick electrode supercapacitors inspired by natural woods, including wood-based pore structural design regulation, electric double layer capacitances (EDLCs)/pseudocapacitance construction, and electrical conductivity optimization. In addition, the optimization strategies for preparing thick electrodes with wood-like structures (e.g., 3D printing, freeze-drying, and aligned-low tortuosity channels) are also discussed in detail. Further, this review presents current challenges and future trends in the design of thick electrodes for supercapacitors with wood-inspired pore structures. As a guideline, the brilliant blueprint optimization will promote sustainable development of wood-inspired structure design for thick electrodes and broaden the application scopes.
Collapse
Affiliation(s)
- Feng Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiyoung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Lian Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Guoying Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jun Young Cheong
- Bavarian Center for Battery Technology (BayBatt) and Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Wang J, Han X, Wu W, Wang X, Ding L, Wang Y, Li S, Hu J, Yang W, Zhang C, Jiang S. Oxidation of cellulose molecules toward delignified oxidated hot-pressed wood with improved mechanical properties. Int J Biol Macromol 2023; 231:123343. [PMID: 36682656 DOI: 10.1016/j.ijbiomac.2023.123343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
Wooden building materials have advantages in terms of biodegradability, non-toxicity, pollution-free and recycling. Currently, applications of natural wood are extremely limited because of low density, low strength and toughness. Therefore, we reported an effective modification strategy with nano-scale cellulose nanofibrils design to prepare a synergistically enhanced cellulosic material. Via three steps: i) the secondary alcohol hydroxyl groups in C2, C3 position were cut; ii) oxidize the hydroxyl group at C2, C3 position to achieve dialdehyde cellulose; and iii) oxidized again to obtain dicarboxylic cellulose. Subsequently, thanks to the regulation of the average moisture content, the moisture content in the wood surface and subsurface increased in a short time. The wood softening layer contributes to the hotpressing treatment of the wood. The mechanical properties and dimensionality have been greatly improved. The obtained delignified oxidated hot-pressed wood with 0.55 mmol/g carboxyl group content demonstrates excellent strength of 328.8 ± 7.43 MPa and Young's modulus of 8.1 ± 0.14 GPa, which is twice than that of natural wood. Delignified oxidated hot-pressed wood also shows exceptional toughness of 8.3 ± 0.28 MJ/m3. Other than that, the shore hardness indicates 0.55 mmol/g carboxylic group, which could increase the hardness at the wood surface hardness to 72.5 ± 4.29°.
Collapse
Affiliation(s)
- Jingwen Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Weijie Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaoyi Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linhu Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuli Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China.
| | - Jiapeng Hu
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Weisen Yang
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan 354300, China.
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
High Value Utilization of Waste Wood toward Porous and Lightweight Carbon Monolith with EMI Shielding, Heat Insulation and Mechanical Properties. Molecules 2023; 28:molecules28062482. [PMID: 36985453 PMCID: PMC10056734 DOI: 10.3390/molecules28062482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
With the increasing pollution of electromagnetic (EM) radiation, it is necessary to develop low-cost, renewable electromagnetic interference (EMI) shielding materials. Herein, wood-derived carbon (WC) materials for EMI shielding are prepared by one-step carbonization of renewable wood. With the increase in carbonization temperature, the conductivity and EMI performance of WC increase gradually. At the same carbonization temperature, the denser WC has better conductivity and higher EMI performance. In addition, due to the layered superimposed conductive channel structure, the WC in the vertical-section shows better EMI shielding performance than that in the cross-section. After excluding the influence of thickness and density, the specific EMI shielding effectiveness (SSE/t) value can be calculated to further optimize tree species. We further discuss the mechanism of the influence of the microstructure of WC on its EMI shielding properties. In addition, the lightweight WC EMI material also has good hydrophobicity and heat insulation properties, as well as good mechanical properties.
Collapse
|
13
|
Yang P, Bai W, Zou Y, Zhang X, Yang Y, Duan G, Wu J, Xu Y, Li Y. A melanin-inspired robust aerogel for multifunctional water remediation. MATERIALS HORIZONS 2023; 10:1020-1029. [PMID: 36692037 DOI: 10.1039/d2mh01474b] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solar-driven vapor generation has emerged as a promising wastewater remediation technology for clean water production. However, the complicated and diversified contaminants in wastewater still restrict its practical applications. Herein, inspired by the melanin in nature, a robust aerogel was facilely fabricated for multifunctional water remediation via a one-pot condensation copolymerization of 5,6-dihydroxyindole and formaldehyde. Benefiting from the superhydrophilicity, underwater superoleophobicity, and synergistic coordination effects, the resulting aerogel not only showed excellent performances in underwater oil resistance and oil-water separation ability, but also removed organic dyes and heavy metal ions contaminants in wastewater simultaneously. Moreover, owing to its admirable light harvesting capacity and porous microstructure for fast water transportation, the aerogel-based evaporator exhibited an excellent evaporation rate of 1.42 kg m-2 h-1 with a 91% evaporation efficiency under 1 sun illumination, which can be reused for long-term water evaporation. Note that such a stable evaporation rate could be maintained even in wastewater containing complex multicomponent contaminants. Outdoor evaporation experiments for lotus pond wastewater under natural sunlight also proved its great potential in practical applications. All those promising features of this all-in-one melanin-inspired aerogel may provide new strategies for the development of robust photothermal devices for multifunctional solar-driven water remediation.
Collapse
Affiliation(s)
- Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuan Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinrong Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
14
|
Mai T, Li DD, Chen L, Ma MG. Collaboration of two-star nanomaterials: The applications of nanocellulose-based metal organic frameworks composites. Carbohydr Polym 2023; 302:120359. [PMID: 36604046 DOI: 10.1016/j.carbpol.2022.120359] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Nanocellulose, as the star nanomaterial in carbohydrate polymers, has excellent mechanical properties, biodegradability, and easy chemical modification. However, further practical applications of nanocellulose are limited by their inadequate functionalization. Metal-organic frameworks (MOFs), as the star nanomaterial in functional polymers, have a large surface area, high porosity, and adjustable structure. The collaboration of nanocellulose and MOFs is a desirable strategy to make composites especially interesting for multifunctional and multi-field applications. What sparks will be produced by the collaboration of two-star nanomaterials? In this review article, we highlight an up-to-date overview of nanocellulose-based MOFs composites. The sewage treatment, gas separation, energy storage, and biomedical applications are mainly summarized. Finally, the challenges and research trends of nanocellulose-based MOFs composites are prospected. We hope this review may provide a valuable reference for the development and applications of carbohydrate polymer composites soon.
Collapse
Affiliation(s)
- Tian Mai
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Dan-Dan Li
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Lei Chen
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Ming-Guo Ma
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
15
|
Wei X, Wu Q, Chen L, Sun Y, Chen L, Zhang C, Li S, Ma C, Jiang S. Remotely Controlled Light/Electric/Magnetic Multiresponsive Hydrogel for Fast Actuations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10030-10043. [PMID: 36779704 DOI: 10.1021/acsami.2c22831] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As a kind of soft smart material, hydrogel actuators have extensive development prospects, but it is still difficult for these actuators to integrate multiresponsiveness, multiple remote actuation, high strength, fast responsiveness, and programmable complex deformation. Herein, we have explored an anisotropic bilayer hydrogel actuator with an Fe3O4/co-poly(isopropylacrylamide-4-benzoylphenyl acrylate) [Fe3O4/P(NIPAM-ABP)] active layer and an isotropic conductive adhesive (ICAs) passive layer based on the layer-by-layer method. Benefiting from the fibrosis and porosity of the Fe3O4/P(NIPAM-ABP) hydrogel, the ICAs-Fe3O4/P(NIPAM-ABP) hydrogel actuator has excellent mechanical strength (tensile strength of 3.1 ± 0.3 MPa) and response speed (temperature (45 °C): bending speed of 2400.3°/s; near-infrared (NIR) light: bending speed of 356.4°/s; electricity (2 V): bending speed of 180°/s; water (10 °C): recovery speed of 30.0°/s). In addition, the good photothermal properties and magnetic conductivity of Fe3O4 nanoparticles provide precise remotely controllable light- and magnetic-actuated properties for the hydrogel actuator. The Ag microsheets with excellent conductivity (1.4 × 104 S/cm) provide remotely controllable electrical-actuated property for the hydrogel actuator. Combined with the responsiveness of P(NIPAM-ABP), the actuator can achieve short-range actuation including temperature-, ethanol-, and salt-responses. More importantly, it can achieve remote actuation including light, electrical, and magnetic responses. Finally, the Fe3O4/P(NIPAM-ABP) fibers can provide excellent anisotropic structures for the actuator to achieve precise deformational programmability. Inspired by some phenomena in nature, several actuating devices with the above characteristics have been successfully developed. This study can provide a general method for multifunctional anisotropic hydrogel actuators and will provide a new strategy for exploring smart materials suitable for complex bioinspired systems.
Collapse
Affiliation(s)
- Xianshuo Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qijun Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lian Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of quality safe evaluation and research of degradable material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
16
|
Rengasamy M, Rajaram K. Waste sawdust-based composite as an interfacial evaporator for efficient solar steam generation. RSC Adv 2023; 13:5173-5184. [PMID: 36777939 PMCID: PMC9909372 DOI: 10.1039/d2ra07654c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Interfacial evaporation is the technology of localizing heat energy at the air-water interface and is used for getting potable water from salty or seawater effectively. In this work, we introduce a novel interfacial evaporator by blending different weight ratios of waste sawdust (1 g, 2 g, 3 g and 4 g) with bisphenol-A epoxy resin (LY556) and triethyltetramine hardener (HY951). The fabricated epoxy hardener sawdust (EHS) composite material was subjected to various characterizations for the possibility of using it in solar steam generation. Consequently, EHS displayed high light absorption, amorphous structure, functional groups, and large number of pores. The main objective of the study was to investigate interfacial solar steam generation with and without interfacial evaporators (EHS-1g, EHS-2g, EHS-3g, and EHS-4g) under indoor conditions. The maximum mass loss of water, evaporation rate and evaporation efficiency were found to be 4.5 g, 1.398 kg m-2 h-1, and 92.99%, respectively, for the EHS-4g evaporator. The salinity of the distilled condensed water was measured and was below the WHO standards. The results are due to (i) the large number of cross-linked porous structures used to permeate water at the evaporative surface by capillary action, (ii) low thermal conductivity of the composite that offers an efficient broad and strong light absorption, and (iii) existence of a larger hydraulic diameter and small tortuosity of pores, which reduces the salt ion penetration distance and dispatch back to bulk water.
Collapse
Affiliation(s)
- Marimuthu Rengasamy
- School of Mechanical Engineering, Vellore Institute of Technology Vellore - 632014 Tamil Nadu India
| | - Kamatchi Rajaram
- School of Mechanical Engineering, Vellore Institute of Technology Vellore - 632014 Tamil Nadu India
| |
Collapse
|
17
|
Zhang X, Yan Y, Li N, Yang P, Yang Y, Duan G, Wang X, Xu Y, Li Y. A robust and 3D-printed solar evaporator based on naturally occurring molecules. Sci Bull (Beijing) 2023; 68:203-213. [PMID: 36681591 DOI: 10.1016/j.scib.2023.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/05/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
The interfacial solar desalination has been considered a promising method to address the worldwide water crisis without sophisticated infrastructures and additional energy consumption. Although various advanced solar evaporators have been developed, their practical applications are still restricted by the unsustainable materials and the difficulty of precise customization for structure to escort high solar-thermal efficiency. To address these issues, we employed two kinds of naturally occurring molecules, tannic acid and iron (III), to construct a low-cost, highly efficient and durable interfacial solar evaporator by three-dimensional (3D) printing. Based on a rational structural design, a robust and 3D-printed evaporator with conical array surface structure was developed, which could promote the light harvesting capacity significantly via the multiple reflections and anti-reflection effects on the surface. By optimizing the height of the conical arrays, the 3D-printed evaporator with tall-cone structure could achieve a high evaporation rate of 1.96 kg m-2 h-1 under one sun illumination, with a photothermal conversion efficiency of 94.4%. Moreover, this evaporator was also proved to possess excellent desalination performance, recycle stability, anti-salt property, underwater oil resistance, as well as adsorption capacity of organic dye contaminants for multipurpose water purification applications. It was believed that this study could provide a new strategy to fabricate low-cost, structural regulated solar evaporators for alleviating the dilemma of global water scarcity using abundant naturally occurring building blocks.
Collapse
Affiliation(s)
- Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ning Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
18
|
Wei Q, Xue S, Wu W, Liu S, Li S, Zhang C, Jiang S. Plasma Meets MOFs: Synthesis, Modifications, and Functionalities. CHEM REC 2023:e202200263. [PMID: 36633461 DOI: 10.1002/tcr.202200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/25/2022] [Indexed: 01/13/2023]
Abstract
As a porous and network materials consisting of metals and organic ligands, metal-organic frameworks (MOFs) have become one of excellent crystalline porous materials and play an important role in the era about materials science. Plasma, as a useful tool for stimulating efficient reactions under many conditions, and the plasma-assisted technology gets more attractions and endows MOFs more properties. Based on its feature, the research about the modifications and functionalities of MOFs have been developing a certain extent. This review contains a description of the methods for plasma-assisted modification and synthesis of MOFs, with specifically focusing on the plasma-assisted potential for modifications and functionalities of MOFs. The different applications of plasma-assisted MOFs were also presented.
Collapse
Affiliation(s)
- Qian Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Sen Xue
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Weijie Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Suli Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu, 610000, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shahua Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
19
|
Han X, Ding L, Tian Z, Song Y, Xiong R, Zhang C, Han J, Jiang S. Potential new material for optical fiber: Preparation and characterization of transparent fiber based on natural cellulosic fiber and epoxy. Int J Biol Macromol 2023; 224:1236-1243. [PMID: 36550788 DOI: 10.1016/j.ijbiomac.2022.10.209] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
Abstract
In order to reduce the dependence on fossil energy products, natural fiber/polymer hybrid composites have been increasingly researched. The high price of the quartz optical fibers and glass optical fibers has greatly inspired researchers to engage in the research on polymer optical fibers. Herein, transparent fibers based on plant fibers were innovatively prepared for the first time by delignification and impregnating epoxy diluted with acetone. The epoxy improved the thermal stability of the fiber without deteriorating its mechanical properties, and also endowed the fiber with the property of transparency. The tensile strength of transparent fibers of three diameters were 34.5, 58.6 and 100.3 MPa, respectively and the corresponding Young's modulus reached 1.1, 1.7 and 2.3 GPa, respectively. In addition, the light-conducting properties of transparent fibers were displayed with a green laser and the fibers displayed good light transmission along the fiber growth direction. Transparent fibers are expected to be used in optical fibers because of their high thermal stability, good mechanical properties and light-conducting properties.
Collapse
Affiliation(s)
- Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linhu Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiwei Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanyuan Song
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
20
|
Lin CY, Michinobu T. Conjugated photothermal materials and structure design for solar steam generation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:454-466. [PMID: 37091288 PMCID: PMC10113523 DOI: 10.3762/bjnano.14.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
With the development of solar steam generation (SSG) for clean water production, conjugated photothermal materials (PTMs) have attracted significant interest because of their advantages over metallic and inorganic PTMs in terms of high light absorption, designable molecular structures, flexible morphology, and solution processability. We review here the recent progress in solar steam generation devices based on conjugated organic materials. Conjugated organic materials are processed into fibers, membranes, and porous structures. Therefore, nanostructure design based on the concept of nanoarchitectonics is crucial to achieve high SSG efficiency. We discuss the considerations for designing SSG absorbers and describe commonly used conjugated organic materials and structural designs.
Collapse
Affiliation(s)
- Chia-Yang Lin
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
21
|
Huang C, Wang X, Yang P, Shi S, Duan G, Liu X, Li Y. Size Regulation of Polydopamine Nanoparticles by Boronic Acid and Lewis Base. Macromol Rapid Commun 2023; 44:e2100916. [PMID: 35080287 DOI: 10.1002/marc.202100916] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/13/2022] [Indexed: 01/11/2023]
Abstract
Size regulation of polydopamine nanoparticles (PDA NPs) is vital to melanin-inspired materials. The general strategy usually focuses on tuning of the reaction parameters which could affect the dopamine (DA) monomer polymerization process, such as pH, temperature, monomer concentration, etc. The reaction between boronic acids and catechols to form boronic esters has been widely applied in many fields, but little attention has been paid in the size regulation of PDA NPs. Here, it is speculated that the fine size regulation of PDA NPs can be directly achieved by using boronic acids and Lewis base molecules. It is found that these issues could indeed significantly affect the stability of the boronic esters formed by boronic acids and DA, which may further inhibit the monomer polymerization kinetics and tune the particle size of the resulting PDA NPs. It is also found that the several intrinsic properties of PDA NPs such as the free radical scavenging ability, UV spectral absorption, photothermal behavior, and structural color all change with the particle size. It is believed that this work can provide new opportunities for fabricating melanin-inspired PDA NPs with well controlled size and properties.
Collapse
Affiliation(s)
- Chuhao Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianheng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shun Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
22
|
Zhou K, Gong K, Wang C, Zhou M, Xiao J. Construction of Ti3C2 MXene based fire resistance nanocoating on flexible polyurethane foam for highly efficient photothermal conversion and solar water desalination. J Colloid Interface Sci 2023; 630:343-354. [DOI: 10.1016/j.jcis.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/11/2022]
|
23
|
Gnanasekaran A, Rajaram K. Flake-like CuO nanostructure coated on flame treated eucalyptus wood evaporator for efficient solar steam generation at outdoor conditions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Setyawan H, Juliananda J, Widiyastuti W. Engineering Materials to Enhance Light-to-Heat Conversion for Efficient Solar Water Purification. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Heru Setyawan
- Department of Chemical Engineering, Faculty of Industrial Technology and System Engineering, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya60111, Indonesia
| | - Juliananda Juliananda
- Department of Chemical Engineering, Faculty of Industrial Technology and System Engineering, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya60111, Indonesia
| | - Widiyastuti Widiyastuti
- Department of Chemical Engineering, Faculty of Industrial Technology and System Engineering, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya60111, Indonesia
| |
Collapse
|
25
|
Han X, Wang J, Wang J, Ding L, Zhang K, Han J, Jiang S. Micro- and nano-fibrils of manau rattan and solvent-exchange-induced high-haze transparent holocellulose nanofibril film. Carbohydr Polym 2022; 298:120075. [DOI: 10.1016/j.carbpol.2022.120075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 01/03/2023]
|
26
|
Molecular engineering of a synergistic photocatalytic and photothermal membrane for highly efficient and durable solar water purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Gao Y, Yu L, Li Y, Wei L, Yin J, Wang F, Wang L, Mao J. Maple Leaf Inspired Conductive Fiber with Hierarchical Wrinkles for Highly Stretchable and Integratable Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49059-49071. [PMID: 36251510 DOI: 10.1021/acsami.2c12746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stretchable and durable conductors are significant to the development of wearable devices, robots, human-machine interfaces, and other artificial intelligence products. However, the desirable strain-insensitive conductivity and low hysteresis are restricted by the failure of stretchable structures and mismatch of mechanical properties (rigid conductive layer and elastic core substrate) under large deformation. Here, based on the principles of fractal geometry, a stretchable conductive fiber with hierarchical wrinkles inspired by the unique shape of the maple leaf was fabricated by combining surface modification, interfacial polymerization, and improved prestrain finishing methods to break through this dilemma. The shape and size of wrinkles predicted by buckling analysis via the finite element method fit well with that of actual wrinkles (30-80 μm of macro wrinkles and 4-6 μm of micro wrinkles) on the fabricated fiber. Such hierarchically wrinkled conductive fiber (HWCF) exhibited not only excellent strain-insensitive conductivity denoted by the relative resistance change ΔR/R0 = 0.66 with R0 the original resistance and ΔR the change of resistance after the concrete strain reaching up to 600%, but also low hysteresis (0.04) calculated by the difference in area between stretching and releasing curve of the ΔR/R0 strain under 300% strain and long-term durability (>1000 stretching-releasing cycles). Furthermore, the elastic conductive fiber with such a bionic structure design can be applied as highly stretchable electrical circuits for illumination and monitors for the human motion under large strains through tiny and rapid resistance changes as well. Such a smart biomimetic material holds great prospects in the field of stretchable electronics.
Collapse
Affiliation(s)
- Yaya Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai201620, China
| | - Lingyao Yu
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin541004, China
| | - Yimeng Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai201620, China
| | - Leqian Wei
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai201620, China
| | - Jun Yin
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin541004, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai201620, China
| |
Collapse
|
28
|
Dong C, Hu Y, Zhu Y, Wang J, Jia X, Chen J, Li J. Fabrication of Textile Waste Fibers Aerogels with Excellent Oil/Organic Solvent Adsorption and Thermal Properties. Gels 2022; 8:gels8100684. [PMID: 36286185 PMCID: PMC9601950 DOI: 10.3390/gels8100684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/04/2022] Open
Abstract
In recent years, the treatment of textile waste has attracted more and more attention around the world. The reuse of textile waste can contribute to the reduction of carbon emissions and the sustainable development of the economy. Herein, we proposed a facile and cost-effective approach to fabricating aerogel by using textile waste fibers as the matrix and polyvinyl alcohol (PVA) and glutaraldehyde (GA) as crosslinking agents. After being modified with methyltrimethoxysilane (MTMS) via chemical vapor deposition, both the interior and exterior of the textile waste aerogels exhibit a hydrophobic property with a water contact angle of up to 136.9° ± 2.3°. A comprehensive investigation of the structure, thermal properties, mechanical properties and oil absorption capacity of this aerogel shows its potential for building insulation and oil spill cleanup. The textile waste fibers aerogels have low density and high porosity, good thermal stability and outstanding heat insulation properties (Kavg. = 0.049–0.061 W/m·K). With a maximum oil absorption value of 26.9 ± 0.6 g/g and rapid and effective oil/water mixture separation, the aerogel exhibits competitive commercial application value.
Collapse
Affiliation(s)
- Chunlei Dong
- Research Centre for Non-Metallic Materials, Chizhou University, Chizhou 247000, China
| | - Yangzhao Hu
- Research Centre for Non-Metallic Materials, Chizhou University, Chizhou 247000, China
| | - Yuxuan Zhu
- Research Centre for Non-Metallic Materials, Chizhou University, Chizhou 247000, China
| | - Jiale Wang
- Research Centre for Non-Metallic Materials, Chizhou University, Chizhou 247000, China
| | - Xuerui Jia
- Research Centre for Non-Metallic Materials, Chizhou University, Chizhou 247000, China
| | - Jianbing Chen
- Research Centre for Non-Metallic Materials, Chizhou University, Chizhou 247000, China
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3200, Australia
- Correspondence: (J.C.); (J.L.)
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3200, Australia
- Correspondence: (J.C.); (J.L.)
| |
Collapse
|
29
|
Xu Y, Hu J, Zhang X, Yuan D, Duan G, Li Y. Robust and multifunctional natural polyphenolic composites for water remediation. MATERIALS HORIZONS 2022; 9:2496-2517. [PMID: 35920729 DOI: 10.1039/d2mh00768a] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The scarcity of clean water has become a global environmental problem which constrains the development of public health, economy, and sustainability. In recent years, natural polyphenols have drawn increasing interests as promising platforms towards diverse water remediation composites and devices, owing to their abundant and renewable resource in nature, highly active surface chemistry, and multifunctionality. This review aims to summarize the most recent advances and highlights of natural polyphenol-based composite materials (e.g., nanofibers, membranes, particles, and hydrogels) for water remediation, by focusing on their structural and functional features, as well as their diversified applications including membrane filtration, solar distillation, adsorption, advanced oxidation processes, and disinfection. Finally, the future challenges in this field are also prospected. It is anticipated that this review will provide new opportunities towards the future development of natural polyphenols and other kinds of naturally occurring molecules in water purification applications.
Collapse
Affiliation(s)
- Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Junfei Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Gaigai Duan
- Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
30
|
Mehrkhah R, Mohammadi M, Zenhari A, Baghayeri M, Roknabadi MR. Antibacterial Evaporator Based on Wood-Reduced Graphene Oxide/Titanium Oxide Nanocomposite for Long-Term and Highly Efficient Solar-Driven Wastewater Treatment. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roya Mehrkhah
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Mojtaba Mohammadi
- Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Alireza Zenhari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Mahmood Rezaee Roknabadi
- Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| |
Collapse
|
31
|
Bai Z, Xu H, Yang B, Yao J, Li G, Guo K, Wang N, Liang N. Fe 3O 4/Diatomite-Decorated Cotton Evaporator for Continuous Solar Steam Generation and Water Treatment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6110. [PMID: 36079491 PMCID: PMC9457907 DOI: 10.3390/ma15176110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Improving the evaporation rate of solar steam generation (SSG) has always been a research hotspot to solve the shortage of water resources. Using cotton, Fe3O4, polyvinyl alcohol (PVA) and diatomite (DM) as raw materials, DM/PVA/Fe3O4@cotton composites with both firmness and hydrophilicity were prepared. Fe3O4 has a wide range of light absorption characteristics and good photothermal conversion performance, and is an ideal photothermal conversion material. PVA enhances the adhesion between Fe3O4, cotton and DM and enhances the hardness of the sample and the internal porous structure. The existence of DM greatly improves the hydrophilicity of the sample, ensuring that the water in the lower layer can be continuously transported to the surface of the sample, and DM makes the surface of the sample rough, which reduces the reflection of sunlight and improves the efficiency of light heat conversion. Under one-sun irradiation, the temperature of the sample surface increases by 52.6 °C, the evaporation rate can reach 1.32 kg m-2 h-1 and the evaporation efficiency is 82.9%. Using this sample as the photothermal conversion layer of the SSG device, the removal rate of salt ions in seawater is more than 98% and the removal rate of heavy metal ions in sewage is close to 100%. This work provides a new idea and design method for SSG in the field of seawater desalination and sewage treatment.
Collapse
Affiliation(s)
- Zhi Bai
- School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China
| | - Haifeng Xu
- School of Information Engineering, Suzhou University, Suzhou 234000, China
| | - Bo Yang
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Jixin Yao
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei 230601, China
- Anhui Province Key Laboratory of Simulation and Design for Electronic Information System, Hefei Normal University, Hefei 230601, China
| | - Guang Li
- Anhui Key Laboratory of Information Materials and Devices, Institute of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institute of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Kai Guo
- School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China
- Anhui Provincial Engineering Laboratory on Information Fusion and Control of Intelligent Robot, Wuhu 241002, China
| | - Nan Wang
- School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China
| | - Nannan Liang
- School of Information Engineering, Suzhou University, Suzhou 234000, China
| |
Collapse
|
32
|
Dong Y, Tan Y, Wang K, Cai Y, Li J, Sonne C, Li C. Reviewing wood-based solar-driven interfacial evaporators for desalination. WATER RESEARCH 2022; 223:119011. [PMID: 36037711 DOI: 10.1016/j.watres.2022.119011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Solar‒driven interfacial water evaporation is a convenient and efficient strategy for harvesting solar energy and desalinating seawater. However, the design and fabrication of solar evaporators still challenge reliable evaporation and practical applications. Wood-based solar-driven interfacial water evaporation emerge as a promising and environmentally friendly approach for water desalinating as it provides renewable and porous structures. In recent years, surface modifications and innovative structural designs to prepare high performance wood-based evaporators is widely explored. In this review, we firstly describe the superiority of wood for the fabrication of wood-based solar evaporators, including the pore structure, chemical structure and thermal insulation. Secondly, we summarize the recent developments in wood-based evaporators from surface carbonization, decoration with photothermal materials, bulk modification and structural design, and discuss from the aspects of water transportation capacity, thermal conductivity and photothermal efficiency. Finally, based on these previous results and analysis, we highlight the remaining challenges and potential future directions, including the selection of high-efficient photothermal materials, heat and mass transfer mechanism in wood-based evaporators including large-scale production at a low cost.
Collapse
Affiliation(s)
- Youming Dong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yi Tan
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Kaili Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yahui Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Christian Sonne
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark.
| | - Cheng Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
33
|
Armendáriz-Ontiveros MM, Villegas-Peralta Y, Madueño-Moreno JE, Álvarez-Sánchez J, Dévora-Isiordia GE, Sánchez-Duarte RG, Madera-Santana TJ. Modification of Thin Film Composite Membrane by Chitosan-Silver Particles to Improve Desalination and Anti-Biofouling Performance. MEMBRANES 2022; 12:membranes12090851. [PMID: 36135870 PMCID: PMC9505310 DOI: 10.3390/membranes12090851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 05/26/2023]
Abstract
Reverse osmosis (RO) desalination is a technology that is commonly used to mitigate water scarcity problems; one of its disadvantages is the bio-fouling of the membranes used, which reduces its performance. In order to minimize this problem, this study prepared modified thin film composite (TFC) membranes by the incorporation of chitosan-silver particles (CS-Ag) of different molecular weights, and evaluated them in terms of their anti-biofouling and desalination performances. The CS-Ag were obtained using ionotropic gelation, and were characterized by Fourier transform infrared spectroscopy (FTIR), high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA) and dynamic light scattering (DLS). The modified membranes were synthetized by the incorporation of the CS-Ag using the interfacial polymerization method. The membranes (MCS-Ag) were characterized by Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and contact angle. Bactericidal tests by total cell count were performed using Bacillus halotolerans MCC1, and anti-adhesion properties were confirmed through biofilm cake layer thickness and total organic carbon (%). The desalination performance was defined by permeate flux, hydraulic resistance, salt rejection and salt permeance by using 2000 and 5000 mg L-1 of NaCl. The MCS-Ag-L presented superior permeate flux and salt rejection (63.3% and 1% higher, respectively), as well as higher bactericidal properties (76% less in total cell count) and anti-adhesion capacity (biofilm thickness layer 60% and total organic carbon 75% less, compared with the unmodified membrane). The highest hydraulic resistance value was for MCS-Ag-M. In conclusion, the molecular weight of CS-Ag significantly influences the desalination and the antimicrobial performances of the membranes; as the molecular weight decreases, the membranes' performances increase. This study shows a possible alternative for increasing membrane useful life in the desalination process.
Collapse
Affiliation(s)
| | - Yedidia Villegas-Peralta
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico
| | - Julia Elizabeth Madueño-Moreno
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico
| | - Jesús Álvarez-Sánchez
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico
| | - German Eduardo Dévora-Isiordia
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico
| | - Reyna G. Sánchez-Duarte
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico
| | | |
Collapse
|
34
|
Li W, Feng W, Wu S, Wang W, Yu D. Synergy of photothermal effect in integrated 0D Ti2O3 nanoparticles/1D carboxylated carbon nanotubes for multifunctional water purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Ibrahim I, Hossain SM, Seo DH, McDonagh A, Foster T, Shon HK, Tijing L. Insight into the role of polydopamine nanostructures on nickel foam-based photothermal materials for solar water evaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Yang J, Li H, He S, Du H, Liu K, Zhang C, Jiang S. Facile Electrodeposition of NiCo2O4 Nanosheets on Porous Carbonized Wood for Wood-Derived Asymmetric Supercapacitors. Polymers (Basel) 2022; 14:polym14132521. [PMID: 35808566 PMCID: PMC9269009 DOI: 10.3390/polym14132521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 01/29/2023] Open
Abstract
Multichannel-porous carbon derived from wood can serve as a conductive substrate for fast charge transfer and ion diffusion, supporting the high-theory capacitance of pseudocapacitive materials. Herein, NiCo2O4 nanosheets, which are hierarchically porous, anchored on the surface of carbonized wood via electrodeposition for free-binder high-performance supercapacitor electrode materials, were proposed. Benefiting from the effectively alleviated NiCo2O4 nanosheets accumulation and sufficient active surface area for redox reaction, a N-doped wood-derived porous carbon-NiCo2O4 nanosheet hybrid material (NCNS–NCW) electrode exhibited a specific electric capacity of 1730 F g−1 at 1 A g−1 in 1 mol L−1 KOH and splendid electrochemical firmness with 80% capacitance retention after cycles. Furthermore, an all-wood-based asymmetric supercapacitor based on NCNS–NCW//NCW was assembled and a high energy density of 56.1 Wh kg−1 at a watt density of 349 W kg−1 was achieved. Due to the great electrochemical performance of NCNS–NCW, we expect it to be used as an electrode material with great promise for energy storage equipment.
Collapse
Affiliation(s)
- Jingjiang Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.Y.); (H.L.)
| | - Huiling Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.Y.); (H.L.)
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.Y.); (H.L.)
- Correspondence: (S.H.); (C.Z.); (S.J.)
| | - Haijuan Du
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China;
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China;
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence: (S.H.); (C.Z.); (S.J.)
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.Y.); (H.L.)
- Correspondence: (S.H.); (C.Z.); (S.J.)
| |
Collapse
|
37
|
Yu F, Li J, Jiang Y, Wang L, Yang X, Li X, Lü W, Sun X. Boosting Low-Temperature Resistance of Energy Storage Devices by Photothermal Conversion Effects. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23400-23407. [PMID: 35536010 DOI: 10.1021/acsami.2c03124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While flexible supercapacitors with high capacitance and energy density is highly desired for outdoor wearable electronics, their application under low-temperature environments, like other energy storage devices, remains an urgent challenge. Solar thermal energy converts solar light into heat and has been extensively applied for solar desalination and power generation. In the present work, to address the failure problem of energy storage devices in a cold environment, solar thermal energy was used to improve flexible supercapacitor performance at low temperature. As a proof of concept presented here, a typical all-solid-state supercapacitor composed of activated carbon electrodes and gel polymer electrolyte was coated by a carbonized melamine sponge. Due to the ability of photothermal conversion of carbonized melamine sponge, the capacitance of the supercapacitor was greatly enhanced, which could be further improved by adding surface plasmonic nanomaterials, for example, Ag nanowires. Compared with the device without photothermal conversion layers, the specific capacitance increased 3.48 times at -20 °C and retained 87% capacitance at room temperature and the specific capacitance increased 6.69 times at -50 °C and retained 73% capacitance at room temperature. The present work may provide new insights on the application of solar energy and the design of energy storage devices with excellent low-temperature resistance.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Jialun Li
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Yi Jiang
- School of Science, Changchun Institute of Technology, Changchun 130012, China
| | - Liying Wang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Xijia Yang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Xuesong Li
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Wei Lü
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Xiaojuan Sun
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| |
Collapse
|
38
|
Multiscale Mechanical Performance of Wood: From Nano- to Macro-Scale across Structure Hierarchy and Size Effects. NANOMATERIALS 2022; 12:nano12071139. [PMID: 35407258 PMCID: PMC9000298 DOI: 10.3390/nano12071139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
This review describes methods and results of studying the mechanical properties of wood at all scales: from nano- to macro-scale. The connection between the mechanical properties of material and its structure at all these levels is explored. It is shown that the existing size effects in the mechanical properties of wood, in a range of the characteristic sizes of the structure of about six orders of magnitude, correspond to the empirical Hall-Petch relation. This “law” was revealed more than 60 years ago in metals and alloys and later in other materials. The nature, as well as the particular type of the size dependences in different classes of materials can vary, but the general trend, “the smaller the stronger”, remains true both for wood and for other cellulose-containing materials. The possible mechanisms of the size effects in wood are being discussed. The correlations between the mechanical and thermophysical properties of wood are described. Several examples are used to demonstrate the possibility to forecast the macromechanical properties of wood by means of contactless thermographic express methods based on measuring temperature diffusivity. The research technique for dendrochronological and dendroclimatological studies by means of the analysis of microhardness and Young’s modulus radial dependences in annual growth rings is described.
Collapse
|
39
|
Jin M, Wu Z, Guan F, Zhang D, Wang B, Sheng N, Qu X, Deng L, Chen S, Chen Y, Wang H. Hierarchically Designed Three-Dimensional Composite Structure on a Cellulose-Based Solar Steam Generator. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12284-12294. [PMID: 35254828 DOI: 10.1021/acsami.1c24847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The emerging water purification technology represented by solar water evaporation has developed rapidly in recent years and is widely used in seawater desalination. However, the high reflectivity of sunlight and low efficiency of photothermal conversion greatly hinder its application prospects. In this paper, the hierarchical structure of the film was designed and optimized by the addition of carbon materials in the process of bacterial cellulose culture. A cellulose-based composite film material with a microporous structure was obtained, which can improve the photothermal evaporation rate and photothermal conversion efficiency from the structural principle to improve the stability of floating on the water. Bacterial cellulose (BC) as a three-dimensional carrier was combined with one-dimensional and two-dimensional (1D/2D) compounds of carbon nanotubes (CNT) and reduced graphene oxide (RGO) to form composite films for solar evaporation. By the addition of CNT-RGO (21.8 wt %), the composite showed prominent photothermal evaporation rate and photothermal conversion efficiency properties. Through in situ culture of BC, not only a tight structure can be obtained but also the surface of BC contains a large number of hydroxyl groups, which have many active sites to load photothermal materials. BC nanofibers, CNT, and RGO cooperate to form a porous network structure, which provides continuous double channels for the rapid transmission of water molecules and light paths, so as to form an excellent photothermal layer. The photothermal conversion efficiency is 90.2%, and the photothermal evaporation rate is 1.85 kg m-2 h-1 to achieve efficient solar interface evaporation. This is a high level of photothermal properties in a cellulose-based solar steam generator. The superior photothermal performance of this hybrid film possesses scalability and desalination ability.
Collapse
Affiliation(s)
- Mengtian Jin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhuotong Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Fangyi Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Dong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Baoxiu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Nan Sheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiangyang Qu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Lili Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Ye Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
40
|
Habibi N, Pourjavadi A. Thermally Conductive and Superhydrophobic Polyurethane Sponge for Solar-Assisted Separation of High-Viscosity Crude Oil from Water. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7329-7339. [PMID: 35089699 DOI: 10.1021/acsami.1c22594] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rapid and effective separation of high-viscosity heavy crude oil from seawater is a worldwide challenge. Herein, an ultralow density, photothermal, superhydrophobic, and thermally conductive polyurethane/polyaniline/hexagonal boron nitride@Fe3O4/polyacrylic-oleic acid resin sponge (PU/PANI/h-BN@Fe3O4/AR) was fabricated with a water contact angle (WCA) of 158°, thermal conductivity of 0.76 W m-1 K-1, density of 0.038 g cm-3, limited oxygen index (LOI) of 28.82%, and porosity of 97.97% and used for solar-assisted separation of high-viscosity crude oil from water. Photothermal components were composed of PANI and Fe3O4, while h-BN particles were used as thermally conductive and flame retardant fillers. Therefore, the illuminated sunlight irradiation on the modified sponge was converted to heat due to the activity of photothermal components. The produced heat was rapidly transferred to the environment due to the presence of h-BN for increasing the temperature of the high-viscosity crude oil and reducing oil viscosity that helped to promote its fluidity and effective absorption. The crude oil absorption capacity of this sponge increased from 4 to 57 g g-1 under irradiation of a sunlight simulator (power: 1 sun: 1 kW m-2) for 17 min due to oil viscosity reduction from 2.46 × 104 to below 100 mPa s followed by an increase in the surface temperature from 26 to 89 °C. Also, the oil absorption capacity was evaluated in a static state (172 g g-1 for chloroform), under different external magnetic fields (140.7 g g-1 for gasoline), and in a continuous state, which was 65,100 times of its own weight in the gasoline filtration process. The PU/PANI/h-BN@Fe3O4/AR sponge exhibited excellent stability against 20 times of reusing, mechanical compression, abrasion, immersing in various pH solutions, seawater, and high temperature. In all, the results confirmed that the prepared sponge is an excellent absorbent for organic solvents and highly viscous crude oil in the absence and presence of sunlight irradiation.
Collapse
Affiliation(s)
- Navid Habibi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 11365-9516, Iran
| | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 11365-9516, Iran
| |
Collapse
|
41
|
Yin Q, Zhang J, Tao Y, Kong F, Li P. The emerging development of solar evaporators in materials and structures. CHEMOSPHERE 2022; 289:133210. [PMID: 34890612 DOI: 10.1016/j.chemosphere.2021.133210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
To tackle the increasingly severe freshwater resource scarcity problem, desalination using solar evaporators is potentially an effective approach. This article reviews the research progress of solar evaporators in recent years, including materials, structures, and performance evaluations. In terms of material research, this article introduces the mechanism of photothermal conversion of metallic, semiconductor, polymeric, and carbon-based materials and their applications in the research of solar evaporators. The structure design of solar evaporators that can improve the photothermal conversion efficiency and water transport efficiency are summarized in detail. Regarding the evaluation of the evaporator performance, common evaluation methods for steam efficiency and environmental benefits of solar evaporators were introduced. Finally, this article analyzes the current problems of evaporators and proposes a prospect for the development of new types of high-efficiency evaporators.
Collapse
Affiliation(s)
- Qing Yin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jingfa Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yubo Tao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Peng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
42
|
Li Y, He Y, Zhuang J, Shi H. An intelligent natural fibrous membrane anchored with ZnO for switchable oil/water separation and water purification. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Strategies for efficient photothermal therapy at mild temperatures: Progresses and challenges. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Kiriarachchi HD, Hassan AA, Awad FS, El-Shall MS. Metal-free functionalized carbonized cotton for efficient solar steam generation and wastewater treatment. RSC Adv 2021; 12:1043-1050. [PMID: 35425139 PMCID: PMC8978842 DOI: 10.1039/d1ra08438k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 01/27/2023] Open
Abstract
Water desalination via solar steam generation is one of the most important technologies to address the increasingly pressing global water scarcity. Materials for solar photothermal energy conversion are highly sought after for their cost savings, environmental friendliness and broad utility in many applications including domestic water heating and solar-driven desalination. Herein, we report the successful development of metal-free, low weight and cost effective functionalized carbonized cotton (CC) fibers for efficient solar water desalination and wastewater treatment. The CC fibers with nearly full solar spectrum absorption, efficient photo-thermal conversion and low-cost could provide excellent alternatives to the high-cost plasmonic-based materials for solar water desalination. We also report on a novel and simple device to mitigate the issues associated with conductive heat loss by utilizing the economically viable carbonized cotton materials as an irradiation surface placed on a low-density polyethylene foam that floats on the surface of seawater. The CC solar steam generation device exhibits average water evaporation rates of 0.9, 6.4 and 10.9 kg m-2 h-1 with impressive solar-to-vapor efficiencies of 59.2, 88.7 and 94.9% under 1, 5 and 8 sun illumination, respectively. Moreover, the device displays excellent durability showing stable evaporation rates over 10 steam generation cycles under 5 sun of solar intensity. Furthermore, the applicability of the CC device for the removal of organic dyes from contaminated water through solar steam generation is also demonstrated. The low-cost, simple design, high solar thermal evaporation efficiency, excellent stability and long-term durability make this CC device a perfect candidate for applications in seawater desalination and wastewater treatment by solar steam generation.
Collapse
Affiliation(s)
| | - Amr A Hassan
- Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Fathi S Awad
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374
| | - M Samy El-Shall
- Department of Chemistry, Virginia Commonwealth University Richmond VA 23284 USA
| |
Collapse
|
45
|
Wang YC, Chang CJ, Huang CF, Zhang HC, Kang CW. Polydopamine-Bi 2WO 6-Decorated Gauzes as Dual-Functional Membranes for Solar Steam Generation and Photocatalytic Degradation Applications. Polymers (Basel) 2021; 13:4335. [PMID: 34960886 PMCID: PMC8709115 DOI: 10.3390/polym13244335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
The dual-functional Bi2WO6/polydopamine (PDA)-modified gauze membrane has been developed for applications in photocatalytic degradation and solar steam generation. Two types of membrane were prepared by changing the growth sequence of Bi2WO6 nanomaterials and PDA on gauze substrates. The spatial distribution of Bi2WO6 and polydopamine has a great influence on light absorption, photocatalytic degradation, and solar steam generation performances. Bi2WO6 photocatalysts can absorb short-wavelength light for the photocatalytic decoloration of organic dyes. The photothermal polydopamine can convert light into heat for water evaporation. Besides, the gauze substrate provides water transport channels to facilitate water evaporation. The morphology, surface chemistry, and optical properties of Bi2WO6-PDA modified gauzes were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and diffuse reflectance spectra. The photothermal properties, wetting properties, and solar steam generation rates of the composite films were also studied. Degradation of 96% of indigo carmine was achieved after being irradiated for 120 min in the presence of G/PDA/BWNP. The water evaporation rates of the G/BWP/PDA sample under the irradiation of an Xe lamp (light intensity = 1000 W/m2) reached 1.94 kg·m-2·h-1.
Collapse
Affiliation(s)
- Yea-Chin Wang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan; (Y.-C.W.); (H.-C.Z.); (C.-W.K.)
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan; (Y.-C.W.); (H.-C.Z.); (C.-W.K.)
| | - Chih-Feng Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (ICAST), National Chung Hsing University, Eng Bld 3, 250 Kuo Kuang Road, Taichung 40227, Taiwan;
| | - Hao-Cheng Zhang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan; (Y.-C.W.); (H.-C.Z.); (C.-W.K.)
| | - Chun-Wen Kang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan; (Y.-C.W.); (H.-C.Z.); (C.-W.K.)
| |
Collapse
|
46
|
Shu Q, Liu J, Chang Q, Liu C, Wang H, Xie Y, Deng X. Enhanced Photothermal Performance by Carbon Dot-Chelated Polydopamine Nanoparticles. ACS Biomater Sci Eng 2021; 7:5497-5505. [PMID: 34739201 DOI: 10.1021/acsbiomaterials.1c01045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Polydopamine (PDA) has been widely used in biomedical applications including imaging contrast agents, antioxidants, UV protection, and photothermal therapy due to its biocompatibility, metal-ion chelation, free-radical scavenging, and wideband absorption, but its low photothermal efficiency still needs to be improved. In this study, we chelated near-infrared (NIR) sensitive carbon quantum dots on the surface of polydopamine (PDA-PEI@N,S-CQDs) to increase its near-infrared absorption. Surprisingly, although only 4% (w/w) of carbon quantum dots was conjugated on the PDA surface, it still increased the photothermal efficiency by 30%. Moreover, PDA-PEI@N,S-CQDs could also be used as the drug carrier for loading 60% (w/w) of the DOX and achieved stimuli-responsive drug release under lysosomal pH (pH 5.0) and 808 nm laser illumination. For in vitro therapeutic experiment, PDA-PEI@N,S-CQDs showed the remarkable therapeutic performance under 808 nm laser irradiation for killing 90% of cancer cells compared with 50% by pure PDA nanoparticles, and the efficacy was even higher after loading DOX owing to the synergistic effect by photothermal therapy and chemotherapy. This intelligent and effective therapeutic nanosystem based on PDA-PEI@N,S-CQDs showed enhanced photothermal behavior after chelating carbon dots and promoted the future development of a nanoplatform for stimuli-responsive photothermal/chemo therapy.
Collapse
Affiliation(s)
- Qingfeng Shu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jie Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chenghao Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
47
|
Synthetic melanin facilitates MnO supercapacitors with high specific capacitance and wide operation potential window. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124276] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Tas CE, Berksun E, Koken D, Kolgesiz S, Unal S, Unal H. Waterborne Polydopamine-Polyurethane/Polyethylene Glycol-Based Phase Change Films for Solar-to-Thermal Energy Conversion and Storage. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cuneyt Erdinc Tas
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Sabanci University SUNUM Nanotechnology Research Center, Istanbul 34956, Turkey
| | - Ekin Berksun
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Deniz Koken
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Sarp Kolgesiz
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Serkan Unal
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul 34956, Turkey
| | - Hayriye Unal
- Sabanci University SUNUM Nanotechnology Research Center, Istanbul 34956, Turkey
| |
Collapse
|
49
|
Han X, Wang Z, Ding L, Chen L, Wang F, Pu J, Jiang S. Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Hydrogen-Bonding-Aided Fabrication of Wood Derived Cellulose Scaffold/Aramid Nanofiber into High-Performance Bulk Material. MATERIALS 2021; 14:ma14185444. [PMID: 34576668 PMCID: PMC8469447 DOI: 10.3390/ma14185444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022]
Abstract
Preparing a lightweight yet high-strength bio-based structural material with sustainability and recyclability is highly desirable in advanced applications for architecture, new energy vehicles and spacecraft. In this study, we combined cellulose scaffold and aramid nanofiber (ANF) into a high-performance bulk material. Densification of cellulose microfibers containing ANF and hydrogen bonding between cellulose microfibers and ANF played a crucial role in enhanced physical and mechanical properties of the hybrid material. The prepared material showed excellent tensile strength (341.7 MPa vs. 57.0 MPa for natural wood), toughness (4.4 MJ/m3 vs. 0.4 MJ/m3 for natural wood) and Young’s modulus (24.7 GPa vs. 7.2 GPa for natural wood). Furthermore, due to low density, this material exhibited a superior specific strength of 285 MPa·cm3·g−1, which is remarkably higher than some traditional building materials, such as concrete, alloys. In addition, the cellulose scaffold was infiltrated with ANFs, which also improved the thermal stability of the hybrid material. The facile and top-down process is effective and scalable, and also allows one to fully utilize cellulose scaffolds to fabricate all kinds of advanced bio-based materials.
Collapse
|