1
|
Liu CY, Li DL, Wang ZH, Li Y, Zhou SY, Xu L, Zhong GJ, Huang HD, Li ZM. Massively Parallel Aligned Poly(vinylidene fluoride) Nanofibrils in All-Organic Dielectric Polymer Composite Films for Electric Energy Storage. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Chun-Yan Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - De-Long Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Zhi-Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yue Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Sheng-Yang Zhou
- Nanotechnology and Functional Materials, Department of Materials Science and Engineering, The Ångström Laboratory, Uppsala University, 75103 Uppsala, Sweden
| | - Ling Xu
- School of Aeronautics and Astronautics, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Hua-Dong Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
2
|
Kumar A, Mandal D. Multifunctional poly(vinylidene fluoride–co‐hexafluoropropylene) ‐ zinc stannate nanocomposite for high energy density capacitors and piezo‐phototronic switching. J Appl Polym Sci 2023. [DOI: 10.1002/app.53652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ajay Kumar
- Quantum Materials and Devices Unit Institute of Nano Science and Technology Mohali India
| | - Dipankar Mandal
- Quantum Materials and Devices Unit Institute of Nano Science and Technology Mohali India
| |
Collapse
|
3
|
Song T, Wang Y, Li H, Wang H, Sun X, Yan S. Influence of Aliphatic Polyesters on the γ Phase Crystallization of Poly(vinylidene fluoride). Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Tiantian Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yuxin Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Huihui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Haijun Wang
- Shaanxi University of Science and Technology, Xi’an710021, China
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
- Key Laboratory of Rubber-Plastics of Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, No. 53 Zhengzhou Rd., Qingdao266042, China
| |
Collapse
|
4
|
Liu CY, Li DL, Li Y, Xu L, Meng X, Zhong GJ, Huang HD, Li ZM. Enhanced Quasilinear Dielectric Behavior of Polyvinylidene Fluoride via Confined Crystallization and Aligned Dipole Polarization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chun-Yan Liu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, PR China
| | - De-Long Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, PR China
| | - Yue Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, PR China
| | - Ling Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, PR China
| | - Xin Meng
- College of Electrical Engineering, Sichuan University, Chengdu610065, PR China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, PR China
| | - Hua-Dong Huang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, PR China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, PR China
| |
Collapse
|
5
|
Liu Y, Peng L, Lin JL, Zhou Y, Wang DJ, Han CC, Huang XB, Dong X. The Crystallization Behavior Regulating Nature of Hydrogen Bonds Interaction on Polyamide 6,6 by Poly(vinyl pyrrolidone). CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Two-Stage Evolution of Gamma-Phase Spherulites of Poly (Vinylidene Fluoride) Induced by Alkylammonium Salt. Polymers (Basel) 2022; 14:polym14183901. [PMID: 36146045 PMCID: PMC9504496 DOI: 10.3390/polym14183901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
We investigated the evolution of the γ-phase spherulites of poly(vinylidene fluoride) (PVDF) added to 1 wt% of tetrabutylammonium hydrogen sulfate during the isothermal crystallization at 165 °C through polarized optical microscopy and light scattering measurements. Optically isotropic domains grew, and then optical anisotropy started to increase in the domain to yield spherulite. Double peaks were seen in the time variation of the Vv light scattering intensity caused by the density fluctuation and optical anisotropy, and the Hv light scattering intensity caused by the optical anisotropy started to increase during the second increase in the Vv light scattering intensity. These results suggest the two-stage evolution of the γ-phase spherulites, i.e., the disordered domain grows in the first stage and ordering in the spherulite increases due to the increase in the fraction of the lamellar stacks in the spherulite without a change in the spherulite size in the second stage. Owing to the characteristic crystallization behavior, the birefringence in the γ-phase spherulites of the PVDF/TBAHS was much smaller than that in the α-phase spherulites of the neat PVDF.
Collapse
|
7
|
Nie C, Peng F, Cao R, Cui K, Sheng J, Chen W, Li L. Recent progress in flow‐induced polymer crystallization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cui Nie
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Fan Peng
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Renkuan Cao
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Kunpeng Cui
- Department of Polymer Science and Engineering, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film University of Science and Technology of China Hefei China
| | - Junfang Sheng
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Wei Chen
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Liangbin Li
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| |
Collapse
|
8
|
|
9
|
Ren JY, Ouyang QF, Ma GQ, Li Y, Lei J, Huang HD, Jia LC, Lin H, Zhong GJ, Li ZM. Enhanced Dielectric and Ferroelectric Properties of Poly(vinylidene fluoride) through Annealing Oriented Crystallites under High Pressure. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia-Yi Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qing-Feng Ouyang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Guo-Qi Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yue Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hua-Dong Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Sheng J, Chen W, Cui K, Li L. Polymer crystallization under external flow. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:036601. [PMID: 35060493 DOI: 10.1088/1361-6633/ac4d92] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The general aspects of polymer crystallization under external flow, i.e., flow-induced crystallization (FIC) from fundamental theoretical background to multi-scale characterization and modeling results are presented. FIC is crucial for modern polymer processing, such as blowing, casting, and injection modeling, as two-third of daily-used polymers is crystalline, and nearly all of them need to be processed before final applications. For academics, the FIC is intrinsically far from equilibrium, where the polymer crystallization behavior is different from that in quiescent conditions. The continuous investigation of crystallization contributes to a better understanding on the general non-equilibrium ordering in condensed physics. In the current review, the general theories related to polymer nucleation under flow (FIN) were summarized first as a preliminary knowledge. Various theories and models, i.e., coil-stretch transition and entropy reduction model, are briefly presented together with the modified versions. Subsequently, the multi-step ordering process of FIC is discussed in detail, including chain extension, conformational ordering, density fluctuation, and final perfection of the polymer crystalline. These achievements for a thorough understanding of the fundamental basis of FIC benefit from the development of various hyphenated rheometer, i.e., rheo-optical spectroscopy, rheo-IR, and rheo-x-ray scattering. The selected experimental results are introduced to present efforts on elucidating the multi-step and hierarchical structure transition during FIC. Then, the multi-scale modeling methods are summarized, including micro/meso scale simulation and macroscopic continuum modeling. At last, we briefly describe our personal opinions related to the future directions of this field, aiming to ultimately establish the unified theory of FIC and promote building of the more applicable models in the polymer processing.
Collapse
Affiliation(s)
- Junfang Sheng
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wei Chen
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Kunpeng Cui
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Liangbin Li
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|