1
|
Utrera-Barrios S, Steenackers N, Terryn S, Ferrentino P, Verdejo R, Van Asche G, López-Manchado MA, Brancart J, Hernández Santana M. Unlocking the potential of self-healing and recyclable ionic elastomers for soft robotics applications. MATERIALS HORIZONS 2024; 11:708-725. [PMID: 37997164 DOI: 10.1039/d3mh01312j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In the field of soft robotics, current materials face challenges related to their load capacity, durability, and sustainability. Innovative solutions are required to address these problems beyond conventional strategies, which often lack long-term ecological viability. This study aims to overcome these limitations using mechanically robust, self-healing, and recyclable ionic elastomers based on carboxylated nitrile rubber (XNBR). The designed materials exhibited excellent mechanical properties, including tensile strengths (TS) exceeding 19 MPa and remarkable deformability, with maximum elongations (EB) over 650%. Moreover, these materials showed high self-healing capabilities, with 100% recovery efficiency of TS and EB at 110 °C after 3 to 5 h, and full recyclability, preserving their mechanical performance even after three recycling cycles. Furthermore, they were also moldable and readily scalable. Tendon-driven soft robotic grippers were successfully developed out of ionic elastomers, illustrating the potential of self-healing and recyclability in the field of soft robotics to reduce maintenance costs, increase material durability, and improve sustainability.
Collapse
Affiliation(s)
- S Utrera-Barrios
- Institute of Polymer Science and Technology (ICTP), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - N Steenackers
- Physical Chemistry and Polymer Science (FYSC), Department of Materials and Chemistry (MACH), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, B-1050 Brussels, Belgium
| | - S Terryn
- Physical Chemistry and Polymer Science (FYSC), Department of Materials and Chemistry (MACH), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, B-1050 Brussels, Belgium
| | - P Ferrentino
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, B-1050 Brussels, Belgium
| | - R Verdejo
- Institute of Polymer Science and Technology (ICTP), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - G Van Asche
- Physical Chemistry and Polymer Science (FYSC), Department of Materials and Chemistry (MACH), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - M A López-Manchado
- Institute of Polymer Science and Technology (ICTP), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - J Brancart
- Physical Chemistry and Polymer Science (FYSC), Department of Materials and Chemistry (MACH), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - M Hernández Santana
- Institute of Polymer Science and Technology (ICTP), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
2
|
Yang X, Han Z, Jia C, Wang T, Wang X, Hu F, Zhang H, Zhao J, Zhang X. Preparation and Characterization of Body-Temperature-Responsive Thermoset Shape Memory Polyurethane for Medical Applications. Polymers (Basel) 2023; 15:3193. [PMID: 37571087 PMCID: PMC10420975 DOI: 10.3390/polym15153193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Shape memory polymers (SMPs) are currently one of the most attractive smart materials expected to replace traditional shape memory alloys and ceramics (SMAs and SMCs, respectively) in some fields because of their unique properties of high deformability, low density, easy processing, and low cost. As one of the most popular SMPs, shape memory polyurethane (SMPU) has received extensive attention in the fields of biomedicine and smart textiles due to its biocompatibility and adjustable thermal transition temperature. However, its laborious synthesis, limitation to thermal response, poor conductivity, and low modulus limit its wider application. In this work, biocompatible poly(ε-caprolactone) diol (PCL-2OH) is used as the soft segment, isophorone diisocyanate (IPDI) is used as the hard segment, and glycerol (GL) is used as the crosslinking agent to prepare thermoset SMPU with a thermal transition temperature close to body temperature for convenient medical applications. The effects of different soft-chain molecular weights and crosslinking densities on the SMPU's properties are studied. It is determined that the SMPU has the best comprehensive performance when the molar ratio of IPDI:PCL-2OH:GL is 2:1.5:0.33, which can trigger shape memory recovery at body temperature and maintain 450% recoverable strain. Such materials are excellent candidates for medical devices and can make great contributions to human health.
Collapse
Affiliation(s)
- Xiaoqing Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China;
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China; (C.J.); (F.H.)
| | - Zhipeng Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.H.); (T.W.); (X.W.); (H.Z.)
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chengqi Jia
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China; (C.J.); (F.H.)
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthopedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Tianjiao Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.H.); (T.W.); (X.W.); (H.Z.)
- Research Institute of Aerospace Special Materials and Processing Technology, Beijing 100074, China
| | - Xiaomeng Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.H.); (T.W.); (X.W.); (H.Z.)
- AVIC Manufacturing Technology Institute, Beijing 101300, China
| | - Fanqi Hu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China; (C.J.); (F.H.)
| | - Hui Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.H.); (T.W.); (X.W.); (H.Z.)
| | - Jun Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.H.); (T.W.); (X.W.); (H.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuesong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China;
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China; (C.J.); (F.H.)
| |
Collapse
|
3
|
Jaras J, Navaruckiene A, Ostrauskaite J. Thermoresponsive Shape-Memory Biobased Photopolymers of Tetrahydrofurfuryl Acrylate and Tridecyl Methacrylate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2156. [PMID: 36984035 PMCID: PMC10056724 DOI: 10.3390/ma16062156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
A series of thermoresponsive shape-memory photopolymers have been synthesized from the mixtures of two biobased monomers, tetrahydrofurfuryl acrylate and tridecyl methacrylate, with the addition of a small amount of 1,3-benzendithiol (molar ratio of monomers 0-10:0.5:0.03, respectively). Ethyl (2,4,6 trimethylbenzoyl) phenylphosphinate was used as photoinitiator. The calculated biorenewable carbon content of these photopolymers was in the range of (63.7-74.9)%. The increase in tetrahydrofurfuryl acrylate content in the photocurable resins resulted in a higher rate of photocuring, increased rigidity, as well as mechanical and thermal characteristics of the obtained polymers. All photopolymer samples showed thermoresponsive shape-memory behavior when reaching their glass transition temperature. The developed biobased photopolymers can replace petroleum-derived thermoresponsive shape-memory polymer analogues in a wide range of applications.
Collapse
|
4
|
Salaeh S, Nobnop S, Thongnuanchan B, Das A, Wießner S. Thermo-responsive programmable shape memory polymer based on amidation cured natural rubber grafted with poly(methyl methacrylate). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Cai H, Wang Z, Utomo NW, Vidavsky Y, Silberstein MN. Highly stretchable ionically crosslinked acrylate elastomers inspired by polyelectrolyte complexes. SOFT MATTER 2022; 18:7679-7688. [PMID: 36173254 DOI: 10.1039/d2sm00755j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dynamic bonds are a powerful approach to tailor the mechanical properties of elastomers and introduce shape-memory, self-healing, and recyclability. Among the library of dynamic crosslinks, electrostatic interactions among oppositely charged ions have been shown to enable tough and resilient elastomers and hydrogels. In this work, we investigate the mechanical properties of ionically crosslinked ethyl acrylate-based elastomers assembled from oppositely charged copolymers. Using both infrared and Raman spectroscopy, we confirm that ionic interactions are established among polymer chains. We find that the glass transition temperature of the complex is in between the two individual copolymers, while the complex demonstrates higher stiffness and more recovery, indicating that ionic bonds can strengthen and enhance recovery of these elastomers. We compare cycles to increasing strain levels at different strain rates, and hypothesize that at fast strain rates ionic bonds dynamically break and reform while entanglements do not have time to slip, and at slow strain rates ionic interactions are disrupted and these entanglements slip significantly. Further, we show that a higher ionic to neutral monomer ratio can increase the stiffness, but its effect on recovery is minimal. Finally, taking advantage of the versatility of acrylates, ethyl acrylate is replaced with the more hydrophilic 2-hydroxyethyl acrylate, and the latter is shown to exhibit better recovery and self-healing at a cost of stiffness and strength. The design principles uncovered for these easy-to-manufacture polyelectrolyte complex-inspired bulk materials can be broadly applied to tailor elastomer stiffness, strength, inelastic recovery, and self-healing for various applications.
Collapse
Affiliation(s)
- Hongyi Cai
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Zhongtong Wang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Nyalaliska W Utomo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yuval Vidavsky
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Meredith N Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
6
|
Zhou S, Yuan L, Liang G, Gu A. Thermally resistant and strong shape memory bismaleimide resin with intrinsic
halogen‐free
and
phosphorus‐free
flame retardancy. J Appl Polym Sci 2022. [DOI: 10.1002/app.53187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sumiao Zhou
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou People's Republic of China
| | - Li Yuan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou People's Republic of China
| | - Guozheng Liang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou People's Republic of China
| | - Aijuan Gu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou People's Republic of China
| |
Collapse
|
7
|
Tu Y, Zheng Y, Guo S, Shen J. Switchable Piezoelectricity of Polyvinylidene Fluoride Films Induced by Crystal Transition in Shape Memory Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40331-40343. [PMID: 36000987 DOI: 10.1021/acsami.2c11152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid development of wearable self-powered devices, the piezoelectric materials having deformable and switchable characteristics are attracting extensive attention. Herein, the cross-linked polyvinylidene fluoride (cPVDF) was fabricated through an alkali-catalyzed defluorination and chemical cross-linking method by introducing trimethylhexamethylenediamine (THDA). The system filled with 1 wt % THDA (CP1) was proved to possess balanced cross-linking density and crystallinity, which would play a crucial role in achieving a switchable piezoelectric effect. In comparison to pristine PVDF, the cross-linked one exhibited repeatable shape memory characterization due to restrained plastic deformation above the melting transition. Both the shape-fixing and shape-recovery ratios were stably maintained above 90%. More significantly, the thermo-mechanical program also triggered the α-β-α crystal transition accompanied by the variation of conformational entropy. The largest amount of β crystals was produced in the temporary shape, whereas the original and recovery shapes were dominated by α crystals. Such structural transition occurred repeatedly in the successive shape memory cycles, which thereby induced the periodic fluctuation of the piezoelectric constant (d33). For the CP1 sample, its d33 was only about 2 pC/N in the original and recovery shapes but reached up to 9.4 pC/N in the temporary shape. When the latter one was fabricated into a piezoelectric device, alternating voltage and current were generated by performing periodic impact force and were demonstrated to be capable of monitoring some pressure-related motions in real time without an external power supply. Finally, the switchable piezoelectric effect of the CP1 at different shape memory stages was further revealed through its electroactive response to the sinusoidal voltage stimulation. This work offers a special perspective in tailoring piezoelectric performance through the structural transition in shape memory progress, which is of great significance for enriching the types and applications of piezoelectric polymers.
Collapse
Affiliation(s)
- Youlei Tu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Chengdu 610065, China
| | - Yu Zheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Chengdu 610065, China
| | - Shaoyun Guo
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Chengdu 610065, China
| | - Jiabin Shen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Chengdu 610065, China
| |
Collapse
|
8
|
González-Jiménez A, Bernal-Ortega P, Salamanca FM, Valentin JL. Shape-Memory Composites Based on Ionic Elastomers. Polymers (Basel) 2022; 14:polym14061230. [PMID: 35335560 PMCID: PMC8953204 DOI: 10.3390/polym14061230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Shape-memory polymers tend to present rigid behavior at ambient temperature, being unable to deform in this state. To obtain soft shape-memory elastomers, composites based on a commercial rubber crosslinked by both ionic and covalent bonds were developed, as these materials do not lose their elastomeric behavior below their transition (or activation) temperature (using ionic transition for such a purpose). The introduction of fillers, such as carbon black and multiwalled carbon nanotubes (MWCNTs), was studied and compared with the unfilled matrix. By adding contents above 10 phr of MWCNT, shape-memory properties were enhanced by 10%, achieving fixing and recovery ratios above 90% and a faster response. Moreover, by adding these fillers, the conductivity of the materials increased from ~10−11 to ~10−4 S·cm−1, allowing the possibility to activate the shape-memory effect with an electric current, based on the heating of the material by the Joule effect, achieving a fast and clean stimulus requiring only a current source of 50 V.
Collapse
Affiliation(s)
- Antonio González-Jiménez
- Materials Science and Engineering Area, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain
- Correspondence: (A.G.-J.); (J.L.V.); Tel.: +34-912587539 (J.L.V.)
| | - Pilar Bernal-Ortega
- Department of Elastomer Technology and Engineering, University of Twente, Driener-Iolaan 5, 7522 NB Enschede, The Netherlands;
| | - Fernando M. Salamanca
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Juan L. Valentin
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Correspondence: (A.G.-J.); (J.L.V.); Tel.: +34-912587539 (J.L.V.)
| |
Collapse
|
9
|
Shape memory elastomers: A review of synthesis, design, advanced manufacturing, and emerging applications. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Gregory GL, Williams CK. Exploiting Sodium Coordination in Alternating Monomer Sequences to Toughen Degradable Block Polyester Thermoplastic Elastomers. Macromolecules 2022; 55:2290-2299. [PMID: 35558439 PMCID: PMC9084597 DOI: 10.1021/acs.macromol.2c00068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Indexed: 01/26/2023]
Abstract
![]()
Thermoplastic
elastomers (TPEs) that are closed-loop recyclable
are needed in a circular material economy, but many current materials
degrade during recycling, and almost all are pervasive hydrocarbons.
Here, well-controlled block polyester TPEs featuring regularly placed
sodium/lithium carboxylate side chains are described. They show significantly
higher tensile strengths than unfunctionalized analogues, with high
elasticity and elastic recovery. The materials are prepared using
controlled polymerizations, exploiting a single catalyst that switches
between different polymerization cycles. ABA block polyesters of high
molar mass (60–100 kg mol–1; 21 wt % A-block)
are constructed using the ring-opening polymerization of ε-decalactone
(derived from castor oil; B-block), followed by the alternating ring-opening
copolymerization of phthalic anhydride with 4-vinyl-cyclohexene oxide
(A-blocks). The polyesters undergo efficient functionalization to
install regularly placed carboxylic acids onto the A blocks. Reacting
the polymers with sodium or lithium hydroxide controls the extent
of ionization (0–100%); ionized polymers show a higher tensile
strength (20 MPa), elasticity (>2000%), and elastic recovery (>80%).
In one case, sodium functionalization results in 35× higher stress
at break than the carboxylic acid polymer; in all cases, changing
the quantity of sodium tunes the properties. A leading sample, 2-COONa75 (Mn 100 kg mol–1, 75% sodium), shows a wide operating temperature range (−52
to 129 °C) and is recycled (×3) by hot-pressing at 200 °C,
without the loss of mechanical properties. Both the efficient synthesis
of ABA block polymers and precision ionization in perfectly alternating
monomer sequences are concepts that can be generalized to many other
monomers, functional groups, and metals. These materials are partly
bioderived and have degradable ester backbone chemistries, deliver
useful properties, and allow for thermal reprocessing; these features
are attractive as future sustainable TPEs.
Collapse
Affiliation(s)
- Georgina L. Gregory
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Charlotte K. Williams
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
11
|
Larrue C, Bounor-Legaré V, Cassagnau P. Enhancement of EPDM Crosslinked Elastic Properties by Association of Both Covalent and Ionic Networks. Polymers (Basel) 2021; 13:polym13183161. [PMID: 34578061 PMCID: PMC8473281 DOI: 10.3390/polym13183161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/03/2022] Open
Abstract
The objective of this study was to replace elastomer crosslinking based on chemical covalent bonds by reversible systems under processing. One way is based on ionic bonds creation, which allows a physical crosslinking while keeping the process reversibility. However, due to the weak elasticity recovery of such a physical network after a long period of compression, the combination of both physical and chemical networks was studied. In that frame, an ethylene-propylene-diene terpolymer grafted with maleic anhydride (EPDM-g-MA) was crosslinked with metal salts and/or dicumyl peroxide (DCP). Thus, the influence of these two types of crosslinking networks and their combination were studied in detail in terms of compression set. The second part of this work was focused on the influence of different metallic salts (KOH, ZnAc2) and the sensitivity to the water of the physical crosslinking network. Finally, the combination of ionic and covalent network allowed combining the processability and better mechanical properties in terms of recovery elasticity. KAc proved to be the best ionic candidate to avoid water degradation of the ionic network and then to preserve the elasticity recovery properties under aging.
Collapse
|