1
|
Roussel S, Udabe J, Bin Sabri A, Calderón M, Donnelly R. Leveraging novel innovative thermoresponsive polymers in microneedles for targeted intradermal deposition. Int J Pharm 2024; 652:123847. [PMID: 38266945 DOI: 10.1016/j.ijpharm.2024.123847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Microneedles have garnered considerable attention over the years as a versatile pharmaceutical platform that could be leveraged to deliver drugs into and across the skin. In the current work, poly (N-isopropylacrylamide) (PNIPAm) is synthesized and characterized as a novel material for the development of a physiologically responsive microneedle-based drug delivery system. Typically, this polymer transitions reversibly between a swell state at lower temperatures and a more hydrophobic state at higher temperatures, enabling precise drug release. This study demonstrates that dissolving microneedles patches made from PNIPAm, incorporating BIS-PNIPAm, a crosslinked polymer variant, exhibit enhanced mechanical properties, evident from a smaller height reduction in microneedle (∼10 %). Although microneedles using PNIPAm alone were achievable, it displayed poor mechanical strength, requiring the inclusion of additional polymeric excipients like PVA to enhance mechanical properties. In addition, the incorporation of a thermoresponsive polymer did not have a significant (p > 0.05) impact on the insertion properties of the needles as all formulations inserted to a similar depth of 500 µm into ex vivo skin. Furthering this, the needles were loaded with a model payload, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DID) and the deposition of the cargo was monitored via multiphoton microscopy that showed that a deposit is formed at a depth of ≈200 µm. Also, it was revealed that crosslinked-PNIPAm (Bis-PNIPAm) formulations exhibited notable skin accumulationof the dye only after 4 h, independent of the excipient matrix used. This phenomenon was absent in non-crosslinked PNIPAm formulations, indicating a deposit formation in Bis-PNIPAm microneedle formulation. Collectively, this proof-of-concept study has advanced our understanding on the possibility to use PNIPAm for dissolving microneedle fabrication which could be harnessed for the deposition of nanoparticles into the dermis, for extended drug release within the skin.
Collapse
Affiliation(s)
- Sabrina Roussel
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Quebec G1V 4G2, Canada; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jakes Udabe
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia - San Sebastián, Spain
| | - Akmal Bin Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, The University of Nottingham, NG7 2RD, UK
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia - San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ryan Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
2
|
Snuggs JW, Emanuel KS, Rustenburg C, Janani R, Partridge S, Sammon C, Smit TH, Le Maitre CL. Injectable biomaterial induces regeneration of the intervertebral disc in a caprine loaded disc culture model. Biomater Sci 2023; 11:4630-4643. [PMID: 37204288 PMCID: PMC10294806 DOI: 10.1039/d3bm00150d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Back pain is the leading cause of disability with half of cases attributed to intervertebral disc (IVD) degeneration, yet currently no therapies target this cause. We previously reported an ex vivo caprine loaded disc culture system (LDCS) that accurately represents the cellular phenotype and biomechanical environment of human IVD degeneration. Here, the efficacy of an injectable hydrogel system (LAPONITE® crosslinked pNIPAM-co-DMAc, (NPgel)) to halt or reverse the catabolic processes of IVD degeneration was investigated within the LDCS. Following enzymatic induction of degeneration using 1 mg mL-1 collagenase and 2 U mL-1 chondroitinase ABC within the LDCS for 7 days, IVDs were injected with NPgel alone or with encapsulated human bone marrow progenitor cells (BMPCs). Un-injected caprine discs served as degenerate controls. IVDs were cultured for a further 21 days within the LDCS. Tissues were then processed for histology and immunohistochemistry. No extrusion of NPgel was observed during culture. A significant decrease in histological grade of degeneration was seen in both IVDs injected with NPgel alone and NPgel seeded with BMPCs, compared to un-injected controls. Fissures within degenerate tissue were filled by NPgel and there was evidence of native cell migration into injected NPgel. The expression of healthy NP matrix markers (collagen type II and aggrecan) was increased, whereas the expression of catabolic proteins (MMP3, ADAMTS4, IL-1β and IL-8) was decreased in NPgel (±BMPCs) injected discs, compared to degenerate controls. This demonstrates that NPgel promotes new matrix production at the same time as halting the degenerative cascade within a physiologically relevant testing platform. This highlights the potential of NPgel as a future therapy for IVD degeneration.
Collapse
Affiliation(s)
- Joseph W Snuggs
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Sheffield, UK.
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Kaj S Emanuel
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Christine Rustenburg
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Ronak Janani
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Simon Partridge
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Christopher Sammon
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Theo H Smit
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Christine L Le Maitre
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Sheffield, UK.
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
3
|
Sánchez-Fernández JA. Structural Strategies for Supramolecular Hydrogels and Their Applications. Polymers (Basel) 2023; 15:1365. [PMID: 36987146 PMCID: PMC10052692 DOI: 10.3390/polym15061365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Supramolecular structures are of great interest due to their applicability in various scientific and industrial fields. The sensible definition of supramolecular molecules is being set by investigators who, because of the different sensitivities of their methods and observational timescales, may have different views on as to what constitutes these supramolecular structures. Furthermore, diverse polymers have been found to offer unique avenues for multifunctional systems with properties in industrial medicine applications. Aspects of this review provide different conceptual strategies to address the molecular design, properties, and potential applications of self-assembly materials and the use of metal coordination as a feasible and useful strategy for constructing complex supramolecular structures. This review also addresses systems that are based on hydrogel chemistry and the enormous opportunities to design specific structures for applications that demand enormous specificity. According to the current research status on supramolecular hydrogels, the central ideas in the present review are classic topics that, however, are and will be of great importance, especially the hydrogels that have substantial potential applications in drug delivery systems, ophthalmic products, adhesive hydrogels, and electrically conductive hydrogels. The potential interest shown in the technology involving supramolecular hydrogels is clear from what we can retrieve from the Web of Science.
Collapse
Affiliation(s)
- José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
4
|
Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K, Manne R, Deepak A, Zafar A, Yasir M, Pramanik S. Poly( N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022; 8:454. [PMID: 35877539 PMCID: PMC9323937 DOI: 10.3390/gels8070454] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/21/2022] Open
Abstract
A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rahul R. Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA;
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Road, Phagwara 144001, Punjab, India;
| | - Kingshuk Panda
- Department of Applied Microbiology, Vellore Institute of Technology, School of Bioscience and Technology, Vellore 632014, Tamilnadu, India;
| | - Kishore Dhotre
- I.C.M.R.—National Institute of Virology, Pune 411021, Maharashtra, India;
| | - Ravi Manne
- Chemtex Environmental Lab, Quality Control and Assurance Department, 3082 25th Street, Port Arthur, TX 77642, USA;
| | - A. Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600124, Tamil Nadu, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; or
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella 396, Ethiopia;
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
5
|
Lebovka N, Goncharuk O, Klepko V, Mykhailyk V, Samchenko Y, Kernosenko L, Pasmurtseva N, Poltoratska T, Siryk O, Solovieva O, Tatochenko M. Cross-Linked Hydrogels Based on PolyNIPAAm and Acid-Activated Laponite RD: Swelling and Tunable Thermosensitivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5708-5716. [PMID: 35481382 DOI: 10.1021/acs.langmuir.2c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The effects of acid activation of Laponite RD (Lap) on the structure and properties of activated Lap nanoparticles (aLap) and the properties of polyNIPAAm hydrogels physically cross-linked by aLap have been studied. The acid activation of Lap by the sulfuric acid was done using the concentration of sulfuric acid within the interval Ca = 0.525-14.58% for 10 h. For slightly activated samples (Ca ≤ 1.25 wt %), the significant increase of the specific surface area (by ≈1.56 times) was accompanied with a significant decrease in both the values of the specific heat of immersion in water and n-decane. However, the hydrophilic properties of all samples S0-S5 were still observed. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) data, Fourier transform infrared (FTIR) spectra, and X-ray diffraction (XRD) patterns demonstrated that the acid activation resulted in the destruction of the crystal lattice of Lap, leaching of magnesium and lithium, and formation of the amorphous phases. Moreover, the acid activation significantly affected aggregation and negative surface charges of the aLap faces in aqueous suspension. The effects of aLap on the swelling properties and cooperativity in the phase transitions of polyNIPAAm hydrogels cross-linked by aLap are also discussed. It was demonstrated that an increase in Ca resulted in a significant increase in the equilibrium degree of swelling of the hydrogels and a decrease in the hydrogel phase-transition temperature from the swollen phase to the shrunken phase.
Collapse
Affiliation(s)
- Nikolai Lebovka
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Olena Goncharuk
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Valeriy Klepko
- Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske road, 02160 Kiev, Ukraine
| | - Viacheslav Mykhailyk
- Institute of Engineering Thermophysics NAS of Ukraine, 2a Zhelyabova Str, Kyiv 03057, Ukraine
| | - Yurii Samchenko
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Lyudmila Kernosenko
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Natalya Pasmurtseva
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Tetiana Poltoratska
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Olena Siryk
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Olena Solovieva
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Mykhailo Tatochenko
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| |
Collapse
|