1
|
Tan MWM, Wang H, Gao D, Huang P, Lee PS. Towards high performance and durable soft tactile actuators. Chem Soc Rev 2024; 53:3485-3535. [PMID: 38411597 DOI: 10.1039/d3cs01017a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Soft actuators are gaining significant attention due to their ability to provide realistic tactile sensations in various applications. However, their soft nature makes them vulnerable to damage from external factors, limiting actuation stability and device lifespan. The susceptibility to damage becomes higher with these actuators often in direct contact with their surroundings to generate tactile feedback. Upon onset of damage, the stability or repeatability of the device will be undermined. Eventually, when complete failure occurs, these actuators are disposed of, accumulating waste and driving the consumption of natural resources. This emphasizes the need to enhance the durability of soft tactile actuators for continued operation. This review presents the principles of tactile feedback of actuators, followed by a discussion of the mechanisms, advancements, and challenges faced by soft tactile actuators to realize high actuation performance, categorized by their driving stimuli. Diverse approaches to achieve durability are evaluated, including self-healing, damage resistance, self-cleaning, and temperature stability for soft actuators. In these sections, current challenges and potential material designs are identified, paving the way for developing durable soft tactile actuators.
Collapse
Affiliation(s)
- Matthew Wei Ming Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Hui Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Peiwen Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| |
Collapse
|
2
|
Wang J, Wang M, Zhang X, Han Y, Wu Y, Wang D, Qin X, Lu Y, Zhang L. Quantification Characterization of Hierarchical Structure of Polyurethane by Advanced AFM and X-ray Techniques. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45388-45398. [PMID: 37705159 DOI: 10.1021/acsami.3c07860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Polyurethane (PU) with microphase separation has garnered significant attention due to its highly designable molecular structure and a wide range of adjustable properties. However, there is currently a lack of systematic approaches for quantifying PU's microphase separation. To address this research gap, we utilized an atomic force microscopy (AFM) nanomechanical mapping technique along with Gaussian fitting to recolor and quantitatively analyze the evolution of PU's microphase separation. By varying the ratios of the chain extender to cross-linking agent, we observed the changes in the hydrogen bonding between the soft and hard segments. As the ratio of the chain extender to cross-linking agent decreases, the strength of the hydrogen bonding weakens, resulting in a reduction in the quantity and phase percentage of hard segment (HS) domains. Consequently, the degree of microphase separation between the soft and hard segments decreases, leading to specific alterations in the material's mechanical properties and dynamic viscoelasticity. To further investigate the hierarchical structure of PU, we employed various techniques, such as X-ray analysis, transmission electron microscopy (TEM), and AFM-based infrared spectroscopy (AFM-IR). Our findings reveal a spherulite pattern composed of lamellae within the HS domains, with the cross-linking density gradually increasing from the center to the periphery. Overall, our comprehensive characterization of PU provides valuable insights into its hierarchical structure and establishes a quantitative framework to explore the intricate relationship between the structure and properties.
Collapse
Affiliation(s)
- Jiadong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Min Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Xi Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yang Han
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Yingxue Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Dong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Xuan Qin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Yonglai Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
- Institute of Emergent Elastomers, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| |
Collapse
|
3
|
Wang X, Zhao Z, Zhang M, Liang Y, Liu Y. Polyurethanes Modified by Ionic Liquids and Their Applications. Int J Mol Sci 2023; 24:11627. [PMID: 37511385 PMCID: PMC10380480 DOI: 10.3390/ijms241411627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Polyurethane (PU) refers to the polymer containing carbamate groups in its molecular structure, generally obtained by the reaction of isocyanate and alcohol. Because of its flexible formulation, diverse product forms, and excellent performance, it has been widely used in mechanical engineering, electronic equipment, biomedical applications, etc. Through physical or chemical methods, ionic groups are introduced into PU, which gives PU electrical conductivity, flame-retardant, and antistatic properties, thus expanding the application fields of PU, especially in flexible devices such as sensors, actuators, and functional membranes for batteries and gas absorption. In this review, we firstly introduced the characteristics of PU in chemical and microphase structures and their related physical and chemical performance. To improve the performance of PU, ionic liquids (ILs) were applied in the processing or synthesis of PU, resulting in a new type of PU called ionic PU. In the following part of this review, we mainly summarized the fabrication methods of IL-modified PUs via physical blending and the chemical copolymerization method. Then, we summarized the research progress of the applications for IL-modified PUs in different fields, including sensors, actuators, transistors, antistatic films, etc. Finally, we discussed the future development trends and challenges faced by IL-modified PUs.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhenjie Zhao
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Meiyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yongri Liang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yingdan Liu
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
4
|
Li X, Li K, Chen Z, Yang X. Effect of hydrogen bonds on phase structure and crystallization behavior of
UPy‐functionalized
polyurethane. J Appl Polym Sci 2022. [DOI: 10.1002/app.53206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuemin Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun PR China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei PR China
- Polymer Composite Engineering Laboratory, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun PR China
| | - Kun Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun PR China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei PR China
- Polymer Composite Engineering Laboratory, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun PR China
| | - Zhaobin Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun PR China
- Polymer Composite Engineering Laboratory, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun PR China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun PR China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei PR China
- Polymer Composite Engineering Laboratory, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun PR China
| |
Collapse
|
5
|
Wang Z, Liu Z, Gao Z, Li X, Eling B, Pöselt E, Schander E, Wang Z. Structure transition of aliphatic m,6-Polyurethane during heating investigated using in-situ WAXS, SAXS, and FTIR. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|